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Abstract: The current design of negative Poisson’s ratio lattice structures is mainly forward-looking
and predominantly dependent on several known deformation patterns. To automate the generation of
structures with programmable Poisson’s ratio, the study utilized the energy homogenization method
and the Solid Isotropic Material with Penalization (SIMP) method to establish an optimization model
for negative Poisson’s ratio. By proposing a relaxed objective function and eliminating damping
in the Optimality Criteria (OC) method, the study achieves the automatic evolution of negative
Poisson’s ratio programmable lattice unit cells, with the lowest Poisson’s ratio achieving −0.5367,
and an equivalent elastic matrix is derived. The iterative process’s efficiency is comparable to that of
commercial software, with a maximum iteration time of 300 s, enabling the prompt identification
of fundamental configurations. To validate the method’s effectiveness, finite element analysis was
performed on four tubular structures, revealing evident tension–compression deformation patterns.
Moreover, the microscale selective laser melting was used to successfully prepare multiple sets of
tubular samples made from 316L stainless steel, each with a height of 5 mm. Quasi-static compression
experiments showed negative Poisson’s ratio effects and buckling forms that align with finite element
analysis results, providing valuable insights for industry applications.

Keywords: topology optimization; negative Poisson’s ratio; additive manufacturing; selective laser
melting; 316L

1. Introduction

Materials with negative Poisson’s ratio, also known as auxetic materials [1], display
unique characteristics where they expand in the direction perpendicular to the applied
tensile load, setting them apart from traditional materials. These materials exhibit signifi-
cantly enhanced compressive strength in the plane, improved fracture toughness, increased
transverse shear modulus, and improved dynamic properties, such as energy absorption
and wave attenuation [2], when compared to materials with positive Poisson’s ratio. Conse-
quently, negative Poisson’s ratio materials have found widespread applications in various
fields, such as self-expanding coronary stents, esophageal stents, medical bandages, hel-
mets, etc., making them one of the most important branches of mechanical metamaterials.

The concept of Poisson’s ratio was initially proposed by the French mathematician
Poisson to describe the longitudinal deformation that occurs concurrently with lateral
deformation in a material, and most traditional materials exhibit a positive Poisson’s ratio.
In the early stages of elasticity theory, the uniconstant theory stated that the Poisson’s ratio
of all isotropic materials was 0.25. However, with the development of classical elasticity
theory, it became evident that the elastic deformation of isotropic materials can be described
by two independent parameters, elastic modulus and Poisson’s ratio, and the Poisson’s
ratio values of different materials differ significantly. Currently, classical elasticity theory
demonstrates that the Poisson’s ratio of isotropic materials falls within the range of −1.0 to
0.5 [3].
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Since the synthesis of the first artificial negative Poisson’s ratio foam by LAKES [4],
numerous artificial negative Poisson’s ratio materials/structures have emerged with the ad-
vancement of micro-nano processing and 3D additive manufacturing technologies. Based
on different deformation mechanisms, these structures can be classified into various types,
such as missing rib, rigid/semi-rigid rotation, re-entrant, chiral, and elastic instability.
To achieve larger ranges of negative Poisson’s ratio and adjustable elastic anisotropy,
Mizzi et al. [5,6] proposed a hexachiral design with less symmetry. They found that the de-
sign enhanced functionality and applicability. Additionally, the impact of translational dis-
order on the Poisson’s ratio of the hexachiral lattice was also investigated. Pozniak et al. [7]
utilized finite element methods to determine the Poisson’s ratio of an anti-chiral structure
built on a rectangular lattice with randomly distributed circular node sizes. The studied
model was parameterized by lattice anisotropy, rib thickness, and the radius distribution of
circular nodes. Three methods were developed, and the results showed that, with sufficient
anisotropy of the structure, the Poisson’s ratio could reach any negative value, even lower
than −1. Thin ribs (t < 0.1) and thin-walled circular nodes had lower Poisson’s ratio values,
and a large aspect ratio can be thought of as an efficient amplifier of the strain in the x
direction onto the strain in the transverse y direction. Comparing the results obtained by
the three different methods, it was found that the approximation based on Timoshenko
beams was only effective in the limit of thin ribs, and the difference between them increased
with the augment of thickness.

Several novel types of negative Poisson’s ratio metamaterials were also proposed.
Idczak et al. [8] employed the moving asymptotes algorithm and a penalty method to
design a chiral structure consisting of two opposite quadruple helices. The resulting
structure demonstrated a tunable Poisson’s ratio and optimized mechanical properties for
isotropic solids. Zhang et al. [9] presented a multi-material chiral lattice structure with
negative Poisson’s ratio and stiffness. To achieve this, they utilized a combination of the
independent point-wise density interpolation model and bi-material interpolation method.
Reference [10] constructed a flexible negative Poisson’s ratio lattice structure composed of
interlocked Archimedean spirals. They controlled the adjustable stiffness by manipulating
the local intensity of image patterns. Furthermore, references [11,12] designed negative
Poisson’s ratio isotropic cubic lattice structures composed of rigid nodules and deformable
beams. To study the elastic properties and size effects of these structures, they established a
constitutive equation based on isotropic linear Cosserat elasticity. Duan et al. [13] proposed
a novel 3D cubic symmetric lattice material with a negative Poisson’s ratio. They derived its
elastic constants based on the micropolar continuum theory and homogenization method.

