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Abstract: The traffic management system holds immense importance due to its significant impact
on human living standards. With the advent of advanced technologies such as natural language
processing and autonomous vehicles, this study proposes a novel cooperative traffic management
system based on collection auctions at an isolated unsignalized intersection, taking into account the
users’ preferences for passing the intersection while being subject to their social credits. Once vehicles
enter the vehicle-to-infrastructure communication zone, drivers provide the intersection control center
with their bidding information, which reflects their urgency for right-of-way. According to the traffic
and biding information, the vehicles’ passing sequence is optimized by the control center, in order to
maximize the drivers’ average satisfaction. To demonstrate the effectiveness of the proposed system,
a series of simulation experiments were conducted under varying traffic volumes. The simulation
results were then compared with several other traffic control systems from the literature. It was
shown that the proposed algorithm demonstrates superior performance in terms of computational
time, traffic delay, and drivers’ personal satisfaction.

Keywords: language intelligence; traffic management system; personal preference; social credit;
optimization

1. Introduction

Traffic congestion remains one of the most pressing issues in cities, as it not only
contributes to air pollution but also results in economic losses [1]. For instance, according
to a study conducted by Schrank and Lomax [2], the average American commuter loses
approximately 42 h each year due to city traffic congestion. Among the various factors that
contribute to traffic congestion, intersections are particularly problematic as they involve
the crossing of several incompatible traffic streams. Moreover, with the rapid growth in ur-
banization and economic development, traffic demand has increased significantly, thereby
exacerbating traffic congestion problems. However, expanding the existing infrastructure
is not always a viable solution, as it is not only costly but also time-consuming [3]. Con-
sequently, researchers have been exploring advanced traffic control strategies to enhance
traffic efficiency without resorting to the expansion of the transportation infrastructure.
A range of emerging technologies, such as language intelligence, information and com-
munication technology, and connected and automated vehicles, leverage the development
of intelligent transportation systems (ITS), which have shown considerable promise in
addressing congestion problems [4,5]. For example, immediate path planning, speed con-
trol, and navigation by language communication with drivers support traffic efficiency
and safety. The technology of autonomous vehicles (AVs), in particular, has been deemed
as a significant innovation that has the potential to enhance traffic assignment efficiency
and road capacity, thus mitigating congestion on existing roadways and intersections [6,7].
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Furthermore, some AVs are equipped with language intelligence technology that enables
drivers to use natural language to communicate with the vehicles [8]. In this regard, an ITS
framework can be developed with decision-making through language communication,
where drivers can command vehicles with language intelligence without a manual trans-
mission. For example, the AVs exchange information with intersection control centers
using vehicle-to-infrastructure (V2I) technology, and the traffic management system makes
control decisions based on the information. The decision results are sent back to the vehicles
through V2I in a way of informing the drivers through language intelligence [9]. As such,
coordination among various traffic management-related elements, such as drivers, AVs,
and infrastructure, can be optimized in a more automatic and intelligent manner in the
near future. Therefore, it is imperative to develop efficient traffic management systems that
leverage the emerging technologies to enhance traffic management system efficiency at
isolated intersections without additional infrastructure investments.

Based on the relevant literature, the traffic management system using advanced
technologies, such as AVs, language intelligence, and V2I, has two main areas of research
focus. The first pertains to cooperative autonomous traffic control mechanisms in signal-
free intersections [6,10–12]. The cooperative traffic management procedure involves the
following steps: when an AV enters the V2I communication zone, it is marked as a new
vehicle and sends its estimated arrival time at the intersection border to the control center.
Subsequently, upon receiving the estimated arrival time of all new approaching AVs inside
the communication zone via V2I connection, the control center globally optimizes the
passing sequence of all new AVs, with the aim of minimizing their total travel time delay.
Finally, each AV is allocated a personal right-of-way determined by the control center
through the V2I connection, based on the optimal passing sequence. However, a latent
limitation of the above traffic management system is that it treats all AVs equally in the
global optimization process, based on their personal arrival status at the intersection,
without considering each vehicle’s priority to pass through the intersection. The value-of-
time of each driver differs considerably in reality, due to the various urgencies of traffic
resources, travel purposes, and travel time budgets [13]. Hence, the above cooperative
traffic control management model does not specially and separately consider each vehicle’s
priority in passing through the intersection.

