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Abstract: The marine engine is a complex-structured multidisciplinary system that operates in a
harsh environment involving high temperatures and pressures and gas/fluid/solid interactions.
Many malfunctions and faults can occur to the marine engine and efficient condition monitoring
is critical to ensure the expected performance. In this paper, a marine engine test rig is established
and its process data are recorded, including various temperatures and pressures. Two data-driven
models, i.e., principal component analysis and the sparse autoencoder, and a physics-based model
are applied to the marine engine for two classic faults, i.e., lubrication oil filter blocking and cylinder
leakage. Comparative studies and discussions are conducted regarding their performance in terms
of anomaly detection and fault isolation. The data points collected for the filter blocking fault are
generally two times higher than the fault thresholds set by the data-driven models. In the physics-
based model, it is observed that the lubrication oil pressure falls from the predicted 3.2–3.8 bar to
around 2.3 bar. For the cylinder leakage fault, the fault test data are nearly four times higher than the
thresholds in the data-driven models. The exhaust gas temperature of the leaked cylinder falls from
an estimated 150–200 ◦C to about 100 ◦C. The transferability and interpretability of these models are
finally discussed. The findings of the present study offer insights into the two types of models and
can provide guidance for the effective condition monitoring of marine engines.

Keywords: rotating machines; health monitoring; marine engine; physics-based; data-driven model

1. Introduction

Marine engines are crucial components in various ships and provide the power re-
quired. However, many faults can occur in marine engines due to their extreme working
environments and complicated structures, as well as the gas/fluid/solid coupling nature.
Although different types of process data can be monitored and used for status assessment,
online novelty detection and fault diagnosis are awkward in practice and it is often difficult
to accurately locate fault positions. As a result, massive losses can occur due to the late
detection of typical malfunctions and delayed maintenance [1–3].

The modern approaches to the condition monitoring of marine engines can be divided
into physics-based modeling methods [4–6] and data-driven machine learning models [7–9].
Yan et al. [10] proposed to use tribological information for the effective monitoring of the
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abnormal wear of critical components in marine engines. A new online remote health
monitoring method and a facility set were constructed, which experimentally proved to be
useful for industrial applications. Wang et al. [11] established an integrated system-level
early fault identification and isolation methodology based on the bond graph and applied
the method to a marine engine simulator subject to lubrication system issues. In fact, due
to various errors and surface roughness in components, non-stationary working conditions,
and noise in measurement [12], there are inevitable uncertainties in the engine’s dynamic
characteristics and the collected data sets [13,14]. A Bayesian inference model was proposed
for the uncertainty quantification and performance prognostics of marine engines based
on probability distributions [15]. The operational data sets from a marine engine were
tested and the results showed promising potential regarding the applicability of the method
for online health monitoring. Zhang et al. [16] delivered a systematic review of health
condition monitoring as an efficient maintenance strategy for the prognostics and health
management of marine systems and equipment. Wang et al. [17] adopted variational mode
decomposition to assist the Rihaczek time–frequency representation. The physics-based
health monitoring methods are fundamental approaches to novelty detection in marine
engines and their major advantage is that the mechanism behind a fault is clear and can be
derived from the practical working principles.