Although the design of negative Poisson’s ratio materials has advanced considerably,
the overall design of such structures is still predominantly forward-looking, with signifi-
cant untapped potential for further innovation. Specifically, the automatic generation of
programmable Poisson’s ratio structures using topology optimization needs to be explored,
instead of relying on known configurations or mathematical models. Clausen et al. [14]
and Wang [15] utilized a hyperelastic material model, incorporating geometric nonlinearity
to achieve programmable Poisson’s ratio microstructures under moderate deformation.
Zhang et al. [9] used optimization methods to achieve controllable negative Poisson’s ratio
properties in multiphase materials, based on practical engineering requirements. With the
rapid development of additive manufacturing technology, the preparation of materials
with infinite arbitrary topological layouts and complex microstructures has been greatly
facilitated. Combining additive manufacturing processes with the controllable design of me-
chanical metamaterials will be of great significance for the preparation of high-performance
structures [16–23]. Therefore, the study established a topology optimization model which
can automatically generate point lattice unit cells with programmable negative Poisson’s
ratio, filling this kind of gap. By conducting computation, several unit cells with negative
Poisson’s ratio were obtained, and the lowest Poisson’s ratio achieved was −0.5367. To
validate the effectiveness of the method, finite element analysis was carried out on four
tubular structures, revealing clear tension–compression deformation patterns. In addition,
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5 mm tubular samples were fabricated using microscale selective laser melting and 316L
stainless steel. Quasi-static compression experiments showed that the observed negative
Poisson’s ratio effects and buckling forms were consistent with the results obtained from
the finite element analysis.

2. Numerical Process

The study focuses on the design of a structure with negative Poisson’s ratio and the
maximization of its corresponding effect through optimized tools. To achieve this, we
utilized the classic 88-line topology optimization algorithm [24], while the material interpo-
lation model was an improved version of the Solid Isotropic Material with Penalization
(SIMP) method [25], a well-established density-based approach. The Optimality Criteria
(OC) method [26] was the chosen optimization strategy, and the algorithm incorporated
two filtering methods, namely density and sensitivity filters [24]. MATLAB R2018b was
utilized as the software platform throughout the entire development process.

The numerical process of simulating structures exhibiting negative Poisson’s ratio
is depicted in Figure 1. The global design variable, denoted as the pseudo-density field,
was initialized, and material interpolation was performed based on an improved SIMP
model. Finite element analysis was then conducted after establishing periodic boundary
conditions, and the overall effective elastic stiffness matrix of the current structure was
obtained using the energy homogenization method. The objective function, denoted as c,
and the sensitivity of the volume constraint were subsequently calculated.
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In the case of density filtering, the objective function and sensitivity of the volume
constraint would be corrected using the chain rule, and the optimal design would be
obtained through the OC method. The design variable field would then be updated, and
density filtering would be performed before assigning a pseudo-density to each element.
If the sensitivity filter was selected, the sensitivity of each element within the filtering
radius would be replaced by the weighted average of the sensitivity values, and the OC
method would be used to update the design variable field. The new design variable field
would become the current pseudo-density field, and the process would be checked for
convergence. If convergence was achieved, the output would be generated, and the design
would be plotted. Otherwise, the above steps would be repeated.

The process enhances the compactness of the algorithm based on the 88-line method
and aims to extract the finite element analysis process from the loop. The use of the energy
homogenization method to obtain the equivalent constitutive parameters greatly simplifies
the process. Furthermore, the approach enables the generation of structures exhibiting
negative Poisson’s ratio, which has significant practical applications.

3. Energy Homogenization
3.1. Periodic Boundary Conditions (PBC)

The equation for energy homogenization under periodic boundary conditions is
typically expressed as follows:∫

Y
Eijpqε

∗(kl)
pq

∂vi
∂yj

dY =
∫

Y
Eijpqε

0(kl)
pq

∂vi
∂yj

dY. (1)

By solving the single-cell equilibrium problem under the unit strain ε
0(kl)
pq , the strain

field ε
A(kl)
pq in Equation (1) can be obtained. Under the assumption of periodicity, the

displacement field of the cell under the given strain ε
0(kl)
pq can be written as the sum of the

macroscopic displacement field and the periodic fluctuation field u∗i :

ui = ε0
ijyj + u∗i (2)