The second area of interest in the literature pertains to the auction-based autonomous
intersection management system [14–18]. These studies aim to allocate the right-of-way to
AVs through auction operations within traditional intersections that contain traffic signals
and stop lines. The cooperative control procedure for this system involves several steps.
Initially, the traffic management center located in the intersection receives and groups the
bidding information from all vehicles within the V2I communication range. Subsequently,
the control center optimizes the signal phase, prioritizing the collection of payments from
the vehicles while adhering to related safety constraints. Essentially, the vehicles with
higher bids are granted a greater opportunity to pass through the intersection earlier.
Finally, all vehicles cross through the intersection during the distributed green phase.
However, the aforementioned cooperative traffic control model has several limitations in
the new traffic environment with AVs. Specifically, the intersection is controlled based
on traffic signal timings, which restricts the ability to take right-of-ways to pass through
the intersection with the signal phase order or during the available phase. Additionally,
during the constraint of the minimum phase duration, some green time may be assigned to
lanes with fewer vehicles, leading to the inefficient utilization of traffic resources.

This study proposes a novel autonomous intersection control model based on collec-
tion auctions, leveraging language intelligence, AVs, and V2I technologies to overcome
the limitations of the existing cooperative traffic control models. The contributions of this
paper are twofold:

• A cooperative traffic control model is proposed for complex and unsignalized in-
tersections, which takes into account drivers’ personal preferences for using traffic
resources. The model integrates a process of collection auctions where drivers bid
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to pass based on their distributed social credit, which ensures social equality. Each
driver is assigned an initial social credit at the beginning of time periods, and the
drivers’ personal preferences for traffic resources are mathematically transformed into
their personal adjusted travel time delay, based on the bidding degree and real travel
time delay;

• A metaheuristic algorithm is applied to optimize the passing sequence of AVs through
the intersection. The metaheuristic algorithm is chosen over exact methods to meet
the real-time control demands from the traffic environment. This is because, with the
increase in traffic volume, the control problem becomes an NP-hard problem. More-
over, each vehicle’s right-of-way at the intersection is obtained from the optimized
passing sequence.

The remainder of the paper is structured as follows. In Section 2, the framework for the
cooperative traffic control model based on collection auctions is presented, along with the
associated safety constraints and objective of the control problem. Section 3 introduces the
genetic algorithm for optimizing the passing sequence of AVs at the intersection, with the
aim of maximizing drivers’ average satisfaction while ensuring compliance with safety
constraints. Section 4 outlines the simulation experiments carried out and evaluates the
efficiency of the proposed algorithm, with comparisons among other typical traffic control
algorithms and the recent ITS-based traffic control methods reported in the literature.
The final section presents the main findings of this work, along with some suggestions for
future research.

2. Problem Description

This section presents a detailed description of the cooperative traffic management
problem to be addressed. First, an overview of the traffic management system is provided,
which includes the intersection structure under investigation, and the collection auctions
process involving various traffic-related elements, such as drivers, vehicles, and the inter-
section control center. Subsequently, various headway measures are elaborated upon to
ensure safety for incompatible streams and continuous vehicles in the same streams within
the intersection. Finally, an analysis of the optimization complexity is presented for the
proposed traffic control problem.

In this study, the proposed cooperative traffic management model is predicated on a
number of assumptions, including: (1) all vehicles are equipped with autonomous technol-
ogy and language intelligence, allowing for the recognition of driver auction information;
(2) message transmission delay in V2I communication is disregarded; (3) lane-changing
behavior within the V2I communication zone is prohibited due to safety concerns; (4) the
overtaking operation is forbidden for all autonomous vehicles in each lane within the
V2I communication zone, with adherence to the first-in-first-out (FIFO) rule governing
the passing sequence through the intersection; and (5) the proposed cooperative traffic
management system does not include pedestrians or nonmotorized traffic objects for the
sake of clarity.

The definitions of all the principal variables or notations applied in the work are
summarized in Table 1.
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Table 1. Definitions of principal variables applied or notations.

Notations or Variables Definitions

Li Index of entrance lane, i ∈ [1, 8] and i ∈ N.

a(l, i) Virtual arrival time at the intersection for the ith new vehicle
in the lane l in free-flow state.

d(l, i) Real departure time to enter the intersection for the ith
new vehicle on lane l.

