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Abstract: Permanent magnet (PM) machines with fractional slot concentrated windings (FSCW)
constitute a notably remarkable proposition for electric vehicles. Additionally, an integrated onboard
battery charger (IOBC) provides another superiority as it exploits the components of the powertrain
to charge the battery without any additional components. Interior permanent magnet (IPM) motor
arises as a credible choice due to its high torque density, resulting from the high saliency ratio. The
optimal design of an IPM motor has been extensively presented from different perspectives, but the
optimal design of a motor employed for IOBC application for both propulsion and charging modes
has not been studied extensively. In this paper, the design and optimization of a 12-slot/10-pole IPM
motor with IOBC are studied under both propulsion and charging modes. A finite-element-based
optimization with the aid of a genetic algorithm technique is proposed to obtain the optimal machine
by maximizing the average torque and minimizing the torque ripple, core losses, and magnet size.

Keywords: interior permanent magnet (IPM) synchronous machine; finite element (FE) optimization;
electric vehicles; integrated onboard battery charger (IOBC); multi-phase machines

1. Introduction

The transportation sector, having one of the highest proportions of green gases emis-
sions, is transitioning toward electric vehicles (EVs) to reduce fossil fuel usage and its
harmful emissions [1]. In 2020, the EV market had a share of 4.1% of total car sales, selling
3 million electric cars. This share reached 9% in 2021, and over 6 million vehicles were sold,
making up all net growth of global car sales that year [2]. Despite these achievements, EV
growth is still slow due to charging issues. Chargers can be either off-board or onboard.
While off-board chargers offer high-power delivery in a short period, their installation
cost is high, leading to a lack in these stations [3]. On the other hand, onboard battery
chargers (OBCs) are relatively cheaper and allow vehicles to be plugged-in directly to either
a single-phase or three-phase grid, but the charging process is slow [4]. To enhance the
functioning of an OBC, IOBC has recently been introduced, which uses existing drivetrain
components for charging. Motor windings are used as the reactive elements, and the
propulsion inverter is used as a bidirectional dc/ac converter. Thus, there will be no need
for separate charging units [5].
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Typical machines used in EV traction are induction machine (IM), interior perma-
nent magnet (IPM) synchronous motor [6], surface mount permanent magnet (SPM) syn-
chronous motor, synchronous reluctance motor (SynRM) [7], and switched reluctance motor
(SRM) [8]. Induction motors (IM) are characterized by ruggedness, availability, standard
control schemes, and de-excitation in case of inverter fault—ensuring safety [9]. On the
other hand, there are losses in both the rotor and stator, generating heat and lowering
motor efficiency. Switched reluctance motors (SRM) are robust and thus applicable for
severe conditions and fault-tolerance operations. Nonetheless, they have a low power
factor, produce high acoustic noise, and need a special inverter and a higher number of
power cables to ensure independent phase winding on the stator [7]. As for permanent
magnet synchronous motors, they can operate at a broad torque-speed range at remarkably
high torque and power densities. Their drawbacks are the high cost, scarcity of rare-earth
elements used in permanent magnet manufacturing, and their need for special control
techniques. In particular, IPM synchronous motors are marked with a high salience ratio
that results in much higher torque over the speed range than SPM synchronous motors.
Moreover, IPMs are less sensitive to PM temperature than SPMs [9].

A traction motor can be either a three-phase or a multi-phase motor. Multi-phase
machines are preferable due to their advantageous attributes such as lower power rating per
phase, due to higher phase number, lower torque ripple, due to enhanced magnetomotive
force (MMF) distribution in the air gap, fault-tolerance operation, due to higher degrees of
freedom, and higher torque density, due to harmonic current injection [10]. On the contrary,
these machines require more complicated design and control schemes. Advancements
in power electronics and control fields have fortunately mitigated these complexities.
Numerous machine configurations were proposed including a nine-phase machine [11],
an asymmetrical six-phase machine [12], a symmetrical six-phase machine [13], and a
five-phase machine [14].

During the design phase of the traction motor, some criteria must be considered as
constant power speed range (CPSR), vibration and acoustic noise, winding factor, torque
and power density, demagnetization capability, motor losses, and MMF distribution [15].
Fractional slot concentrated winding (FSCW) has great merits as it meets many of these
criteria; it has a high-power density, wide flux weakening range, higher efficiency at lower
speeds, high slot fill factor, low cogging torque, shorter end windings, and a fault-tolerance
capability. However, one of the main problems of FSCW is the high core losses at high
speeds. This is a result of non-uniform air gap flux density distribution. This distribution
introduces sub- and super-harmonics that induce eddy currents in the rotor. Consequently,
eddy currents overheat magnets, which may cause demagnetization. Additionally, the
interaction between low-order harmonics results in noise and vibration [16]. Methods
have been proposed in the literature to overcome the demerits of FSCW and optimize their
usage [17,18].