In fact, Equation (2) cannot be directly applied to the boundary because the periodic
fluctuation term u∗i is unknown. Therefore, the above expression needs to be transformed
into an explicit constraint between two nodes on the relative surface of the single cell. For a
two-dimensional single cell, as shown in Figure 2, a pair of relative boundary displacements
can be formulated as uk+

i = ε0
ijy

k+
j + u∗i

uk−
i = ε0

ijy
k−
j + u∗i

(3)

where the superscripts “k+” and “k−” denote two opposite parallel boundary surfaces
perpendicular to the kth direction (k = 1, 2, 3). Thus, the periodic term u∗i can be obtained
from the difference in displacements between the two nodes:

uk+
i − uk−

i = ε0
ij

(
yk+

j − yk−
j

)
= ε0

ij∆yk
j . (4)

For any given parallelepiped cell, ∆yk
j is constant. For the single cell shown in Figure 2,

it can be easily obtained that
∆y1

1 = y1
1, ∆y1

2 = 0

∆y2
2 = y0

2, ∆y2
1 = 0,

(5)
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and when ε0
ij is given, the right-hand side of the equation becomes a constant, denoted

as wk
j :

uk+
i − uk−

i = wk
i

wk
i = ε0

ij∆yk
j .

(6)

This particular form of boundary condition is readily applicable to the finite element
model through the imposition of constraints upon the corresponding node displacements.
Additionally, it simultaneously fulfills the imperatives of periodicity and continuity in the
context of displacement based finite element analysis.
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3.2. The Numerical Solution of the Equation for Energy Homogenization

In instances where both the geometry and loading exhibit symmetry, the use of periodic
boundary conditions can be substituted with regular boundary conditions, as exemplified
in the case studies discussed in this paper. Nevertheless, in the interest of preserving the
generality of the derivation, periodic boundary conditions have been employed. With
regard to the finite element solution outlined in Equation (6), it is pertinent to note that
an analytical solution has been employed, which entails the elimination of redundant
unknowns, rather than resorting to numerical approaches such as penalty methods or
Lagrange multipliers.

The global displacement vector U is divided into four parts: Ū1 represents the pre-
scribed displacement values, U2 represents the unknowns corresponding to internal nodes,
and U3 and U4 represent the unknowns corresponding to nodes on the single-cell relative
boundary, satisfying U4 = U3 + W̄, which is not independent, as mentioned before, where
W̄ is a known constant calculated from Equation (6) with the given ε0(kl). Figure 3 uses the
3 × 3 grid partition of a single cell as an example to illustrate the naming convention of U.
When solving PBC problems, at least one node must be fixed to avoid rigid body motion.
For example, if node A is fixed, nodes B, C, and D will apply three unit test strain fields.
After this treatment, the equilibrium equation of finite element analysis KU = F can be
expanded into 

K11 K12
K21 K22

K13 K14
K23 K24

K31 K32
K41 K42

K33 K34
K43 K44




Ū1
U2
U3
U4

 =


F1
F2
F3
F4

 (7)

where F1 is an unknown vector, defined as the reaction force at the nodes with prescribed
displacement, such that the internal nodes of the structure are in equilibrium, thus F2 = 0.
Due to the periodicity assumption, it follows that F3 + F4 = 0. It should be noted that K is
symmetric, i.e., Kij = Kji. By eliminating the first row, adding the third and fourth rows,
and using U4 = U3 + W̄, Equation (7) can be simplified to(

K22 K23 + K24
sym. K33 + K34 + K43 + K44

)(
U3
U4

)
= −

(
K21

K31 + K41

)
Ū1 −

(
K24

K34 + K44

)
W̄ (8)
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which can be easily solved to obtain U and the overall displacement field.
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4. Multi-Scale Negative Poisson’s Ratio Structural Optimization Model

The optimization problem addressed in this paper can be formulated as follows,

min
ρ

: c
(

EH
ijkl(ρ)

)
s.t.: KUA(kl) = F(kl), k, l = 1, . . . , d

∑N
e=1

veρe
|Y| ≤ ϑ

0 ≤ ρe ≤ 1, e = 1, . . . , N

(9)

where K is the global stiffness matrix, and UA(kl) and F(kl) are the global displacement
and external force vectors, respectively; for example, (kl). d denotes the spatial dimension,
ve represents the element volume, and ϑ is the upper limit for the volume fraction. The
objective function c

(
EH

ijkl(ρ)
)

is a function of the homogenized stiffness matrix. For the
two-dimensional case, the maximization of the structure’s effective bulk modulus can be
expressed as the minimization of c, as follows:

c = −(E1111 + E1122 + E2211 + E2222). (10)

Similarly, the maximization of the structure’s effective shear modulus can be expressed
as the minimization of c, as follows:

c = −E1212. (11)

The objective function for the study of the negative Poisson’s ratio effect in this paper
can be expressed as follows:

c = E1122 − βl(E1111 + E2222). (12)

4.1. Material Interpolation Model Based on an Improved SIMP Method

The single cell is discretized into N finite elements, based on which we define the
global density design variable ρ ∈ RN and obtain the global pseudo-density field through
processing. The value of the pseudo-density field ranges from 0 to 1, where 0 indicates
the removal of the element and 1 indicates its preservation. This concept is also the most
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important feature of the SIMP model. In this paper, we adopt an improved SIMP method,
in which the elastic modulus Ee of the element is defined as

Ee(ρe) = Emin + ρ
p
e (E0 − Emin) (13)

where E0 is the elastic modulus of the solid material, and Emin is the elastic modulus of the
pseudo-material that tends to infinitely approach 0. The introduction of pseudo-materials
to replace voids in traditional SIMP methods has been widely proven to effectively prevent
the singularity of the stiffness matrix. Additionally, the variable p is introduced as a penalty
factor, which can be adjusted to obtain an optimization image with clearer boundaries, also
known as a black-and-white solution in academia.