Nowadays, data-driven models are introduced into the health monitoring of diesel
engines, benefiting from the rapid development of modern data science. These types
of models exploit the evolution of data sets and do not rely on the mechanisms of the
physics behind them, showing their black-box nature and versatility. Xi et al. [18] proposed
independent component analysis for the feature extraction and visualization of marine
diesel engines. Comparisons to other data-driven methods also showed the superiority
of the proposed approach. The long short-term neural network [19] combined with the
attention mechanism were employed to predict the exhaust air temperature of a marine
diesel engine. The residual between the predicted and measured values was applied to
a process control method to generate the fault threshold. Essentially, machine learning
algorithms can be classified into supervised and unsupervised ones depending on whether
there are labels attached to the training data. Supervised methods need pre-defined data
set labels to train the models for maximum performance. However, this is not easy in
engineering scenarios. On the other hand, unsupervised algorithms attempt to learn the
patterns in data sets and cluster them without the pre-specification of labels, which is
more convenient in general cases in practice. Principle component analysis (PCA) is a
popular tool in novelty detection for marine engines [20,21]. Zhong et al. [22] used a
semi-supervised PCA for fault identification in marine diesel engines, which included
labeled and unlabeled data at the same time. Results indicate that the method is robust to
false alarms. A combined principle component analysis and back propagation (PCA-BP)
neural network scheme was proposed for intelligent fault diagnosis [23], in which PCA
was used to analyze the thermal fault, and the back propagation (BP) neural network
was trained to identify the failure mode. The PCA itself can act as a dimension-reduction
tool, projecting massive data to low-dimensional spaces, enabling more efficient anomaly
detection. Another popular tool is the sparse autoencoder (SAE), which is a variant of the
autoencoder and can be viewed as a neural network [24]. In the method, the overfitting
issue is dealt with by setting the sparsity constraint on hidden units. Qu et al. [25] proposed
a predictive model based on the echo state network and deep autoencoder. The relative
error and root mean square of the established model were found to be lower than in
other approaches. In the context of missing sensor data, Velasco-Gallego and Lazakis [26]
analyzed the performance of the variational autoencoder. The common imputations were
comparatively studied for a high determination coefficient.

This paper focuses on the applications and comparative studies of both the physics-
based models and data-driven algorithms in marine diesel engine condition monitoring.
Their performance and accuracy in novelty detection and fault isolation are comparatively
studied for two typical faults, i.e., a lubrication filter blockage and cylinder leakage. It
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aims to reveal the feasibility and interpretability of different types of health monitoring
methods for marine engines, which will enable assessments of these methods in practical
applications to a marine system, closer to real scenarios. The results can aid method
selection, application assessment, and fault simulations. In addition, the observations of the
present study can help to identify the bottlenecks of marine engine condition monitoring
and guide future studies. The rest of this paper elaborates on the theories of data-driven
models and physics-based models, experimental setup descriptions, and results analyses
and discussions. The merits and drawbacks of both types of models are summarized.

2. Theory of Data-Driven Models

This section describes the theory of two unsupervised data-driven models for anomaly
detection and health indicator extraction serving as a fault threshold.

2.1. Principle Component Analysis

PCA [27] utilizes an orthogonal transformation, projecting the correlated data set onto
a set of independent orthogonal bases. From the algebraic point of view, this orthogonal
transformation makes the covariance matrix of data vectors diagonal. Geometrically, it is
represented by a change from the old coordinate system to another orthogonal coordinate
system, directing it to the most orthogonal directions scattered among the data points.
Thus, it actually serves as a dimension-reduction scheme. According to this theory, the
correlation coefficient between two variables Xi and Xj can be calculated as

rij =
∑n

k=1
∣∣(Xki − Xi

)∣∣∣∣∣(Xkj − X j

)∣∣∣√
∑n

k=1
(
Xki − Xi

)2
∑n

k=1

(
Xkj − X j

)2
(1)

where the over bar denotes the mean value of a variable and n is the number of samples.
Xki represents the k-th sample of the i-th feature. Then, the correlation matrix can be
obtained by

R =

r11 · · · r1p
...

. . .
...

rp1 · · · rpp

 (2)

where p is the number of features. The eigenproblem is

Ru = λu (3)

where λ and u are the eigenvalue and eigenvector. Based on the eigensolutions, the obtained
eigenvectors can be written as

u1 =


u11
u21

...
up1

, u2 =


u12
u22

...
up2

, · · · , up =


u1p
u2p

...
upp

 (4)

Therefore, the principal components can be expressed by
y1 = u11X1 + u12X2 + · · ·+ u1pXp
y2 = u21X1 + u22X2 + · · ·+ u2pXp

...
yp = up1X1 + up2X2 + · · ·+ uppXp

. (5)
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2.2. Sparse Autoencoder Model