Design optimization is one of the principal stages in the design process as it enhances
machine performance, where several criteria are to be met, considering certain constraints.
Desired criteria are formulated into an optimization or cost function. The optimization
function can be of a single objective or multiple objectives. Sometimes, multimodality is
introduced in the design in which there is more than one optimal solution, among which
one is globally optimum. In this case, it is a best practice to have access to as many locally
optimal solutions as possible to choose from based on the tradeoff among various criteria.
From a machine design perspective, the optimum solution tries to maximize average
torque, power, and efficiency while minimizing losses, torque ripple, and cogging torque
by varying machine dimensions such as slot opening, magnet dimensions, and the split
ratio [19].



Machines 2023, 11, 534 3 of 24

Several papers in the literature covered machine design, in particular IPM, from differ-
ent viewpoints. An adaptive-sampling-based multimodal design optimizes a
V-shaped IPM by minimizing active parts’ weight and losses [20]. Differential evolu-
tion (DE) is used with finite element analysis (FEA) to obtain a wider CPSR considering the
saturation effect [21]. Particle swarm optimization (PSO) with intelligent particle number
control is used to minimize total harmonic distortion (THD) in the back electromotive
force (back emf) in IPM [22]. A genetic algorithm, with the aid of deep learning, is used
to optimize IPM through the introduction of a convolutional neural network (CNN), thus
reducing finite element analysis time to one-tenth of the original duration [23].

In the literature, [24] designs and analyses an SPM synchronous motor for IOBC
application and optimizes the design using the analytical method. This paper follows
the same approach but uses an IPM synchronous machine and optimizes the design
using finite element optimization. This paper aims to provide a comprehensive study for
optimally designing a 15 kW six-phase 12-slot/10-pole IPM synchronous machine for IOBC
application under both propulsion and charging modes. First, a preliminary design is
calculated according to sizing equations [25] to obtain the air gap diameter, and then the
outer diameter and stack length are calculated from the predefined split ratio and aspect
ratio, respectively. Back iron thickness and slot specifications are calculated from [26].
After that, magnet dimensions and positions are calculated to avoid saturation and ensure
reasonable flux densities. Thereafter, sensitivity analysis is carried out to highlight the
effect of various decision variables and their contributions. Then, the optimization process
is performed using the finite element method (FEM) along with a genetic algorithm (GA)
to choose the best design meeting the objective function and fulfilling the desired criteria.
During propulsion mode, it is required to maximize the torque and minimize both the
torque ripple and the losses. Lower torque ripples ensure smoother operation and a more
stable movement, and lower losses indicate higher efficiency. During charging mode, since
the net torque is nullified, the main aim is to reduce the torque ripple and the losses. As the
torque ripple decreases, vibration and noise will decrease. As for the losses, ventilation
is needed to reduce the losses. More losses mean poorer ventilation, so it is required to
reduce losses. Our additional goal is to reduce the magnet’s size in order to reduce its cost.
Finally, the optimal machine performance is experimentally verified.

2. System Overview

This section illustrates the six-phase integrated on-battery charger (OBC) under study,
which is shown in Figure 1a. The integrated OBC comprises a six-phase machine, an
inverter, and a battery pack with its DC-DC converter preserving the DC bus voltage at the
required value. The winding configuration used is the asymmetrical six-phase winding,
where the spatial angle between the two three-phase winding sets is 30

◦
. The transition

between propulsion mode and charging mode is achieved through a simple hardware
reconfiguration.

In the propulsion mode, the switch S1 is open, disconnecting the grid, and the switches
S2 − S5 are closed, connecting the two sets in the series and thus creating a single neutral
point. Each winding group is supplied through a separate three-phase inverter. On the
contrary, during charging mode, the switch S1 is closed, and the switches S2 − S5 are
open, connecting the machine to the grid. Synchronization with the grid is commonly
carried out using a standard phase-locked loop. This configuration ensures that the phase
sequence of a winding set is the opposite of the other set (grid currents ag, bg, cg supply the
first set through the order a1 − b1 − c1 and the second set through the order b2 − c2 − a2).
As a result, the field produced in each winding set is opposite to the other set, and the
resultant torque-producing component vanishes, producing zero torque. The charging
mode is accompanied by torque ripple, but it is within the accepted range. The spatial angle
between the two winding groups during the charging mode is 210

◦
[27]. Figure 1b,c show

the phasor diagrams of the machine under propulsion and charging modes, respectively.
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Figure 1. Six-phase integrated OBC’s scheme and operation modes’ phasor diagram. (a) Asymmetri-
cal six-phase topology, (b) Propulsion mode current phasor diagram, and (c) Charging mode current
phasor diagram.

3. Machine Design

This section presents the various stages of the machine design process of a typical six-phase
integrated OBC. These stages are selecting a base machine, proposing the design flowchart,
implementing the sizing equations, and selecting a multi-objective optimization strategy.