4.2. Sensitivity Analysis and Optimization via the OC Method

After the determination of the global displacement field, the optimization problem
outlined in Equation (9) can be effectively solved. To accomplish this, the heuristic algo-
rithm known as the Optimality Criteria method (OC method) is applied. Typically, the
density field update criterion is expressed as follows when utilizing the OC method:

ρnew
e =


max(0, ρe −m), ρeBη

e ≤ max(0, ρe −m)

min(1, ρe + m), ρeBη
e ≥ min(1, ρe + m)

ρeBη
e , otherwise

(14)

where m is the number of movement steps and must be a positive value, η is the numerical
damping coefficient, and Be is obtained from the optimal conditions:

Be =
− ∂c

∂ρe

λ ∂V
∂ρe

. (15)

The Lagrange multiplier λ is chosen through bisection, which enforces the constraint
on the integral of the structural volume. The sensitivity of the objective function, i.e., the
numerator term ∂c

∂ρe
, is calculated using the adjoint method:

∂EH
ijkl

∂ρe
=

1
|Y| pρ

p−1
e (E0 − Emin)

(
u(Aij)

e

)T
k0uA(kl)

e (16)

where k is the stiffness matrix of the element, and in this paper’s example, the material’s
elastic modulus is set to 1, so k is the unit matrix. Additionally, under the condition of a
uniform grid, where the design domain’s length and width are integer values, the element
volume in this example is 1, which yields ∂V

∂ρe
= 1. To ensure the existence of the solution to

the optimization problem in Equation (9) and to prevent the chessboard and grid-dependent
problems of the SIMP model, two filtering schemes, sensitivity and density filtering, are
available in this paper’s example and will be discussed in detail in the following section.

Although the OC method is a classic method, it is challenging to apply it to solving the
problem of negative Poisson’s ratio. According to the generalized Hooke’s law equation, it
can be easily determined that

µ =
E1122

E1111
. (17)

However, directly using the above form as the objective function c will result in a
singular homogenized elastic matrix, which makes it impossible to perform the calculation.
The simulation results are shown in Figure 4, indicating that the optimization failed to
converge and the graph failed to form a clear topological structure.
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Figure 4. Optimization result by directly treating the Poisson’s ratio in quotient form as the
objective function.

To generate structures with negative Poisson’s ratio, the primary approach is to add
additional constraints such as volume modulus or anisotropy, which is clearly not suitable
for the single-constraint OC method. Alternatively, known configurations with negative
Poisson’s ratio can be stacked directly, but without using optimization techniques, the
potential of the material cannot be fully utilized. There have been a series of attempts in
the academic community, mainly focused on the implementation of multiple constraints,
such as Yin and Yang, who developed the OC method specifically for this purpose [27].
Svanberg used the method of moving asymptotes (MMA) [28], Wang et al. implemented a
new self-developed optimization algorithm [29], and Wang et al. [30] and Allaire et al. [31]
used PDE-driven level set optimization to update the geometric shape until the desired
solution was reached.

This paper adheres to the single constraint principle of the OC method and proposes a
relaxed definition of negative Poisson’s ratio as the objective, with the following form:

c = E1122 − βl(E1111 + E2222), β ∈ (0, 1) (18)

where β is a constant value, set to 0.8 in this study, and the exponent l is the current
iteration number. The design of this objective function will increase the transverse and
longitudinal stiffness of the structure at the beginning of the iteration and then minimize
E1122 as the iteration progresses and l increases, thereby constructing a material with
negative Poisson’s ratio.

Since the objective function of negative Poisson’s ratio structures will have both
positive and negative sensitivities, this paper modifies the typical OC method by removing
the numerical damping coefficient η, and the density field update rule is given by the
following formula:

ρnew
e =


max(0, ρe −m), ρeBe ≤ max(0, ρe −m)

min(1, ρe + m), ρeBe ≥ min(1, ρe + m)

ρeBe, otherwise

. (19)

In order to maintain the stability of the algorithm, the step size needs to be kept as
small as possible, and in this study, a value of 0.1 is used.