The SAE [28] avoids directly copying the input from the input layer to the hidden
layer, as often done in traditional autoencoders, and extracts the hidden distribution
characteristics of data based on multi-layer nonlinear transformations. The sparse features
are obtained by the sparse penalty term. Thus, the SAE is efficient and has more promising
application possibilities. In fact, the SAE can be regarded as a special neural network with
equal numbers of inputs and outputs, as shown in Figure 1. In the diagram, a circle indicates
a neuron. The data transmitted by the input layer are encoded and reconstructed in the
hidden layer, transforming the high-dimensional input into low-dimensional encoding
characteristic vectors. Thus, there is an encoder connecting the input layer and hidden
layer and a decoder linking the hidden layer and output layer. For an unlabeled sample set
{x1, x2, . . . , xn}, the sigmoid function is chosen as the neuron activation function. Take a
n× 1 sample vector as the input, and define the i-th neuron activation amount a(2)i as

a(2)i = f (
n

∑
j=1

W(1)
ij xj + b(1)i ), (6)

where xj is the j-th neuron value in the input layer, W(1)
ij represents the connection weight

between the j-th neuron and the i-th neuron in the hidden layer, n is the number of neurons
in the input layer, b(1)i denotes the bias of the input layer i-th neuron, and f has the
following expression:

f (z) =
1

1 + e−z . (7)
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The hidden layer extracts the data features and the feature expression can minimize the
errors in reconstructions. The feature expression in the hidden layer can be described as

hW,b(x) =


a(2)1

a(2)2
. . .
a(2)S2

 =



f (
S1
∑

j=1
W(1)

1j xj + b(1)1 )

f (
S1
∑

j=1
W(1)

2j xj + b(1)2 )

. . .

f (
S1
∑

j=1
W(1)

S2 j xj + b(1)S2
)


, (8)
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where hW,b(x) is the input layer feature matrix and S2 is the number of neurons in the hid-
den layer. To minimize the reconstruction errors, a sparsity penalty function is introduced:

Js (W, b) =

[
1
m

m

∑
i=1

1
2
‖ hW,b

(
x(i)
)
− x(i) ‖ 2

]
+

λ

2

n−1

∑
l=1

Sl

∑
i=1

Sl+1

∑
j=1

(W(l)
ji )

2
+ β

S2

∑
i=1

KL(ρ ‖ ρi). (9)

where the first term 1
m ∑m

i=1
1
2‖ hW,b

(
x(i)
)
− x(i) ‖ 2 denotes the mean squared error, and it

is used to minimize the error between the input data and the output data. The second term
1
2 ∑n−1

l=1 ∑Sl
i=1 ∑

Sl+1
j=1 (W(l)

ji )
2

represents the regularization and this term is used to avoid over-

fitting. The last term ∑S2
i=1 KL(ρ ‖ ρi) in the equation is called sparsity regularization, and it

imposes a sparsity constraint on the hidden units. λ is the coefficient for the regularization
term. β is the coefficient for the sparsity regularization term. KL(ρ ‖ ρi) measures the
difference between two distributions, and this term can be given by the Kullback–Leibler
divergence function.

2.3. Status Indicator for Machine Health

The Mahalanobis distance (MD) [29–31] synthesizes all the monitored variables and
generates a threshold to determine the health status of the marine engine during the training
process. It is a unitless measure with correlations between variables being included. Its
advantage is that a single distance quantity is provided for multi-dimensional data sets.
The Mahalanobis distance is calculated as

Mdi =

√((
Yi − Ŷi

)
− µ

)
S−1

((
Yi −Yi

)
− µ

)T , (10)

where Yi represents the i-th feature, Ŷi is a reconstruction of the feature, and µ and S are the
mean and covariance of the samples.