K(l, i) Bid coefficient (also named social credits) in the collection
auctions process for the driver in the ith new vehicle on lane l.

Td(l, i) Travel delay in the real world for the ith vehicle on lane l.

Tda(l, i) Adjusted time delay considering the bid information
for the ith new vehicle on lane l.

Ts Total simulation time to show the performance.

h Headway for successive vehicles in the same streams
for safety reasons.

d Headway for successive vehicles in the incompatible streams
for safety reasons.

TV Traffic volume in the simulation.

Nl
Total number of all new vehicles in lane l
inside the V2I communication zone.

NC Number of chromosomes.

NG Number of generations.

FL Fitness limit in the genetic algorithm.

PR Penetration rate to show the percentage of
bidding vehicles with K > 1.

CR Constraint range of bidding coefficient K
in each auction cycle (so K ∈ CR).

tstep Time length for each simulation step.

2.1. System Overview

Figure 1 presents the intersection investigated in this study, comprising four ap-
proaches, each with three entrance lanes designated for specific vehicle maneuvers, such
as left-turn, through, or straight. The intersection includes a V2I communication zone
(indicated by the red box) where arriving autonomous vehicles can communicate bid infor-
mation with the control center. The communication zone has a maximum communication
length of 300 m from the intersection border. A small red box highlights the potential
conflict zone, which arises due to the overlap of the trip for vehicles arriving from incom-
patible streams and continuous vehicles in the same streams. The intersection contains
a large number of potential conflict points, as shown in Table 2, which summarizes the
relationships between any two lanes, indicating the possibility of conflict between them.
In Table 2, the “O” mark signifies the conflict possibility between two lanes. For example,
the presence of an “O” between lanes 1 and 4 implies that autonomous vehicles from
these lanes are prohibited from passing through the intersection zone simultaneously to
avoid accidents.
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conflict zone

L1

L2

L3

L4 L5 L6

L7

L8

L9

L10L11L12

V2I Communication zone

Figure 1. Structure of the intersection to be researched without traffic lights.

Table 2. Conflict relationship among vehicles from different lanes.

Lane 1 2 3 4 5 6 7 8 9 10 11 12

1 O O O O O O O
2 O O O O O O O
3 O O O O O O O O O
4 O O O O O O O
5 O O O O O O O
6 O O O O O O O O O
7 O O O O O O O
8 O O O O O O O
9 O O O O O O O O O
10 O O O O O O O
11 O O O O O O O
12 O O O O O O O O O

Figure 2 provides a flowchart of the bidding process among drivers, vehicles, and the
intersection control center. Upon arrival at the communication zone, a new autonomous
vehicle applies language intelligence (speech recognition technology) to recognize the
driver’s bid information. Bid information means the social credit points (bid coefficient K in
Table 1) that driver intends to bid for the right-of-way. The bid coefficient is chosen within
the range CR. Subsequently, the vehicle conveys a message containing both the movement
and bid information to the intersection control center via V2I communication. Once all
the movement and bid information from the new vehicles is collected, the intersection
control center calculates the optimal passing sequence of all vehicles (including bid and
nonbid ones) within the zone and sends this sequence back to each vehicle. The sequence
information is immediately known by each driver through language intelligence, allow-
ing them to modify their bid information within the constraint range CR or accept the
controller’s decision on the current passing sequence, which is optimized based on the
current bid information. If the driver wants to modify the bid information and the bid
process is not yet finished, a new bid process is launched to globally consider the modified
bid information. The bid process is automatically closed once a new vehicle arrives at the
intersection border (i.e., the red box in Figure 1), and the deal process is executed based on
the final optimal passing sequence. New vehicles inside the optimal passing sequence are
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marked as old vehicles to differentiate themselves from other new arrivals. In the event
that new vehicles enter the communication zone before the end of the previous passing
sequence, the intersection control center launches a new optimization process solely for
the new arriving vehicles, excluding the executed (old) vehicles that must comply with the
current optimal passing sequence. This process avoids the inconvenience of emergency
brakes for some drivers in the event of updating their passing sequences with new arrivals.
Note that the vehicles’ bidding availability and amounts are subject to the balance of social
credits that were assigned at the beginning of the periodic, e.g., one week. Overall, the bid-
based traffic control structure accounts for drivers’ personal preferences while optimizing
feasible passing sequences.