4.3. Density Filtering and Sensitivity Filtering

As previously mentioned, two types of filters are available in this method for density
or sensitivity filtering, which can eliminate the checkerboard effect and produce smooth
and clear optimized results for manufacturing. If density filtering is selected, the objective
function c and sensitivity information for volume constraint are first modified according
to the chain rule. Then, the OC method is used to update the design variable field, and
the filtered density is assigned to the element pseudo-density after density filtering. If
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sensitivity filtering is chosen, the process is simpler. The sensitivity is filtered by taking the
weighted average of the sensitivities of neighboring elements within a specified filtering
radius, and then the OC method is used to update the design variable field, which becomes
the current pseudo-density field. The results are checked for convergence, and if so, they
are output and plotted. If not, the above steps are repeated.

As a commonly used method in image processing, filtering aims to enhance the
smoothness of the original function by convolving the function with a filter function (also
known as a convolution kernel). In topology optimization, this method is also applicable,
where the weight coefficient matrix, namely the convolution kernel, is denoted as

Hei = max(0, rmin − ∆(e, i)) (20)

with rmin represents the filter radius and ∆(e, i) denotes the distance between the current
traversed element and the center of the convolution kernel. It can be deduced from
Equation (4) that the weight factor is inversely proportional to the distance from the center.
The sensitivity of the central element is replaced by the weighted average of all elements,
and the new density field, obtained by traversing the weight matrix throughout the entire
density field, serves as the initial value for the next iteration.

5. Implementation and Validation of Negative Poisson’s Ratio Lattice Structure
5.1. Analysis of Optimization Results and Iterative Process

Various single-cell optimization results were obtained under different sensitivity fil-
tering radii, penalty factors, and volume fractions, and these results were plotted as a
three-dimensional scatter plot, as depicted in Figure 5. The porous structure distribution
was mainly affected by the penalty factor, where a large penalty factor resulted in slower
flexibility changes, more iterations, and longer calculation times but better manufactura-
bility. Moreover, a lower scatter point indicates a more pronounced negative Poisson’s
ratio effect. Figure 6 portrays the iteration process of the objective function and the mi-
crostructure evolution during optimization. The historical curve indicates that although
the maximum optimization step was set at 113, the primary topological configuration was
essentially established at around 20 steps, highlighting the effectiveness of the method.

1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Single-cell optimization results under different sensitivity filtering radii, penalty factors,
and volume fractions.
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Figure 6. A typical iterative process and tolerance fluctuation.

Figure 7 depicts the performance of negative Poisson’s ratio under different parameter
combinations, along with the fluctuations in tolerance, namely sensitivity filtering radii,
penalty factors, and volume fractions. It is observed that a well-formulated objective
function can effectively guide the Poisson’s ratio of the structure to decrease rapidly, from
around 0.3 to between −0.4 and −0.6 within the first 50 iterations, followed by a slow
convergence. Simultaneously, the tolerance drops quickly and then oscillates around 0.1,
as shown in Figure 7a–f. Some examples have undergone a second search, as depicted
in Figure 7i. Examples that experience convergence difficulties often exhibit repeated
tolerance oscillations, as observed in Figure 7a,b, which is attributed to the OC method’s
simplicity and lack of robustness. To overcome this type of oscillation, which may impede
convergence and decrease computational efficiency, other more robust optimizers such as
MMA can be utilized. Examples that fail to converge generally employ sensitivity filtering
methods or have improper parameter adjustments. Failure to converge is often manifested
as an oscillation between two topological configurations at around 30 to 40 iterations,
without a clear boundary evolution. Each iteration takes around 1.5 s, with a maximum
total time of no more than 300 s (as shown in Figure 7d). Successful convergence examples
were compared with commercial finite element software, revealing similar optimization
processes that evolve the fundamental force transmission path, thereby verifying the
method’s correctness and compactness.

The evolution results of 100 × 100 elements and their corresponding iteration steps,
Poisson’s ratio, constrained volume fraction, and elastic matrix are summarized in Table 1.
The evolution results of 150 × 100 elements and their corresponding iteration steps, Pois-
son’s ratio, constrained volume fraction, and elastic matrix are summarized in Table 2. By
observing the Poisson’s ratio optimization results, it can be seen that the negative Poisson’s
ratio effect is evident in both cases, with a maximum of −0.5183 for 100 × 100 elements
and 150 × 100 elements. The last row of Table 1 is a typical example of convergence failure,
which indicates that successful cases generally have clear manufacturable boundaries and
significant negative Poisson’s ratio results. Accurate optimization parameter tuning is
usually required; otherwise, such ambiguous boundaries and a Poisson’s ratio approaching
zero may occur. Furthermore, it is common for prosperous instances to showcase intriguing
traits, such as re-entrant or chiral characteristics, as evidenced by rows 6 and 3 of Table 2.
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These two kinds of distortions have been extensively established in previous research as
the two configurations that attain the most negative Poisson’s ratios. Moreover, there exist
configurations that blend both concave and chiral traits, as demonstrated in rows 2, 4,
and 5 of Table 2. Nevertheless, the Poisson’s ratios achieved by topological optimization
transcend the limits of conventional forward design. 