3.1. Selecting Base Machine

Among several PM motors used for electric and hybrid electric vehicles, an IPM
machine is chosen. There are several topologies of rotor magnet configurations for the
IPM motors as radial, circumferential, V-shape, U-shape, and delta shape. The V-type
topology is chosen as it is known for having high torque over a wide speed range [28].
The IPM motor topology and its parametric model are depicted in Figure 2. The key
parameters of the model include the magnet width, Wm, the magnet thickness, Tm, the
clearance between the two magnets, M2, the bridge between the magnet and rotor surface,
WBri, the V-angle between the two magnets, V, and flux barrier width, WFBi, where i takes
a value of one or two; one indicates the upper flux barrier, and two indicates the lower flux
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barrier. The flux barrier’s two angles are represented as FBij; where j represents a value
of one or two, the two base angles are kept constant. The two base angles are considered
symmetrical for simplicity. First, an initial design is assigned to the machine based on
specific predetermined inputs, requirements, and constraints [29,30], as shown in Table 1.
Then, an FE simulation takes place to ensure that the initial design satisfies the required
objectives. Finally, the design undergoes a sensitivity analysis and an optimization process
to enhance its performance, achieve any unmet requisites, and ensure the design is optimal
from both cost and operation perspectives.
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Table 1. IPM machine design specifications.

Rated power (kW) 15
Rated speed (rpm) 1500
Peak line current (A) 17.54

Inputs
Number of phases 6
Number of slots 12
Number of poles 10
Air gap flux density (T) 0.8
Aspect ratio “Stack length to air gap diameter
ratio” 0.822

Stator electrical loading (A/mm) 15
Constraints

Required flux density (T) 1.5
DC bus voltage (V) 600
Current density

(
A/mm2) 5

Copper fill factor 0.5

3.2. Sizing Equation

In the preliminary design stage, it is compulsory to define some fundamental motor
parameters. One of the primary parameters is the air gap diameter Dg that is calculated
from the sizing Equation (1) [25]; hence, stator outer diameter and machine effective length
can be computed as follows:
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Pn =

√
2π3

4
KwKlηBg As

f
p

D3
g (1)

Kl =
Le f f

Dg
(2)

λ =
Dg

Dso
(3)

where Pn is the motor-rated power in watts (W), Kw is the winding factor, η is the desired
output efficiency, Bg is the average air gap flux density in Tesla (T), As is the stator electrical
loading in ampere per millimeter squared (A/mm2), f is the frequency in hertz (Hz), and
p is the number of pole pairs. The ratio between effective length and air gap diameter is
defined as the aspect ratio Kl , whereas the ratio between the air gap diameter and stator
outer diameter is defined as the split ratio λ. The winding factor can be obtained through a
series of equations presented in [26], or simply from tables given in [31]. The rest of the
motor geometrical parameters can be derived analytically as starting parameters to initiate
the optimization process [29].

3.3. Design Flow Chart

The design process is demonstrated in Figure 3. The process commences by selecting
the number of motor phases, m, slot/pole combination, stator electrical loading, A, average
air gap flux density, Bg, aspect ratio, Kl , and split ratio, λ. Consequently, the air gap
diameter, Dg, can be calculated, and thus the stator outer diameter, Dso, and the machine’s
effective length, Le f f , can be computed. Magnet size is determined based on the required
flux density under each of the machine poles. Referring to electromagnetic principles, back
iron thickness, hbi, tooth height, ht, and tooth width, wt, can be computed by applying
Equations (5)–(7) [26].

hbi =
BgπDg

2Bbi p
(4)

ht =
Dso − Dg

2
− hbi (5)

wt =
BgπDg

BtQ
(6)

Bbi is the flux density in the back iron, Bt is the flux density in the tooth, and Q is the
number of slots. Motor input voltage can be calculated based on DC bus voltage and the
inverter modulation index expressed in Equation (7). Motor current and the number of
turns can then be calculated using Equations (8) and (9), respectively.

Vpeak = miVDC =
1

2cos
(

π
2m

)VDC (7)

Ipeak =
2Pn

ηmVpeakcos θ
(8)

Nt =
Vpeak

KeQBg
f
p (1− λ2)D2

so

(9)

mi is the modulation index, VDC is the DC bus voltage, Vpeak is the rated peak voltage, cos θ
is the desired power factor, Ipeak is the rated peak current, Nt is the number of turns, and
Ke is the EMF factor.
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3.4. Rotor Design

Rotor design constitutes a principal importance in the design of an IPM. In IPM,
the magnet bars are inserted into the rotor. There are various topologies for IPM rotors
as V-shape single-layer IPM, V-shape double-layer IPM, W-shape IPM, segmented IPM,
Delta-shape IPM, and many others [32,33]. The proposed design is the V-shape single-layer
IPM. The V-shape IPM shows higher average torque, higher power factor, and lower torque
ripple compared to the other configurations [34,35]. Moreover, the V-shape shows the
lowest mass needed to achieve a specific torque level among the other topologies [33].