Start

Driver 

Deal process

Done

Bid process 
finished

Language 
intelligence

V2I 
communication

No Yes

Bid information

Autonomous vehicle 

Bid information and 
estimated arrival time

Intersection 

Collection auctions

Figure 2. Bid and collection auction-based traffic management system control flow chart.

2.2. Headway

To guarantee safety between vehicles traveling in different streams, a distance interval,
commonly referred to as headway, must be established between two vehicles in the same
lane or incompatible lanes. Figure 3 illustrates the two parameters that determine the
headway. It should be noted that the headway is not required for vehicles traveling in
compatible lanes, such as lanes 1 and 3.

• s: The minimum time interval that should be maintained between two successive
vehicles from the same lane;

• d: The minimum time interval that must elapse between the entry of two vehicles into
the intersection from incompatible streams, irrespective of their specific movements
within the intersection, is subject to the same headway requirement.

As depicted in Figure 3, two successive vehicles in lanes L7 and L10 require a headway
d, which comprises the start-up lost time of the car [19] and the passage time through the in-
tersection. The determination of the values of the parameters d and s is generally influenced
by multiple factors, such as weather conditions, intersection dimensions, pavement surface
conditions, and drivers’ preferences. According to the literature, empirical observation is
one of the most accurate methods to estimate these parameters [20,21]. However, as the
estimation of these parameter values is beyond the scope of this study, the widely accepted
standards in [22] are employed in this work.

2.3. Optimal Problem Complexity Analysis

The primary challenge in optimizing the passing sequence in real time is associated
with the computational complexity problem, given that each vehicle is treated individually
during the optimization process. It was necessary to analyze the number of feasible
solutions before exploring a suitable algorithm.
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Figure 3. Various headway requirements.

Proposition 1. Consider an intersection with a total of L entrance lanes, and let Nl denote the
number of planning vehicles in each lane. If no overtaking behavior is allowed, then the total number
of feasible passing sequences of all vehicles can be expressed as shown in Equation (1).

(∑L
l=1 Nl)!

∏L
l=1(Nl)!

(1)

At the intersection depicted in Figure 1, the number of lanes is L = 12, with Nl
representing the number of new arrival vehicles in each lane l. The total number of
new vehicles to be optimized at the intersection is given by the sum of Nl for all lanes,
i.e., ∑12

l=1 Nl . The number of possible ordered sequences of all new vehicles can be computed
as (∑12

l=1 Nl)!. However, since all new vehicles must follow the “First-In-First-Out” (FIFO)
rule in the same lane, which prohibits lane-change behavior before entering the intersection,
the total possibilities are further divided by the product of factorials of Nl for all lanes,
i.e., ∏12

l=1(Nl)!. Consequently, the final number of feasible sequences can be calculated
using Equation (1). The computational complexity of finding an appropriate algorithm to
optimize the passing sequence in real time for each vehicle is exacerbated by the fact that
each vehicle must be considered individually during the optimal process.

In accordance with Equation (1), a slight increase in the number of new vehicles leads
to a significant increase in the problem complexity. Consequently, exhaustive search algo-
rithms may not be capable of finding the global optimal solution within an acceptable com-
putation time. For instance, the branch and bound algorithm was successfully employed in
the work of [23] to determine the optimal passing sequence at a simple intersection with a
single lane. Although the method proposed in [23] can be readily extended to optimize
any intersection layout, the computation time was expected to escalate considerably as
the complexity of intersection geometries increases. As a result, exact algorithm-based
traffic control methods may not always fulfill real-time requirements in a more intricate
traffic network. The need for a computationally efficient method to resolve the sequential
optimization problem is even more apparent in the context of bid-based traffic control at
intersections due to the additional time required for drivers to decide on the bid negotiation
in practice. This provides the motivation for seeking metaheuristic algorithms to solve
complicated problems (e.g., the traveling salesman problem [24]) within an acceptable
computation time. Therefore, this study employs the genetic algorithm (GA) [25] to address
the NP-hard optimal traffic control problem for the intersection illustrated in Figure 1.
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3. Algorithm Proposed