3 

 
 
 

Figure 7. Iterative performance and tolerance variation under various parameter combinations, with
the lowest Poisson’s ratio achieving (a) −0.3550; (b) −0.3352; (c) −0.5301; (d) −0.4665; (e) −0.4109;
(f) −0.2772; (g) −0.5183; (h) −0.4963; (i) −0.5367.

It should be noted that the optimization process is based on the calculation results of
the strain field, and thus the shape of the evolution of negative Poisson’s ratio has no direct
relationship with the elastic modulus of the solid material. Therefore, the elastic modulus of
the material is assigned as 1. However, the effective elastic modulus EH is directly related
to the material’s elastic modulus, and thus EH here can only represent the equivalent
situation of materials with an elastic modulus of 1, which has no practical significance. In
experiments, the material’s elastic modulus should be obtained by nano-indentation on
the sample, and the calculation of the homogenization matrix would be meaningful for the
equivalent constitutive parameters.
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Table 1. Optimization results of a 100 × 100 unit under different parameters.

Pattern Iteration
Numbers

Volume
Fraction

Poisson’s
Ratio

Equivalent Elastic
Matrix EH
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* A typical example of convergence failure. 
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5.2. Finite Element Simulation Verification

Four types of cells with significant negative Poisson’s ratio effects were selected for
finite element analysis. The optimized boundary shape of the cells was drawn in CAD
in sizes of 5 mm × 5 mm and 5 mm × 7.5 mm and further imported into UG 11.0 to
generate stacked tubular cell models using surface sheet metal functions. The overall size
of the models was approximately 5 mm, and the modeling process is shown in Figure 8a.
SHELL elements with a thickness of 0.5 mm were used for the cells, and a tetrahedral–
hexahedral hybrid mesh was applied. The four models were, respectively, divided into
205,110 nodes and 215,914 elements, 128,410 nodes and 109,440 elements, 243,256 nodes
and 308,190 elements, and 253,253 nodes and 285,200 elements. A mesh inspection showed
good quality without significant warping or skewness, with a minimum Jacobian value of
no less than 0.7 and a maximum aspect ratio no higher than 5.
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Figure 8. (a) The finite element validation process for a typical unit cell based on a tubular structure.
(b) The tensile curve for the standard 316L specimen.

To establish tension and compression conditions, a uniform axial force of 50 N was
applied to all nodes on the top end face, while the freedom of all nodes on the bottom end
face was constrained. The material properties were determined by importing the tensile
curve of the 316L standard specimen prepared by selective laser melting into the finite
element analysis software Hypermesh, as shown in Figure 8b. The material was found to
be a typical elastic–plastic material with linear strain hardening behavior and an elastic
modulus E of 196,000 MPa, Poisson’s ratio µ of 0.3, a yield stress of 205 MPa, and a limit
stress of 515 MPa at 60% plastic deformation. To input the material density, the Archimedes
drainage method was used to measure the density η of the 316L cube specimen prepared by
selective laser melting. The specimen was polished and cleaned with ultrasonic water-free
ethanol and the mass was measured using a high-precision balance. The density η was
calculated as follows:

η =
m1 × ρ0

m1 −m2
× 1

ρ1
× 100% (21)

where m1 is the mass of the specimen exposed to air, m2 is the mass of the specimen
immersed in water, and ρ0 is the density of deionized water, which is 998.2 kg/m3. The
average of six experiments yielded a specimen density η of 99.6%; thus, the density can be
approximated by the theoretical value of 7.98 × 10−9 g/mm3 for 316L.

The finite element analysis results shown in Figure 9, Figure 10, Figure 11, and
Figure 12, respectively, demonstrate the deformation behavior of four types of negative
Poisson’s ratio lattice structures under both tensile and compressive loading conditions.
Among them, the axial strain in Figure 9 is 0.031, the axial strain in Figure 10 is 0.087, the
axial strain in Figure 11 is 0.065, and the axial strain in Figure 12 is 0.042. It is evident
that the tensile–compressive behavior of the negative Poisson’s ratio has been achieved,
with the compressed models exhibiting radial contraction on the left and the stretched
models exhibiting radial expansion on the right. Such unique expansive deformation
performance can be further applied in structures requiring self-expansion, such as vascular
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stents, or as a deformation compensation method for zero thermal expansion structures,
with significant potential for practical applications. Of note, the structures represented
by Figures 9 and 10 exhibit significant deformation imbalance under large deformation.
Regardless of compression or tension, the deformation at the ends is always greater than
that in the middle, which is colloquially known as the “dog bone phenomenon” in the
unfolding of heart stents, which may cause undue damage to the arterial wall. Conversely,
in Figures 11 and 12, it is evident that the tubular structures maintain uniform deformation
even under large deformation. This performance is particularly prominent in Figure 12 and
holds great promise for practical applications.
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Figure 12. The finite element analysis results of the compression and tension of a lattice structure
designed with a Poisson’s ratio of −0.4480.