Next, the fault detection threshold Mdth can be obtained from the probability density
function (PDF) of h for a given confidence level α by solving Equation (11):

P(h < d) =
∫ d

−∞
p(h)dh = α, (11)

where p(h) is the PDF function of h. The kernel density estimation (KDE) method is
applied for distribution fitting. The KDE method is a well-established approach in statistical
distribution fitting and has been successfully applied to the field of process monitoring and
fault detection. According to the KDE method, p(h) can be written as

p(h) = 1
Nσ

N
∑

i=1
K( h−hi

σ ), (12)

where N is the total number of h. K(·) is the kernel function and σ is the bandwidth. The
selection of the optimal value for σ is described in [32]. Here, the Gaussian kernel [28]
is used.

3. Physics-Based Multivariate Models

The physics-based models for monitored variables are linked with the working status
of the marine engine. They rely on the inherent mechanism analysis of different faults to
determine a group of dependent variables. Often, the grouped variables are key indicators
of a specific fault. In general, the multivariate model for a monitored variable can be
expressed by a least-term r-order surrogate function as

H(x1, x2, · · · , xk) = ϕ0,...,0 + ϕ1,0,...,0x1 + ϕ0,1,0...,0x2 + · · ·+ ϕ0,...,0,1xk,+ϕ1,1,0,...,0x1x2 + · · ·+ ϕ1,1,0,...,0x2
m + · · ·

+ϕr,0,...,0xr
1 + · · ·+ ϕ0,...,0,rxr

k,
(13)
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where x1, x2, · · · , xk are the variables used to build the model, and the number of variables
is k; r represents the order of the surrogate model function; ϕi1,i2,··· ,ik is the model coefficient,
respectively. To reduce the computational effort, the number of terms in the model function
is kept to the minimum, which is realized by setting 0 ≤ i1 + i2 + · · ·+ ik ≤ r.

The unknown model coefficient vector ϕ is determined by the nonlinear regression
based on the least-square technique using the baseline data. When new data are collected,
they will be evaluated via the surrogate function by comparing the predicted value with
the measured one. Taking a variable p as an example, this process can be described by

p̂ = Hp(x̃1, x̃2, · · · , x̃k), (14)

Re(p) = p̃− p̂, (15)

where Hp represents the multivariate model for variable p, ·̃ denotes the measured value,
and ·̂ denotes the predicted value, respectively. Re (p) is the residual between the model
prediction and measurement for variable p. The fault threshold, γp, is generated in the
prediction step by the confidence interval measure. Thus, the health status of the variable
can be determined by

Re(p) = p̃− p̂, (16)

To avoid false alarms, a variable is diagnosed as abnormal when consecutive data
points fall outside of the predicted confidence interval or the residual exceeds the
permitted limits.

4. Marine Engine Test Rig

A marine engine test rig is set up, as demonstrated in Figure 2. The marine power
system has a Beta 14 diesel engine, a gearbox, and a propeller immersed in water. It can
be used to simulate many typical faults in a marine power system. The temperatures and
pressures of the internal and external coolants at the inlet and outlet, lubrication systems,
and gearbox are measured. The average rotating speed of the engine is calculated by the
engine parameters and flywheel instantaneous angular speed. The water pressure in the
water tank is recorded as an indicator of the load level, which is adjusted by a valve on
the tank. Thus, the load level on the propeller and the rotating speed of the engine can be
used to reflect the key working condition parameters. A complete list of monitored process
data and the descriptions are provided in Table 1. The sensor placement and sensor models
with their sensitivities are exhibited in Figure 3. These data can satisfy the requirements
in observing the running status and health condition of the marine power system. The
acquisition rate for data collection is 1 Hz, i.e., there is one data point for each variable per
second. The experimental tests are completed by using in-house software, including main
modules such as the data connection, history analysis and visualization, measurement
parameter setting, and further data processing. Data processing for the results in this study
is implemented in Matlab. Baseline testing is conducted for many combinations of rotating
speeds and load levels to enable sufficient training of the models. In the present study, the
lubrication filter blockage and cylinder leakage faults in the marine engine are investigated
based on the previously described methods.
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Figure 2. Marine engine test rig.

Table 1. Variables monitored in the test rig.