The genetic algorithm (GA) is an optimization technique inspired by biological evo-
lution that aims to find the optimal solution to a given problem through the processes
of selection, reproduction, and mutation. The GA mimics the natural selection process
by reproducing one generation after another while eliminating the unfit solutions, allow-
ing the fittest solution to survive and eventually dominate the population. Solutions are
represented as chromosomes or genes within a population, which is the set of all feasible
solutions within a defined boundary. The fitness function is used to determine the quality
of each chromosome, and the ranking process is used to produce a list of chromosomes
according to their fitness. The selection process selects the fitter chromosomes and discards
the unfit ones to maintain the same population size. In the reproduction stage, the selected
chromosomes become the parents of the next generation, and the new chromosomes pro-
duced form the population of the new generation. The GA stops when one of the stopping
criteria is reached, such as the number of generations or solutions that reach the limit of the
fitness function. The GA has been shown to be effective in solving complex problems such
as the traveling salesman problem and can provide computationally efficient solutions for
problems that are otherwise difficult to solve [26,27].

3.1. Population of Chromosomes

In this study on cooperative traffic management based on auctions, the population
refers to the set of chromosomes or solutions, which need to be defined. Specifically,
the chromosomes represent the passing sequence of vehicles through the intersection.
To encode the passing sequence, the entrance lane index of each vehicle is utilized instead
of the vehicle identity. This is due to the adherence of new vehicles in the same lane to
the “FIFO” rule, which prohibits overtaking. Hence, the sequence of new vehicles can be
converted into lane indexes. The coding approach for the passing sequence reduces the
computational complexity by excluding invalid solutions during the evolution process.
Consequently, all generated random passing sequences are deemed legal. The code of each
chromosome is mathematically represented in Equation (2).

Chromosome (C) = {Li, L′i, . . .} (2)

The determination of the number of chromosomes in the population is crucial as
it affects both the speed and accuracy of the optimization process. The selection of an
excessively large population size may result in a longer computation time required to find
the fittest solution, while a small population may hinder the genetic algorithm’s ability to
locate optimal solutions. Thus, the number of chromosomes must be selected with great
care to ensure a balance between speed and accuracy in the traffic management system.
In this study, the population size is set to be 10% of the traffic volume, implying that the
genetic algorithm generates a population of such magnitude to obtain the fittest solution.
The population size should be tailored to the traffic volume, as a larger population is
necessary to avoid local optimal solutions as the traffic volume increases.

3.2. Generations and Reproductions

The determination of the number of generations in which the genetic algorithm
needs to be run is a critical aspect that requires careful consideration. The number of
generations serves as a stopping criterion for the genetic algorithm, and it terminates when
the algorithm has reached a predetermined number of generations. In the context of traffic
flow control, the number of genetic algorithm generations is set to equal the traffic volume.
This decision is based on a thorough analysis of the impact of the number of generations
on the algorithm’s performance. A long computation time will be incurred if too many
generations are allowed, whereas an insufficient number of generations may reduce the
algorithm’s efficiency, as it fails to identify the optimal chromosome within the population.
The number of generations should also be adapted to the traffic volume rather than being
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a fixed value, as a larger traffic volume demands a correspondingly higher number of
generations to prevent the occurrence of a local optimum solution.

The crossover fraction is a parameter that specifies the amount of information inherited
by offspring from their parents during the reproduction process. In this process, chromo-
somes are paired and selected to become the parents of the next generation. The crossover
fraction determines the proportion of parental information transmitted to the offspring,
thereby generating new chromosomes. In this study, a crossover fraction of 0.8 was em-
ployed, indicating that each pair of parents, denoted A and B, will produce two offspring.
The offspring will inherit 80% of the values from parent A and 20% from parent B, while
the other offspring will inherit 20% from parent A and 80% from parent B, as expressed in
Equations (3) and (4).

X = 0.2 ∗A + 0.8 ∗ B (3)

Y = 0.8 ∗A + 0.2 ∗ B (4)

where X and Y are the new generations of inheritance.

3.3. Fitness Function

The fitness function is a crucial component of the genetic algorithm, as it guides the
selection of fit chromosomes from the population. The fitness function assigns a fitness
value to each chromosome in the population, based on a predetermined rule or equation.
In this study, the fitness function is formulated in Equation (5). The objective is to minimize
the sum of adjusted time delays (i.e., the fitness function) for all new vehicles. The adjusted
time delay is computed by adding a parameter K to the actual time delay Td to account for
the driver’s preferences, as shown in Equation (6). The parameter K is set to be one for all
vehicles by default (the K can be any integral number within CR), but during the bidding
process, drivers who wish to pass the intersection earlier (e.g., in this study, PR = 10%) may
increase their bid by increasing the value of K, which is subject to the balance of the social
credits that they own. The actual time delay Td experienced by a vehicle is calculated as the
difference between the departure time from the intersection stop line and the virtual arrival
time in a free-flow scenario, as illustrated in Equation (7). The fitness function is applied to
calculate the total adjusted time delay for all new vehicles within the communication zone,
subject to safety constraints related to headway as previously mentioned.