Since the tensile curve contains failure information, the failure nodes could be selected
by observing the static analysis results, as shown in Figure 13. The failure nodes were
mainly distributed at the weak connections of the rod, but no obvious stress concentration
was observed, which could indirectly verify the rationality of the design method. Based
on the static linear analysis, the structure shown in Figure 12 was perturbed to analyze its
first buckling mode, as shown in Figure 14. It could be seen that the buckling of this lattice
structure is mainly characterized by the inward folding of the end face. Unlike conventional
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modal analysis, for the modal analysis of instability, only the first-order vibration mode is
observed. This is because the structure is considered to have failed once instability occurs
for the first time.
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5.3. Microscale Laser Additive Manufacturing

The four tubular structures previously mentioned were fabricated as small-scale
samples utilizing a microscale selective laser melting (SLM) process and 316L stainless steel
powder. The success of printing and the performance of components in SLM are directly
influenced by the quality of the powder used [32]. The factors that affect powder quality
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include powder sphericity, surface morphology, particle size distribution, and alloy element
content. To achieve high relative density and mechanical properties in powder bed 3D
printing, good powder flowability is essential, which is impacted by several factors such as
sphericity, surface defects, and humidity. In a study by Sun et al. [33], the “sphericity factor”
of powders was found to decrease as printing times increased, resulting in increased inter-
particle friction and decreased powder flowability. To minimize friction between powder
particles and achieve optimal flowability, highly spherical, smooth, and dry powders were
necessary. Furthermore, the particle size distribution of the powder significantly affects
the printed component’s relative density, surface roughness, and mechanical properties.
Matching the powder size distribution reasonably can effectively improve the quality of the
printed components. Attar et al. [34] found that specimens printed with nearly spherical
mixed powders had significantly improved relative density and compression elongation
compared to those printed with irregular powders when using MTT SLM250 HL equipment
to prepare TiB-reinforced titanium-based composites. This is because, under loading
conditions, stress is easily concentrated at the sharp interfaces between reinforcement
particles and the matrix, forming cracks and causing the particle reinforcement effect to
fail. Nearly spherical particles have smoother interfaces with the matrix and are less prone
to stress concentration, resulting in higher strength and elongation. Powder particle size
distribution is also closely related to laser absorption, material flow in the melt pool, and
heat transfer in the powder bed. A study by Lee and Zhang [35] found that coarse-particle
powders have more significant fluctuations in the melt pool edge shape than small-particle
powders under laser irradiation, resulting in an irregular melt pool and a rough surface of
the printed components. The phenomenon of melt pool “balling” may even occur during
the printing process, leading to cracking and printing failure.

Furthermore, suitable pre-treatment methods and process parameters can enhance
the quality of SLM-manufactured 316L stainless steel components [36]. Reference [37]
suggested that the use of appropriate laser power and scanning speed can ensure the
manufacturing of high-density 316L stainless steel parts while concurrently mitigating the
occurrence of microstructural flaws.

The utilized process parameters included a powder layer thickness of 0.01 mm, a laser
power of 35 W, an inner filling scanning speed of 1000 mm/s, an outer contour scanning
speed of 80 mm/s, a laser timing half-period of 11,490/64 µs, and a laser timing pulse
length of 6400/64 µs. The substrate material employed was 45# steel, while the powder
material utilized was 316L stainless steel powder generated by gas atomization. The
scanning electron microscopy (SEM) micrographs of the powder at various magnifications
are presented in Figure 15a,b, displaying the sound sphericity of the powder particles.
The cross-sectional SEM micrograph of the powder is shown in Figure 15c, which exhibits
excellent compactness. This observation further corroborates the previously measured
99.6% compactness value. The median particle diameter D50 was determined to be 10.05 µm,
and the volume average diameter was 10.09 µm, satisfying the requirements of microscale
printing. The chemical composition of 316L stainless steel powder is shown in Table 3. The
experimental apparatus employed was the Precision-100 microscale selective laser melting
equipment, jointly developed by the China Academy of Machinery Science and Technology
and the Fraunhofer Institute for Laser Technology in Germany. The device also marks
the first microscale selective laser melting equipment in China, as shown in Figure 15d.
Table 4 lists the device parameters. The prepared samples are depicted in Figure 15e and
were completed in approximately 12 h. The printing outcomes, as depicted in Figure 15f,
exhibit commendable transparency, along with a height of 5 mm. Additionally, the printed
structure manifests a precise reconstruction of the design features, well-defined contours,
rapid printing velocity, and a complete absence of any auxiliary supports, as shown in
Figure 16.
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Table 4. Aixway Precision-100 microscale 3D printer device parameters.