The basic design starts with the flux continuity equation [36]. In the ideal case,

φg = φm (10)

where φm is the flux produced by the magnet, and φg is the flux crossing the air gap.
Practically, not all the magnet flux reaches the air gap due to leakage flux. As a result,

φg = klφm (11)

where kl is called the leakage factor and varies from 0.9 to 1. kl is chosen as 0.9 in the
worst-case scenario. The flux densities in terms of cross-sectional areas are

φg = Bg Ag; φm = Bm Am (12)

where Bg is the air gap flux density, Ag is the air gap cross-section, Bm is the magnet flux
density, and Am is the magnet cross-sectional area and where

Am = WmLe f f (13)

yields
kl BmWmLe f f = Bg Ag (14)



Machines 2023, 11, 534 8 of 24

The magnetomotive force provided by the magnets is equal to the MMF received by
the air gap if the MMF requirement of the stator and rotor iron is considered negligible.

HmTm = Hgg (15)

Hm is the magnet field intensity, and Hg is the air gap field intensity. To compensate for the
MMF drop of the rotor, we introduce the reluctance factor, kr, which ranges from 1 to 1.15.
It is selected as 1.15.

HmTm = Hggkr (16)

The normal B–H curve relating H and B is given by

B = − Br

Hc
H + Br (17)

where Br is the remnant flux density, and Hc is the coercivity. The operating point (Hm, Bm)
is typically at 90 % of the remnant flux density [36]. The selected magnet is NdFe 30 whose
B–H curve is given in the datasheet [37]. Substituting into Equations (12)–(17) gives the
initial dimensions for the magnet, namely, 21 and 2.1 mm for Wm and Tm, respectively.

4. Sensitivity Analysis and Optimization

Evaluation of any motor depends basically on its performance. Several performance
metrics assess the motor to determine whether it suits the application or not. As for EV
applications, the most significant performance metrics are the average torque, torque ripple,
and core losses. Being notably present and influential in FSCW machines, MMF space
harmonic components introduce torque ripples, thus increasing the machine’s noise and
vibration levels. As a result, one main task is to lessen torque ripples. In addition, another
chief goal is to minimize core losses to reduce thermal stresses and avoid magnet thermal
demagnetization. One principal step in obtaining and controlling these performance
metrics is to perform sensitivity analysis.

Sensitivity analysis plays a vital role in the optimization and evaluation processes, and
the design process in general. It determines the impact of changing each parameter on the
outcome of each objective. There are numerous methods and techniques used to implement
sensitivity analysis [38,39]. The technique used in this study is the variance-based sensitivity
indices technique. The decision variables chosen for the sensitivity analysis are the magnet
width, Wm, the magnet thickness, Tm, the clearance between the two magnets, M2, the
bridge between the magnet and rotor surface, WBri, the V-angle between the two magnets,
V, and the flux barrier widths, WFB1 and WFB2.

4.1. Variance-Based Sensitivity Analysis

To achieve an accurate study and account for the interaction between parameters, we
use the variance-based sensitivity analysis method. The indices resulting from our use of
this method indicate the effect of parameters on motor performance. The sensitivity indices
denoted by ρy(xi) are given by

ρy(xi) =
σ2(E(y|xi))

σ2(y)
(18)

where E(y|xi) is the average value y when xi is held constant, σ2(E(y|xi)) is the variance
of E(y|xi), and σ2(y) is the variance of y [40].

The indices calculated are ρ
prop
Tmean

(xi), ρ
prop
Tripple

(xi), ρchar
Tripple(xi), ρ

prop
core (xi), ρchar

core (xi), where
they indicate the sensitivity indices for average torque in propulsion mode, torque ripple in
propulsion mode, torque ripple in charging mode, core losses in propulsion mode, and core
losses in charging mode. The sensitivity function aggregating all these indices is given by
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H(xi) = λ1

∣∣∣ρprop
Tmean

(xi)
∣∣∣+ λ2

∣∣∣ρprop
Tripple

(xi)|+λ3|ρchar
Tripple(xi)

∣∣∣+ λ4

∣∣∣ρprop
core (xi)

∣∣∣+ λ5

∣∣∣ρchar
core (xi)

∣∣∣ (19)

λ shows the weight of each index. The indices are weighted equally, and each λ weighs
0.2. Table 2 shows the initial values of those parameters and their variation ranges. The
output sensitivity indices are presented in Table 3. Each value in this table corresponds
to the contribution of the parameter to the objective “index”. It is clearly seen that WM,
WBri, M2, and V − angle have a larger effect on the overall objective than the rest of the
parameters. The bar charts representing the sensitivity analysis of each design parameter
are shown in Figure 4.