No. Short Form Detail

1 Pressure Intake Air Intake air pressure of engine
2 Pressure Coolant In Internal coolant water pressure at inlet
3 Pressure Coolant Out Internal coolant water pressure at outlet
4 Pressure Cy1 Exhaust Exhaust air pressure of cylinder 1
5 Pressure Cy2 Exhaust Exhaust air pressure of cylinder 2
6 Pressure Fuel Supply Pressure of fuel supply to engine
7 Pressure Ex Water In External coolant water pressure at inlet
8 Pressure Ex Water Out External coolant water pressure at outlet
9 Pressure Lub Oil Lube oil pressure
10 Pressure Water Tank Water pressure in water tank/load level
11 Engine Speed RPM Averaged rotating speed of shaft
12 Temperature Gearbox Gearbox housing temperature

13 Temperature Bushing Journal bearing (before propeller)
oil temperature

14 Temperature Coolant in Internal coolant water temperature at inlet
15 Temperature Coolant Out Internal coolant water temperature at outlet
16 Temperature Cy1 Exhaust Exhaust air temperature of cylinder 1
17 Temperature Cy2 Exhaust Exhaust air temperature of cylinder 2
18 Temperature Ex Water In External coolant water temperature at inlet

19 Temperature Ex Water Out External coolant water temperature
at outlet

20 Temperature Lub Oil Lube oil temperature
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Figure 3. Monitored variables in the marine system.

5. Case Studies
5.1. Filter Blockage

The lubrication oil filter keeps the oil clean and ensures the lubrication performance
to extend the life of critical friction pairs. In practice, external elements, such as water,
dust and particles, and oil oxide, will cause the blocking of the filters. When a filter
blockage fault happens, insufficient lubrication oil is circulated into the engine, decreasing
the performance of the marine engine. A direct consequence of filter blocking is a drop in
the lubrication oil pressure. Two strategies are used to simulate this fault on the marine
engine test rig. As can be seen in Figure 4, a circular device is designed to guide the oil flow
and provide space to control the oil volume. The oil will circulate from the cooler into the
circular passage and then enters the engine from the central hole. On the one hand, the
circular holes on the cover are partially blocked manually. On the other hand, the hole size
at the center is adjusted and reduced by additional bolts. The oil pressure is measured after
the clog and the tests are conducted at around 1300 RPM.
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Figure 5 shows the fault detection results using the PCA- and SAE-based methods
when the machine runs under healthy conditions. As can be seen, the fault detection
models believe that the machine works normally, because almost all the points are below
the thresholds. The training process using the baseline data by PCA (upper figure) and
the fault diagnosis process (lower figure) using the fault simulation test data are shown in
Figure 6. A fault threshold is generated in the training process and data points with an MD
index higher than the threshold are deemed abnormal. It is observed that 99% of the data
collected in the health status are treated as normal, while the remaining 1% are treated as
abnormal, bearing in mind that there still can be extreme points and uncertainty during
normal conditions. Figure 6 suggests that the diagnosis process has successfully identified
anomalies when the filter blockage fault happens, evidenced by the fact that all fault data
points are above the threshold line. The Q-statistic method is employed to inspect the
contributions of variables in the detection process and the contribution map is plotted in
Figure 7. Furthermore, the residual map of all variables is plotted in Figure 8, in which
the sign of the residual of a variable indicates whether the variable is higher or lower than
normal. It can be noticed from Figure 7 that the first three major contributors in the PCA
model for the diagnosis of the filter blockage fault are the external coolant water pressure at
the outlet, the averaged engine rotating speed, and the internal coolant water temperature.
Figure 8 shows that the residual for the lubrication oil pressure is positive, suggesting that
the measured values are higher than the predicted values. It can be concluded that the
PCA model has detected the filter blockage fault and can inform users that the marine
engine is abnormal. However, neither the contribution map nor the residual map provides
the correct classification of variable evolutions. In other words, the PCA model can detect
novelties but is incapable of isolating the filter blockage fault.