Objective : min(
12

∑
l=1

n

∑
i=1

Tda(l, i)) (5)

where
Tda(l, i) = K ∗ Td(l, i) (6)

Td(l, i) = d(l, i)− a(l, i) (7)

The fitness limit constitutes an additional stopping criterion for the genetic algorithm,
which is established as the target value that the fitness function must achieve. The attain-
ment of the fitness limit, as the output of the fitness function, signifies the discovery of
the most suitable chromosome and will result in the termination of the genetic algorithm.
In the context of traffic flow control, the fitness limit is specified to be zero. Subsequently,
any chromosome that generates a fitness value of zero or less, after undergoing evaluation
in the fitness function, will be recognized as the optimal solution by the genetic algorithm.

4. Experimental Analysis

This section presents a series of simulation experiments to evaluate the performance
of the proposed algorithm under different traffic volumes. The intersection structure used
in the simulations is depicted in Figure 1, while the simulation parameters are provided



Machines 2023, 11, 573 10 of 16

in Table 3. A random allocation process assigns drivers who can bid for early intersection
passage at a predefined penetration rate PR = 10%. Personal preferences are expressed by
the coefficient K, as defined in Equation (6). In the simulation experiments, the values of K
are randomly generated within the constraint range CR, and are used as final bid decisions.
Traffic volumes vary from 100 (veh/h/l) to 400 (veh/h/l), leading to a large variation in the
total number of new vehicles for the optimization process. The parameters of the genetic
algorithm are set according to the traffic volume, to improve performance compared to
fixed parameter settings. Fixed settings based on Nl for a traffic volume of 400 (veh/h/l)
will result in computational waste for a case with a much lower number of new vehicles,
such as a traffic volume of 100 (veh/h/l). The present work utilized a microscopic traffic
simulation model implemented in C++ in a personal framework. The simulation system
was executed on a desktop computer with six 3.5 (GHz) Intel processors. The Gipps model
was used to simulate vehicle behavior [28], as it has been shown to achieve higher accuracy
in traffic simulations than other similar models [29]. The Poisson distribution was applied
to generate traffic volumes in each lane, as it accurately represents the actual characteristics
of the arrival flow of vehicles [30,31].

Table 3. Simulation parameters.

Ts (s) d (s) h (s) tstep (s) PR (%)

1800 3 1 0.1 10

TV (vehs/h/l) NC (TV) NG (TV) FL (s) CR

from 100 to 400 10% 100% 0 [1,6]

This section presents three series of simulations to evaluate the performance of the pro-
posed genetic algorithm. Firstly, the simulation results are compared with those obtained
by an exact algorithm to demonstrate the accuracy of the genetic algorithm. Secondly,
the proposed traffic control algorithm is compared with traditional traffic control methods
to assess its effectiveness. Lastly, a comparison is made between the proposed method and
other relevant methods applied to intelligent traffic control systems in the literature.

4.1. Comparisons with the Exact Algorithm

In this subsection, the accuracy and efficiency of the proposed GA method are demon-
strated by comparing it with the exact branch and bound algorithm (B&B) presented in [23].
Fifty tests were conducted for both the B&B and GA, with the traffic volume ranging from
100 to 400 (veh/h/l). The performance of the two algorithms was evaluated using three
criteria, which are given as follows:

• The relative percentage deviation (PRD) is a performance index used to evaluate the
accuracy of the proposed GA algorithm. It is calculated as the percentage difference
between the optimal solution obtained by the exact B&B algorithm and the solution
obtained by the GA algorithm;

• The optimal solution found percentage (OSFP) is a performance index that was used
to measure the accuracy of the proposed GA algorithm in finding the global optimal
solution. Like PRD, OSFP is also an accuracy performance index and is defined as the
percentage of times that the GA algorithm is able to find the global optimal solution
in comparison to the exact B&B algorithm;

• The calculation time (CT) is an efficiency performance index that quantifies the amount
of computing time required to determine the optimal solution.