Table 2. IPM motor design parameters’ ranges.

Design Variable Range Initial Value
V − angle ( ◦) 80–160 145

WM (mm) 18–22 21
TM (mm) 1–3 2.2

WBri (mm) 1–4.5 3
M2 (mm) 2–4 3

WFB1 1–7 1.5
WFB2 1–3.5 1

Table 3. Sensitivity analysis results.

Parameter/Objective ρ
prop
Tmean

ρ
prop
Tripple

ρ
prop
core ρchar

Tripple ρchar
core H(xi)

WBri −0.312 −0.479 −0.085 0.19 0.052 0.224

V − angle 0.18 −0.199 −0.216 −0.112 −0.12 0.215

M2 −0.218 −0.375 −0.057 0.14 0.462 0.221

TM 0.412 0.067 0.093 −0.252 −0.111 0.187

WM 0.464 −0.024 0.099 0.401 −0.233 0.244

WFB1 0.284 0.272 −0.01 0.049 0.288 0.141

WFB2 0.283 0.159 −0.009 0.037 0.313 0.122
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4.2. Finite Element (FE) Based Optimization

A finite-element-based optimization process is performed to enhance the design of
the machine and achieve better results. The FE-based optimization process is carried out
with the use of two simulation platforms, namely, Ansys Maxwell and Optislang. Ansys
Maxwell is responsible for the design and FEA, while Optislang is responsible for the
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optimization process. A preliminary design is set first, considering the machine geometry
and specifications, the material used, and the excitation. Next, the FEA is prepared by
running the simulation to calculate the initial values. Then, Ansys Maxwell is integrated
with Optislang to initiate the optimization process. The initial stage in the optimization
process is to set the decision variables and geometrical parameters of the machine relating
to its performance and objectives. This can be seen as selecting the inputs and outputs
of the process. Geometrical dimensions, namely the magnet width, the magnet thickness,
the magnet clearance, the magnet bridge, the V-angle, and the two flux barrier widths,
are chosen as the inputs, and the performance metrics, namely the average torque, the
torque ripple, the losses, and the magnet size, are chosen as the outputs. After that, the
sensitivity analysis, presented in Section 4.1, takes place to determine the relation between
each input and the outputs and the effects of the inputs on the outputs. The state, whether
it is constant or variable, the type, whether it is continuous or discrete, and the range
of variation of each input is then determined. The sampling method and the number of
iterations for the sensitivity analysis are set. In this paper, the sampling method used is the
Adaptive Metamodel of Optimal Prognosis (AMOP), which tries to search for the optimal
input variable set and the most appropriate approximate model. The number of iterations
is adjusted to 30 to compromise the computational time for the used computer. The used
computer has an AMD A8-6410 APU with AMD Radeon 2.00 GHz processor and 8 GB
RAM. A metric called the coefficient of prognosis (CoP), a measure indicating the model
quality, is set to 0.95. The next step is deciding the required objectives and the problem
constraints. The objectives are stated through an optimization function to be minimized.
The proposed objective function is

F(xi) =
T′average

Taverage(Xi)
+

Ppropulsion
core (Xi)

P′propulsion
core

+
Tpropulsion

ripple (Xi)

T′propulsion
ripple

+
Pcharging

core (Xi)

P′charging
core

+
Tcharging

ripple (Xi)

T′charging
ripple

+
Msize(Xi)

M′size
(20)

The proposed objective function is subject to

Taverage ≥ 96N.m

Tripple ≤ 8%

KCu ≤ 40%

J ≤ 4mm2

Xmin
i ≤ Xi ≤ Xmax

i

where Taverage(Xi), Ppropulsion
core (Xi), Tpropulsion

ripple (Xi), Pcharging
core (Xi), Tcharging

ripple (Xi), and Msize(Xi)

are the optimized values for the average output torque, core losses during propulsion,
torque ripple during propulsion, core losses during charging, torque ripples during charg-
ing, and magnet size, respectively, and where T′average, P′propulsion

core , T′propulsion
ripple , P′charging

core ,

T′charging
ripple , and M′size are the corresponding initial values, J is the current density measured