The training and detection process for the filter blockage fault using the SAE model is
demonstrated in Figure 9. The MD indices for fault data points are obviously higher than
the threshold in the SAE model, showing that the SAE method detects the abnormality
in the marine engine system. On this point, the SAE has a similar ability to PCA. The
contribution map and residual map of the SAE model for the filter blockage fault are given
in Figures 10 and 11. From Figure 11, it is found that the residual for the lubrication oil
pressure is negative, meaning that the measured data are lower than the predicted value,
which is consistent with reality and proves that the SAE outperforms the PCA in this regard.
However, as can be seen from Figure 10, the lubrication oil pressure does not appear either
in the first three major contributors in the SAE model, which are the external coolant water
pressure at the inlet, the internal coolant water temperature at the inlet, and the exhaust
air temperature of the cylinders. Thus, the SAE model is able to detect the filter blockage
and reveals the drop in the lubrication oil pressure. However, it cannot accurately isolate
the filter blockage fault in the marine engine. The above results reflect a common issue
in data-driven models, i.e., poor interpretability. These methods use pure data sets and
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explore their patterns, and do not rely on the physics of the marine engine, which leads to
contribution analysis results that are unreasonable.
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Figure 5. Anomaly detection results when the machine runs under healthy conditions based on the
PCA and SAE methods.
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Figure 6. Training and anomaly detection process for filter blockage based on the PCA.



Machines 2023, 11, 557 11 of 20Machines 2023, 11, x FOR PEER REVIEW  11  of  22 
 

 

 

Figure 7. Contribution map for filter blockage fault based on the PCA. 

 

Figure 8. Residual map for filter blockage fault based on the PCA. 

The training and detection process for the filter blockage fault using the SAE model 

is demonstrated  in Error! Reference source not  found.. The MD  indices  for  fault data 

points are obviously higher than the threshold in the SAE model, showing that the SAE 

method detects the abnormality in the marine engine system. On this point, the SAE has 

a similar ability to PCA. The contribution map and residual map of the SAE model for the 

filter blockage fault are given in Error! Reference source not found. and Error! Reference 

source not found.. From Error! Reference source not found., it is found that the residual 

for the lubrication oil pressure is negative, meaning that the measured data are lower than 

the predicted value, which is consistent with reality and proves that the SAE outperforms 

the PCA in this regard. However, as can be seen from Error! Reference source not found., 

Average variables contributuion - PCA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