In this section, Table 4 presents a performance comparison between the exact B&B
algorithm and the proposed GA algorithm. As the problem scale increased, the average
OSFP diminished, with a minimum of 10% observed in the case of high traffic volume
400 (veh/h/l). This trend can be attributed to the significant increase in the solution space
with increasing traffic volumes. However, it is worth noting that the heuristic-based GA
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algorithm aims to provide a near-optimal solution within a reasonable computing time,
without guaranteeing the global optimal solution, which is ensured by the B&B algorithm.

Table 4. Simulation results comparison between the B&B and GA algorithms.

Traffic Level
(vehs/h/l)

PRD Average
OSFP

CT

Minimum Maximum Average B&B GA

Low (100) 0% 4.21% 0.35% 91% 0.231 0.004

Medium (250) 0% 5.53% 1.48% 63% 7.534 0.009

High (400) 0% 7.22% 2.89% 10% 350.531 0.027

Moreover, the average PRD index remained low even with the increase in traffic
volume. This index serves as a measure of accuracy, indicating the percentage difference
between the optimal solutions obtained by the GA and B&B algorithms. The average
PRD value remained at a mere 2.89% even in high traffic volume, indicating that the GA
algorithm can obtain near-optimal solutions compared to the exact B&B algorithm. The low
PRD index demonstrates the high accuracy of the GA algorithm in finding optimal or
near-optimal solutions.

Next, we examine the efficiency index, CT. It is noteworthy that even for the high
traffic volume tests, the proposed GA algorithm preserved a low CT value, which was
significantly less than the one executed in the B&B algorithm. Based on the comparison of
the aforementioned three indexes, it is evident that the proposed GA algorithm delivered a
consistent performance under diverse traffic volumes while consuming significantly fewer
calculation resources in contrast to the exact B&B algorithm.

Comparison with the Traditional Traffic Control Strategies

In this subsection, we compare the proposed GA algorithm with two conventional
traffic control methods: fixed time control (FT) [32] and adaptive traffic control strategy
(ATCS) [33]. In the FT control, the number of phases is four. Each phase contains all the
movements (left turn, right turn, and go straight) from the same approach. The cycle length
is 100 s. Each phase has 25 s, with 20 s of green time, 2 s of yellow time, and 3 s of red time.
Table 5 summarizes the simulation results obtained from 50 tests, and the average values
are presented. The findings reveal that the proposed GA algorithm outperformed both
traditional adaptive and fixed time traffic control methods in terms of reducing the average
adjusted time delay for all vehicles. Furthermore, it is worth noting that the bid coefficient
K was uniformly set to one for all vehicles, and when K was greater than one, it implies
that the vehicle bid for its right-of-way at the intersection. The GA-based bid-based traffic
control strategy can prioritize the bidding vehicles with K > 1, leading to substantially
lower average adjusted time delays (less than 1 s) compared to those of all the vehicles.
In contrast, traditional traffic control methods cannot give priority to the bidding vehicles.
In terms of computation time (CT), traditional methods consume negligible time, and the
GA algorithm requires slightly more, but is still within 0.1 s.

Thus, the proposed GA algorithm demonstrates superior control over the traditional
traffic control methods, as evidenced by its ability to significantly reduce the average
adjusted time delay for all vehicles, particularly the bidding vehicles.
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Table 5. Performance comparison with the traditional traffic control strategies.

Traffic
Volume
(veh/h/l)

Criteria

Average Tda (s)
for All Vehicles

Average Tda (s) for
Vehicles with K > 1 CT (s)

GA ATCS FT GA ATCS FT GA ATCS FT

100 2.23 35.32 52.42 0.03 35.92 53.39 0.004 0 0

200 3.93 42.44 78.03 0.17 43.63 79.99 0.006 0 0

300 6.65 57.93 121.01 0.51 59.67 123.52 0.014 0 0

400 9.72 80.23 194.36 0.92 84.77 199.93 0.028 0 0

4.2. Comparison with Other Intelligent Transportation Systems

This section assesses the efficiency of intersection control using the proposed GA
algorithm in comparison with other intelligent transportation systems reported in the
literature. To this end, we conducted 50 tests on all the compared systems, with varying
traffic volumes ranging from 100 to 400 (veh/h/l) at an interval of 50 (veh/h/l).