in A/mm2, and KCu is the copper fill factor. Xi corresponds to the decision variables used
in the sensitivity analysis study, with their ranges described in Table 2. The initial values
are calculated through FE simulation. These constraints ensure the chosen machine will
operate under the desired conditions properly. Finally, the optimization process is initiated.
The optimization algorithm used is the genetic algorithm (GA). GA is a well-known and
well-established heuristic optimization method in electric machine design [19,20,41–48].
The process starts with a random initial population, which represents the preliminary
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design. The minimum and maximum number of generations are set to 20 and 100, re-
spectively. Then, the fitness of the population is evaluated. The evaluation is reflected in
assessing the objective function. After that, the population undergoes three stages, namely,
selection, crossover, and mutation. In the selection stage, mating parents are chosen. The
selection method used is the stochastic method with a linear ranking of parents. The
number of parents is set to six. In the crossover stage, mating takes place. A crossover
with a multipoint that has two points is used. In the mutation stage, variations are made to
ensure convergence will be reached. A self-adaptive mutation with a rate of 43% is chosen.
The fitness of the new population after these stages is tested. The three stages and the
fitness evaluation are repeated until convergence is achieved. This can be checked when
the variation in the fitness function is lower than a tolerance. The parameters of GA are
selected as the default values of the software, which were found satisfactory for this design
case. The number of iterations is adjusted to be suitable for the computational capabilities
of the computer used and to ensure that the errors are maintained within acceptable limits.
Figure 5 depicts the GA flowchart. Figure 6 presents the optimization results of the six
objectives under the two modes of operation. Final machine specifications are listed in
Table 4.
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Table 4. IPM motor’s specifications.

Parameter Symbol Value
Slot/Pole combination Ns/2p 12-slot/10-pole
Stator outer diameter (mm) Dso 279.4
Stator inner diameter(mm) Dg 241.6
Stack length (mm) Le f f 147.7
Air gap length (mm) g 1
Back iron width (mm) Ysb 18.9
Shaft diameter (mm) Dsha f t 50
Rotor outer diameter (mm) Dro 178.6
V-angle (deg) V − angle 153
Magnet width (mm) WM 20
Magnet depth (mm) TM 2
Number of turns per coil Nt 31
Rated rms current (A) Ir 12.3
Winding layer/Coil pitch − Double layer/single
Clearance between magnets (mm) M2 2.8
Bridge spacing (mm) WBri 2.9
Width of flux barrier 1 (mm) WFB1 5.9
Angle of flux barrier 1-1 (deg) FB11 85
Angle of flux barrier 1-2 (deg) FB12 85
Width of flux barrier 2 (mm) WFB2 1.5
Angle of flux barrier 2-1(deg) FB21 80
Angle of flux barrier 2-2 (deg) FB22 80

5. Optimal Machine Versus Initial Machine

Figure 7 gives the configurations of the initial and optimized designs. It is clearly
seen that the V-angle has increased from 125◦ to 153◦, which consequently produces more
torque. The magnet width has decreased from 21 to 20 mm, and the magnet thickness
has changed slightly from 2.2 to 2 mm. This results in an overall decrease in magnet size.
Moreover, the flux barriers have increased from 1.5 to 5.9 mm and from 1 to 1.5 mm for
upper and lower barriers, respectively, thereby producing more reluctance torque.

Table 5 compares the initial and optimal machines. It is clearly seen that the optimal
machine has enhanced the proposed model. In propulsion mode, there is an increase
in torque of about 4 N.m accompanied by a decrease in torque ripple of about 2 N.m.
Moreover, there is a notable decrease in core losses of about 26 W. The decrease in the
magnet clearance and magnet width and the increase in the V-angle contribute to this
reduction, as suggested by the sensitivity analysis results. The phase voltage reaches 225 V
in the optimal machine, compared to 215 V in the initial machine. As for charging mode,
there is a reduction in torque ripple of about 11 N.m and in core losses of about 9 W. The
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phase voltage decreases by about 3 V. Additionally, the size of each magnet has decreased by
about 850 mm3, hence reducing the cost of each magnet. Figures 8 and 9 present the torque
and the phase voltage, respectively, under propulsion and charging modes, respectively.
The magnet used is NdFe-B. The knee of the demagnetization curve of the magnet operating
at 125◦ is near −800 kA/m [37]. The maximum field intensity over the magnet area under
the maximum phase current was found as −664 kA/m, as illustrated in Figure 10. Hence,
there is no chance the armature reaction undercharging will demagnetize the magnets.
Needless to say, the torque-producing component undercharging is ideally zero. Hence,
the MMF harmonic components produced under charging represent only non-producing
torque components [49]. Figure 11 represents the efficiency map of the optimal machine. It
is clear that the machine operates at rated speed with high efficiency (about 95%) and can
reach over 80% efficiency at CPSR.
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Table 5. Optimal and initial machines.