PressureIntakeAir
PressureCoolantIn

PressureCy1Exhaust
PressureCy2Exhaust
PressureFuelSupply

TemperatureGearbox
TemperatureExWaterOut
TemperatureCy2Exhaust

TemperatureBushing
TemperatureCoolantin

TemperatureCoolantOut
TemperatureCy1Exhaust

TemperatureExWaterIn
PressureExWaterOut

PressureExWaterIn
PressureCoolantOut
TemperatureLubOil

PressureLubOil
EngineSpeed

PressureWaterTank

Average residual plot for all input variables using PCA

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Residual

PressureIntakeAir
PressureCoolantIn

PressureCy1Exhaust
PressureCy2Exhaust
PressureFuelSupply

TemperatureGearbox
TemperatureExWaterOut
TemperatureCy2Exhaust

TemperatureBushing
TemperatureCoolantin

TemperatureCoolantOut
TemperatureCy1Exhaust

TemperatureExWaterIn
PressureExWaterOut

PressureExWaterIn
PressureCoolantOut
TemperatureLubOil

PressureLubOil
EngineSpeed

PressureWaterTank

Figure 7. Contribution map for filter blockage fault based on the PCA.
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Figure 8. Residual map for filter blockage fault based on the PCA.
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In physics-based modeling, the average rotating speed and load level are used as
working condition parameters, i.e., other variables are deemed to be dependent on these
two parameters. In this regard, all the monitored variables have their own models. Similarly,
the baseline data are used to train the models and the data collected for fault simulation
tests are then evaluated by the models to check whether any novelty occurs. For the filter
blockage fault, the lubrication oil pressure is the most important quantity. The training and
diagnosis process based on its physics-based model is plotted in Figure 12, where dashed
lines in different colors indicate the model’s predicted 99% confidence intervals, while solid
lines plot the measured data. It is observed from the results that the measured lubrication
oil pressure is below 2.5 bar, while the predicted band is around 3.2–3.7 bar. The values are
significantly lower than the predicted confidence interval, suggesting the fault status of the
marine engine. Other monitored variables fall within their respective confidence intervals,
indicating that they are healthy. For brevity, the results are not presented here. From the
above analysis, it can be found that the physics-based monitoring involves mechanism
inference before the diagnosis and the filter blockage fault is successfully isolated. Moreover,
the evolution characteristics agree with the principles of the marine engine. Compared
with the PCA and SAE models, the physics-based models are more accurate in isolating
fault types as they all identified the anomalies.

5.2. Cylinder Leakage

The cylinder leakage fault refers to the leakage of gas in the cylinder and can be
caused by the loosening of the valve and fuel injector seal, wear of the piston ring, cylinder
liner and piston wear, and cylinder pad damage. It will affect the power generated by
the engine and the lubrication oil consumption and produce more harmful particles. To
simulate the cylinder leakage fault, grooved bolts are designed to allow leakage from the
cylinders. The specimen is then installed to replace the original bolt in cylinder 2, as shown
in Figure 13. The test for fault conditions is carried out for the marine engine under a
rotating speed of around 1600 rpm. The same data sets are used for the data-driven models
and physics-based models for fault detection and isolation.



Machines 2023, 11, 557 14 of 20Machines 2023, 11, x FOR PEER REVIEW  14  of  22 
 

 

 

Figure  12.  Training  and  anomaly  detection  process  for  filter  blockage  using  the  physics‐based 

model: dashed lines—predicted 99% confidence intervals; solid lines—measured data. 

5.2. Cylinder Leakage 

The  cylinder  leakage  fault  refers  to  the  leakage of gas  in  the  cylinder and  can be 

caused by the loosening of the valve and fuel injector seal, wear of the piston ring, cylinder 

liner and piston wear, and cylinder pad damage. It will affect the power generated by the 

engine and the lubrication oil consumption and produce more harmful particles. To sim‐

ulate the cylinder leakage fault, grooved bolts are designed to allow leakage from the cyl‐

inders. The specimen is then installed to replace the original bolt in cylinder 2, as shown 

in Error! Reference source not found.. The test for fault conditions is carried out for the 

marine engine under a rotating speed of around 1600 rpm. The same data sets are used 

for the data‐driven models and physics‐based models for fault detection and isolation.   

P
re

ss
ur

e(
B

ar
)

P
re

ss
ur

e(
B

ar
)

Figure 12. Training and anomaly detection process for filter blockage using the physics-based model:
dashed lines—predicted 99% confidence intervals; solid lines—measured data.
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Figure 13. Cylinder leakage simulation.

The training and fault diagnosis process for the cylinder leakage fault based on the
PCA model is given in Figure 14. The same strategy as in the previous subsection, where 1%
of the healthy data are deemed abnormal, is used for the training. Any red cross markers
suggest a fault data point. All the points above the threshold line are diagnosed as faulty. It
can be noticed that the fault status of the marine engine with the cylinder leakage fault is
secured by the PCA model, evidenced by the data points being higher than the threshold.
Figures 15 and 16 plot the contribution map and residual map for monitored variables
based on the Q-statistic method. It is found that the identified first three variables that