• The ACS system, as described in Wu et al. (2012), employs a model in which all
AVs have equal priority (K = 1), and there are no traffic lights at the intersection.
The right-of-way of each vehicle is communicated via V2I communication based on
the optimal passing sequence obtained;

• The BBPSC system, proposed by Kentaro et al. in [14], is a model in which all
AVs compete for right-of-way at intersections controlled by traffic lights. The AVs
transmit their bid information to the infrastructure through V2I communication,
and the allocation of traffic resources is regulated by signal phases;

• The FCFS system [34] refers to a basic control method for autonomous intersection
control that operates without traffic lights. Specifically, this method allows vehicles to
pass through the intersection according to their arrival order at the intersection border.

4.2.1. Comparison of Adjusted Time Delay

In Figure 4, the adjusted time delay is compared among the aforementioned traffic
control models. It was observed that the GA algorithm outperformed the other models
with significantly lower values. This demonstrates that the GA algorithm has the most
superior performance in conducting a global search for the optimal solution based on the
arrival information of each vehicle. Conversely, the FCFS system exhibited the poorest
performance since the passing sequence of vehicles was not globally optimized.

4.2.2. Comparison of Actual Time Delay

Figure 5 presents a comparison of the average actual time delay among various traffic
control strategies. The “GA-no bid” profile corresponds to the case where no vehicle bids
for priority and the default value of K = 1 is used. The “GA-bid” profile represents a
scenario where 10% of vehicles use the bid-based traffic control strategy with different
coefficients K (K > 1). The comparison between these two profiles indicates that the
proposed GA algorithm had a negligible impact on the average actual time delay. Figure 6
focuses on the average actual time delay of bidding vehicles only and compares various
methods. The comparison between the “GA-no bid” and “GA-bid” profiles demonstrates
that the bid-based traffic control strategy can effectively reduce traffic delay for bidding
vehicles, which are expected to have priority to pass the intersection as soon as possible.
When compared with other intelligent transportation systems, the proposed GA algorithm
consistently outperformed them in reducing the delay for bidding vehicles.
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Figure 4. Average adjusted time delay comparison.
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Figure 5. Comparison of average actual time delay for all vehicles.
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Figure 6. Comparison of average actual time delay for bidding vehicles.

4.2.3. Comparison of Calculation Time

The comparison of computational time is depicted in Figure 7. As the FCFS strategy
does not involve any optimization process, its computation time was nearly negligible.
In contrast, the proposed GA algorithm exhibited a significantly lower computation time
than the other strategies, thereby highlighting the efficacy of the GA algorithm in meeting
real-time constraints.
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Figure 7. Average calculation time comparison.

5. Conclusions

This paper introduces a novel bid-based traffic control method for a complex intersec-
tion with autonomous vehicles, where traditional traffic signals are absent. The proposed
method utilizes language intelligence technology to identify the driver’s bid information,
which is then transmitted to the intersection control center along with the arrival informa-
tion of the vehicles. In this study, we employed the GA algorithm to globally optimize the
vehicle passing sequence by minimizing the adjusted time delay, which was associated
with the bid information. The proposed method provides priority to the vehicles with
bids, which can significantly reduce the time delay compared to other control methods.
The simulation results demonstrate the efficacy of the proposed GA algorithm in reducing
the time delay for all simulated vehicles, particularly for those with bids.

However, there are several limitations in our study that require attention in future
work. Firstly, the auction-based control mechanism is a simplified version regarding the
configuration of drivers’ social credits, measured with the bidding coefficient associated
with each vehicle’s time delay. Our model is a static one with the actual balance of drivers’
social credits (i.e., the assumption of a bidding penetration ratio of PR = 10% with random
K > 1). Therefore, the constraint of the driver’s bid resources, i.e., the dynamic balance
of social credits, has not yet been added to the control model. This especially relevant in
the case where one driver passes by multiple intersections and executes the bid process
several times. Secondly, the current study assumed that all vehicles at the unsignalized
intersection were autonomous. However, in the future, it would be necessary to extend
the bid-based control approach to account for the priorities of other road users, such as
pedestrians, buses, and other vehicles that require special services. In addition, the social
credit assigned to drivers can be linked to punishment (e.g., for traffic violations) and
reward (e.g., for ride-sharing) mechanisms to produce benefits for both users and society.
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