Parameters

Parameter Initial Optimal
Magnet Width 21 mm 20 mm
Magnet Thickness 2.2 mm 2 mm
Upper Flux Barrier Width 1.5 mm 5.9 mm
Lower Flux Barrier Width 1 mm 1.5 mm
Magnet Clearance 3 mm 2.85 mm
Magnet Bridge 3 mm 2.9 mm
V-angle 145◦ 163◦

Objectives
Objective Initial Optimal
Taverage 92.06 N.m 96.1 N.m
Ppropulsion

core 215.47 W 188.87 W

Tpropulsion
ripple

6.46 N.m 4.6 N.m

Pcharging
core 47.48 W 38.22 W

Tcharging
ripple

14.31 N.m 3.16 N.m

Msize 6758 mm3 5910 mm3

Vph
propulsion
rms

215.9 V 225.6 V
Vph

charging
rms

14.4 V 11.27 V
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6. Experimental Validation

A crucial and principal step in the design process is to verify the precision of the proposed
design and the optimization approach through experimental tests. A 12-slot/10-pole IPM
is fabricated and shown in Figure 12, and experimental investigations, under both the
propulsion and the charging modes, are conducted using the test bench illustrated in
Figure 13. The experiments and the FE simulations are performed at the rated speed
of the motor, 1500 rpm, and at a DC bus voltage of 600 V. The field-oriented control
(FOC) technique is implemented to drive the motor in the propulsion mode [50]. FOC is
implemented as follows:

• The Park’s transformation is utilized to transform motor currents into measured id and
iq. id is aligned with the rotor magnetic field, and iq is π/2 ahead of id. iq reference is
controlled by a PI closed-loop speed controller, while id reference is nullified to obtain
maximum allowable torque.

• The d-axis and q-axis current controllers generate the voltage references. The inverse
Park’s transformation is employed to calculate the actual voltage values that are
fed to the sinusoidal pulse width modulated (SPWM) inverter to feed the motor in
propulsion mode.

In addition, predictive current control is used for the charging process [51,52]. This
technique must ensure that:

• The grid current components are controlled in a way that maximizes the reference
direct component i*d, thereby maintaining maximum charging level, canceling out the
reference quadrature component i*q, and assuring the grid-side operation with a unity
power factor. The reference sequence current components are regulated based on the
reference grid current components.

• The inverse Park’s transformation is employed to calculate the xy reference currents,
i*xy and the reference αβ grid current, i*αβ, which have the same value, with the grid
being synchronized with the inverter using a phase-locked loop (PLL).

• A zero-average torque is generated by setting the stator αβ currents, iαβ, and the zero
sequence current components, i0+0− , to zero.

A dSpace microlab box 1200 model is used to implement the control strategy of
the asymmetrical six-phase currents in both propulsion (δ = 30◦) and charging modes
(δ = 210◦). Figure 1a,b show the asymmetrical six-phase phasor diagram of the propulsion
and the charging modes, respectively. The experimental outcomes of the two operation
modes are discussed in the subsequent subsections.
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6.1. Propulsion Mode of Operation

The IPM motor is tested experimentally under the propulsion mode to check its
performance. The IPM motor is mechanically coupled to a dynamometer. A battery
emulator is used to feed the motor through a 40 kW, six-phase inverter. A measurement
board is connected to the inverter to obtain results. The dSpace is responsible for the control
technique implementation. A data acquisition unit is used for data processing, and an
oscilloscope is used to visualize the data. First, the IPM motor is rotated, and the terminal
voltages are measured to calculate the no-load back electromotive force (EMF). Then, the
other motor is used as a load while exciting the IPM motor with the rated current, and
the torque is measured using a torque sensor. Finally, the IPM motor is tested under step
response to measure its dynamic response.
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The experimental and the simulated no-load back EMF are shown in Figure 14. Obvi-
ously, there is a good match between the two values with a slight increase in the experi-
mental results peak, namely the experimental results peak is 236 V, and the FE results peak
is 230 V, with the experimental peak voltage value as the base. Additionally, Figure 15
presents the steady-state experimental torque values. Experimentally, the motor delivers
about 95.77 N.m, compared to the simulated case where the motor outputs an average
torque of 96.1 N.m due to the mechanical losses and vibrations that were not incorporated
in the simulation. The simulated torque ripple during propulsion is 4.6 N.m, while the re-
ported experimental torque ripple is about 0.1 N.m. This strange reported value is because
of the limitations in the torque sensor capability. The torque sensor has a limited frequency
of 10 Hz, corresponding to 100 ms. This sampling time is much greater than the current
time period, and thus the whole torque variations are not captured. The stator currents
during the propulsion mode are depicted in Figure 16. The motor-rated current, namely,
17.54 A rms, is set as the base. Figure 17 presents the experimental dynamic response of
the machine. Plainly, the controller can efficiently respond to a speed change from 0 to
1500 rpm in about 1 s. Table 6 compares the experimental and the simulated results.
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Table 6. Experimental and simulated machines results.