Parameters Values

Building volume (Ø × H) 100 × 100 mm
Layer thickness 1–15 µm

Laser type 200 W Yb-fiber laser
Focus diameter <25 µm
Scanning speed max. 3 m/s

Surface roughness min. Sa 1 µm
Powder size distribution 2–10 µm

Accuracy <30 µm
Shielding gases Nitrogen, argon

5.4. Quasi-Static Compression

The experimental verification of the collapse and negative Poisson’s ratio effect was
performed on a TCD-C-2000N high-precision spring tester. A cylindrical loading head was
used to push the sample from the top surface in the height direction (i.e., axial direction).
The loading force was set to 50 N, and the loading speed was set to 1 mm/min, which
also meant a strain rate of 1.04 to ensure quasi-static loading conditions. To ensure the
elastic stage was fully recorded, the maximum deformation of the loading head was
first set to 0.3 mm, i.e., an axial strain of 0.06, and then continued to compress until the
collapse occurred.

The motion was recorded using a high-resolution industrial camera (IDS Imaging
Development Systems GmbH) at a rate of approximately 60 frames per second. Load–time
and displacement–time curves were output to obtain the load–displacement curve, with a
sampling frequency of 10 Hz.

Based on the finite element analysis results from earlier, the Poisson’s ratio of −0.4480
design with the best stability was selected. Photos of the initial state and the end of the
elastic stage were taken with 50% transparency and overlaid to ensure that the left and
right edges of the loading head and the test bench were aligned. The red dashed box in
Figure 17a shows the initial and final states of the elastic stage deformation of the tubular
structure. It can be seen that under axial compression, the tubular structure underwent
radial contraction, which is consistent with the results shown in Figure 12. The negative
Poisson’s ratio effect and the accuracy of the finite element analysis have been fully verified.
Observing the sample in Figure 17b, its end deformation form is in complete agreement
with the first buckling mode shape shown in Figure 13, manifested as inward folding,
which validates the correctness of the buckling analysis on the lateral side. Furthermore,
the collapse of the structure occurred at a load of approximately 40 N, indicating that its
strength is lower compared to forged steel.
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6. Conclusions

1. Based on the energy homogenization method and SIMP topology optimization
method, a relaxed objective function was proposed and the damping in the opti-
mization criterion was removed to achieve negative Poisson’s ratio lattice cells;

2. Optimization calculations yield multiple sets of negative Poisson’s ratio unit cells,
with the lowest Poisson’s ratio achieving −0.5367, and an equivalent elastic matrix
was derived. The iterative process’s efficiency is comparable to that of commercial
software, with a maximum iteration time of 300 s, enabling the prompt identification
of fundamental configurations;

3. The validity of the proposed method was verified through the finite element analysis
of four tubular structures, revealing distinct auxetic deformation patterns and inward
folding buckling forms;

4. Tubular samples of 5 mm made of 316L stainless steel were successfully fabricated
using the microscale selective laser melting, with adequate printing precision and
sound feature reproduction. The process demonstrated that a set of parameters,
comprising a powder layer thickness of 0.01 mm, a laser power of 35 W, an inner filling
scanning speed of 1000 mm/s, and an outer contour scanning speed of 80 mm/s, can
enable the successful additive manufacturing of a metallic coronary stent according
to the prescribed scale of application. Quasi-static compression experiments showed
negative Poisson’s ratio effects and buckling forms that align with finite element
analysis results, verifying the method’s correctness.

5. Quasi-static compression experiments showed negative Poisson’s ratio effects
and buckling forms that align with finite element analysis results, verifying the
method’s correctness.

Although the algorithm proposed in this paper is characterized by its compactness
and simplicity, it has proven to be less robust than desired. In light of this, future studies
may consider incorporating other optimizers, such as MMA or GCMMA, in order to
enhance the algorithm’s resilience. Additionally, the conclusions derived from the 2D
image optimization method could potentially be extended to 3D structures. Furthermore,
by introducing aggregate functions, the single-objective single-constraint optimization
method may be extended to multi-objective topology optimization, thus broadening the
scope of this approach and unlocking its potential in various fields, including but not
limited to coronary stents, esophageal stents, helmets, protective equipment, bullets,
and beyond.
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Nomenclature

Y Base cell domain
yj Base cell size in direction j
vi Microscale Y-periodic displacement fields
Eijkl Elasticity tensor in index notation

ε
∗(kl)
pq Periodic fluctuation strain fields

ε
0(kl)
pq Unit test strain fields

ε0
ij Prescribed strain fields

ui Microscale displacement field
u∗i Microscale periodic fluctuation field
wk

i Periodic displacement prescribed on opposite nodes
K Global stiffness matrix
U Global displacement vector
W̄ Periodic displacement prescribed on the cell
c Objective function
EH

ijkl Homogenized elasticity tensor in index notation
ve Element volume
ρe Element density design variable
ϑ Upper bound of volume fraction
l Current iteration number
Ee Element Young’s modulus
Emin Ersatz material elastic modulus
p Penalization factor
E0 Solid material Young’s modulus
ρnew

e Updated element density variable
m Move limit
Be Term obtained from the optimality condition
η Numerical damping coefficient
λ Lagrange multiplier

uA(kl)
e Element displacement vector

µ Poisson’s ratio
Hei Convolution kernel
rmin Filter radius
∆(e, i) Distance between the current element and the center of the convolution kernel
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