Machines 2023, 11, 557 15 of 20

contribute to the detection are the lubrication oil temperature, the internal coolant water
pressure at the inlet, and the gearbox temperature. The results are unreasonable according
to the physics of the marine engine, except for the first contributor. The residual of the
leaked cylinder exhaust air temperature is negative, indicating that its measured values are
lower than normal values. This is natural due to the fault implemented. The residual of the
lubrication oil temperature is negative as well. However, this result does not agree with the
fault mechanism of the cylinder leakage. Therefore, the PCA model again can only detect
the fault status of the system, while it cannot isolate the cylinder leakage fault.
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Based on the SAE model, the training and fault detection results are plotted in Figure 17.
Again, it is evident that the malfunctions of the marine engine are identified since all the measured
data points exceed the fault threshold line. To further clarify the contributions of variables in the
model, the contribution map and residual map are shown in Figures 18 and 19. Apparently, the
order of major contributors in detecting anomalies is the interval coolant water pressure,
the lubrication oil pressure, and the lubrication oil temperature. The residual of the leaked
cylinder exhaust air temperature is negative and that of the lubrication oil temperature is
positive. Therefore, the leaked cylinder exhaust air temperature drops from the predicted
value and the lubrication oil temperature is increased, which is consistent with the physical
principles of the marine engine. Thus, it is safe to conclude that the SAE model has
successfully detected the fault and sorted out the variable evolutions correctly. However,
the variable contribution of the leaked cylinder exhaust air temperature is not the largest,
causing difficulties in isolating the fault type. From the above discussion, it is clear that the
SAE and PCA can both report abnormalities of the marine engine regarding the cylinder
leakage fault. The SAE predicts more accurate variable contributions than the PCA, while
both of them fail to predict the fault type.

The training and diagnosis process based on the physics-based model is exhibited in
Figures 20–22. It can be observed that the exhaust air temperature of the leaked cylinder
falls below the predicted 99% confidence interval significantly, reflecting the malfunctions
in cylinder 2’s combustion. On the contrary, the exhaust air temperature of cylinder 1 is
normal as the measured data are within the confidence interval. Moreover, the lubrication
oil temperature is higher than the predicted range. These results agree with the fault
mechanism of the cylinder leakage. Thus, the physics-based model can detect and isolate
the cylinder leakage fault, as well as identify the fault location. From this point of view,
the physics-based model is superior in isolating faults compared with the data-driven
models, which can produce results with poor interpretability. The physics-based models
are not intelligent or convenient enough compared with the data-driven models in terms of
transferability, i.e., the physics-based models vary between engines.
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Figure 19. Residual map for cylinder leakage fault based on the SAE.
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Figure 20. Training and anomaly detection process for cylinder leakage fault using the physics-based
model for exhaust gas temperature of cylinder 1.
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Figure 21. Training and anomaly detection process for cylinder leakage fault using the physics-based
model for exhaust gas temperature of cylinder 2.
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Figure 22. Training and anomaly detection process for cylinder leakage fault using the physics-based
model for lubrication oil temperature.

6. Conclusions

In the present work, comparative studies on the condition monitoring and fault
detection of a marine engine are carried out based on unsupervised data-driven models
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and physics-based models. The lubrication oil filter blockage and cylinder leakage faults
are investigated regarding the performance of both types of models. It is found from
the results that the two categories of models can effectively detect abnormalities in the
marine engine. The data-driven models classify the data points for faults to be 2–4 times
higher than the thresholds. The physics-based model shows a sharp drop in the lubrication
oil pressure from a confidence interval with a lower limit larger than 3 to 2.3 bar in
the filter blockage fault, and a decrease of about 50 ◦C in the leaked cylinder exhaust gas
temperature is detected in simulating the cylinder leakage fault. In the latter, the lubrication
oil temperature also shows a value about 20 ◦C higher than the predicted upper limit of
the 99% confidence interval. The sparse autoencoder model predicts more accurate critical
variable residual maps than the principal component analysis. However, they cannot
identify the most significant contributors to faults and fail to isolate the faults. The physics-
based model works well in detecting novelty and isolating faults. It can be concluded
that the unsupervised data-driven models have excellent transferability, while they are
prone to generating some results that have poor interpretability because they rely solely on
data sets and are independent of the physics of the marine engine. On the other hand, the
physics-based model shows results that are easy to interpret, but they are not transferable
among different systems. The results and discussion in this paper provide a reference
for the condition monitoring of marine engines and future directions for more accurate
fault detection.
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