Objective Experimental Simulated

Taverage 95.77 N.m 96.1 N.m
Tpropulsion

ripple
0.08 N.m “Due to sensor limitations” 4.6 N.m

Back EMFpeak 230 V 236 V
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6.2. Charging Mode of Operation

As well as experimenting with the machine under the propulsion mode, an experiment
is conducted under the charging mode. A grid emulator is used to imitate the grid during
the charging process, and the dSpace is used to control the charging control algorithm.
The data are obtained, processed, and displayed. During the charging mode, the grid
current is 1.93 of the stator current. The motors rated current is taken as the base for current
measurements, and all measurements are reported to be pu values. The three-phase grid
line currents are presented in Figure 18, which are perfectly balanced. While Figure 19
shows the two winding sets and the grid currents. Only one phase from each winding set
and the corresponding grid line current are presented for simplicity and clarity. Figure 20
presents the grid voltage and current in pu, with the grid current as the current base and
the grid voltage as the voltage base. It is clearly seen that the unity power factor state
can be achieved under maximum charging levels, charging with the rated conditions.
Furthermore, the vibration level is checked. It is clearly seen that the motor does not rotate
during charging, which indicates a zero-average torque, but it experiences a torque ripple
that may cause mechanical problems based on its amplitude. This torque ripple amplitude
can simply be investigated by checking the vibration level on the mechanical assembly.
This has been carried out in the experiments using an accelerometer (IMI 622B01 ICP®®).
The vibration level is shown in Figure 21. ISO 10816-3 standards provide guidance for
evaluating vibration severity in machines [53]. This machine is considered a machine
of class II (from 15 kW up to 300 kW). For class II, vibration is good in the range of
(0–1.4 mm/s rms) and satisfactory in the range of (1.4–2.8 mm/s rms). The vibration level
recorded during charging under full-load current is 2.7 mm/s rms, which is considered
satisfactory and can maintain operation without vibrational issues.
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7. Conclusions

This paper presents an optimal design of an asymmetrical 12-slot/10-pole IPM motor
accompanied by a multi-objective optimization under propulsion and charging modes. Six
key performance metrics constitute the optimization objectives (namely, average torque
during propulsion, torque ripples under propulsion, torque ripples during charging, core
losses during propulsion, core losses during charging, and magnet size), where the objec-
tives are optimized with numerical genetic algorithm along with finite element analysis
(FEA). The effect of various IPM parameters, specifically bridge value, V-angle, magnet
width, magnet thickness, and magnet clearance on performance metrics, has been studied.
The following inferences can be deduced:

• For the propulsion mode, average torque is directly proportional to magnet width,
magnet thickness, and V-angle. On the contrary, it is inversely proportional to the
bridge value and magnet clearance.

• For the propulsion mode, torque ripple is inversely proportional to the bridge value.
On the other hand, regarding the variations in magnet width, magnet thickness,
V-angle, and magnet clearance, some ranges show an increase in torque ripples while
others show a decrease in torque ripples.

• In the charging mode, torque ripple is directly proportional to the bridge value and
magnet clearance. Conversely, it is inversely proportional to V-angle, magnet width,
and magnet thickness.

• In the propulsion mode, core losses are inversely proportional to the bridge value and
magnet clearance. On the other hand, they are directly proportional to magnet thickness
and magnet width. Additionally, they show variations in the changing V-angles.

• For the charging mode, core losses are directly proportional to the bridge value and
magnet clearance. In contrast, they are inversely proportional to V-angle, magnet
width, and magnet thickness.

Finally, a prototype of the machine is constructed to validate the proposed design with
the desired specifications. The prototype shows a match with acceptable accuracy to the
results given by the FE simulation. The torque in the propulsion mode has an error of only
0.34%. The back EMF shows a match of about 97.45%. Only the torque ripple cannot be
measured accurately due to sensor limitations.
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Nomenclatures

Wm Magnet Width (mm)
Tm Magnet thickness (mm)
M2 Clearance between the two magnets (mm)
Bri The bridge between the magnet and rotor surface (mm)
V V-angle between the two magnets (◦)
WFBi Flux barrier width, WFBi, where i takes on a value of 1 or 2, 1 indicates the upper flux

barrier, and 2 indicates the lower flux barrier. (mm)
FBij The flux barrier’s two angles, FBij, where j takes a value of 1 or 2, representing the two

base angles, which are kept constant (◦)
Pn Rated power (W)
Kw Winding factor
Kl Aspect ratio “Stack length to air gap diameter ratio”
η Efficiency (%)
Bg Air gap flux density (T)
As Stator’s electrical loading (A/mm)
f Frequency (Hz)
p Number of pole pairs
Dg Stator’s outer diameter (mm)
Dso Stator’s inner diameter (mm)
Le f f Stack length (mm)
λ Split ratio “Stator’s inner diameter to outer diameter ratio”
hbi Back iron thickness (mm)
Bbi Back iron flux density (T)
ht Tooth height (mm)
wt Tooth width (mm)
Bt Tooth flux density (T)
Q Number of the stator’s slots
Vpeak Rated peak voltage (V)
mi Modulation index
VDC DC bus voltage (V)
m Number of phases
Ipeak Rated peak current (A)
cos θ Power factor
Ke EMF factor
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Nt Number of turns
KCu Copper fill factor
J Current density

(
A/mm2)
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