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Abstract: Force–torque sensors are used in many and different domains (i.e., space, medicine, biology,
etc.). Design solutions of force–torque sensors can be conceived by using many types of connections
or components; however, there are only a few sensors designed using cable-driven systems. This
could be related to many reasons, one of which being that cables are able only to pull and not push.
In this paper, a new cable-driven model for under-actuated force–torque sensing mechanisms is
proposed, simulated, and tested, underlining the novelty of using cables for force–torque sensing.
Analytical formulations, simulations, and physical implementations are presented in this paper.
Results confirm that the new proposed model can be used for force–torque sensing mechanisms in
micro- and macro- applications where under-actuation is a fundamental requirement, as in robotic
surgery. The proposed model and mechanism can be used in the design of sensors and actuators.
The innovative model is validated with two different test benches, opening new challenges in the
design and development of under-actuated force–torque transducers.

Keywords: cable mechanisms; cable-driven systems; force–torque sensors; micro-mechanisms;
minimally invasive robotic surgery; surgical robotics; micro-electro-mechanical systems; compliant
mechanisms; sensitive mechanisms; under-actuated mechanism; under-actuation; force–torque
transducers

1. Introduction

Nowadays, sensors are used in many different contexts and domains (i.e., space,
medicine, engineering, biology, etc.), allowing users to analyse the behaviour of the systems.

Force–torque sensors are used to measure the forces and torques exchanged between
two or more systems in order to define their physical interaction.

Among the possible sensor configurations, the conceptual architecture of parallel
mechanisms is very useful for the design of force–torque sensors. The motion of a mobile
part, connected with joints and links to a fixed part, is the core of a force–torque sensor’s
design. The local reference system (on the mobile part) can be moved with respect to the
absolute reference system (on the fixed part). The displacement between the two reference
systems is one aspect which permits the exchanged forces and torques between the two
parts and their physical connections to be reconstructed to find the applied forces/torques.
The types of physical connection between the two parts (mobile and fixed) have been
explored by many researchers. An overview on force–torque sensors for microscopic and
macroscopic applications, including the surgical robotic field, can be found in Muscolo
and Fiorini [1]. One output of the review is that the force–torque sensors developed in the
literature can be divided on the basis of three types of physical connections between mobile
and fixed parts: rigid connections (e.g., using beams), soft connections (e.g., using cables or
membranes), or no connections (e.g., using magnets). Nowadays, the most used sensors
are those with rigid connections.

The Stewart platform is an example of a parallel mechanism used for its design
architecture in the design and development of force–torque sensors [2]. In [3], the authors
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present a review of Stewart platform manipulators, in which a mobile part is connected
to a fixed part using links, spherical joints, and prismatic actuators. Sorli and Pastorelli
defined the general design of a force–torque sensor, conceived with the Stewart platform
architecture [4]. Many research papers have been published in which an architecture with
a Stewart platform is used for force–torque sensor design. In [5], the authors use a near-
singular configuration to define a force–torque sensor based on a Stewart platform. Rotary
joints are replaced with flexible hinges, and strain-gauges are used as sensing elements
in the developed prototype. In [6], applications in minimally invasive robotic surgery are
proposed. The realized system is conceived with the Stewart platform architecture and with
reduced dimensions because the mobile and fixed parts must be included in the surgical
instrument with a diameter of around 10 mm. Flexural hinges are used instead of joints;
six strain gauges are used as sensing elements and mounted on each of the six links of the
Stewart platform. In [7], a six-component contact force measurement device is presented
with a Stewart platform structure. Each of the six physical connections between mobile
and fixed parts is composed of a wire connected to a strain-gauged cantilever.

Force–torque sensors can be designed using many other physical architectures, such
as the one based on a Maltese Cross shape [8,9], but also in this case, the sensor can be
designed with fixed and mobile parts connected by links. In the Maltese Cross shape case,
the motion of the mobile part, generated by an external load, can be evaluated via the
analysis of the deformation of the links positioned in the cruciform shape.

Other architectures for force–torque sensor design can be defined by using different
structures (e.g.: a combination between the Stewart platform and the Maltese Cross shape).
Some examples of mixed architectures can be found in [1,10–12].

Cable-driven systems [13,14] or membranes [15–17] are examples of soft physical
connections which can be used as sensitive elements. Cable-driven mechanisms are used in
different contexts, such as rehabilitation [18], the design of exoskeletons [19], industry [20],
or in mechanical designs for general applications [21–23].

Some researchers used the pretension of fibre Bragg gratings to wrap the fibre around
the mechanical transducer [24]. In [25], the authors presented a minimally invasive robotic
surgery instrument in which the sensor is included in the rear part of the surgical instru-
ment, analysing the tension of cables. Recently, researchers studied a cable-driven robotic
system for aeronautical applications [26]. The differences in the cable tension are amplified
to read the force sensitivity of the cables. The paper [26] underlines the advantages of using
cable-driven parallel robots (CDPR) instead of rigid links parallel robots, as follows:

• Their convenient disassembly/reassembly;
• Their light-weight structures;
• Their high payload-to-weight ratios.

These three advantages are very useful in the robotic surgery research field.
In this paper, we propose a new model of a cable-driven force–torque sensing mecha-

nism that can be used as an under-actuated force–torque sensor or actuator. The mechanism
consists of one mobile part and one fixed part connected to each other by soft physical
connections (e.g., using cables). The mechanism has been conceived to solve problems in
the robotic surgery research field. For example, robotic tools must be sterilized for use in
minimally invasive robotic surgery, and the process of sterilization is dangerous for the
electronic components and sensing elements of the instrument [1]. The invention shown in
this paper is a sensorized mechanism consisting of an under-actuated platform connected
with cables. If this mechanism is included in a minimally invasive robotic surgery tool, the
part of the robotic tool that can be sterilized is composed of cables and a rigid structure, and
the electronic part remains outside the human body and does not need sterilization. The
cable-driven model and mechanism presented in this paper can be used in many different
domains, as well as outside the robotic surgery field. The proposed architecture can be
used as a sensor or an actuator and for micro- and macro- applications.

The paper is organized as follows: Section 2 shows the problem statement of the force
feedback during robotic surgery and the proposed innovation in comparison to cable-driven
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parallel manipulators; Section 3 presents the kinematic model of the proposed solution
and some configurations; Section 4 shows the simulation of and comparison between two
configurations; Section 5 presents the analytical formulation of the sensing mechanism;
Section 6 shows the developed test bench prototypes for the experiments; Section 7 includes
results and discussion. The paper ends with the conclusions and future research directions.

2. Problem Statement and Proposed Solution
2.1. Da Vinci Robotic Tools (dVRTs)

The da Vinci Robot is a Minimally Invasive Robotic Surgery (MIRS) system, developed
by Intuitive Surgical, Sunnyvale, CA, USA [1]. It is composed of two parts, located in two
different places and connected by tele-operation:

• Local part: located near the surgeon and controlled directly by the hands of the surgeon;
• Remote part: located near the patient and tele-operated by the local part.

The local part does not give force feedback to the surgeon but permits them to control
the remote part (in open-loop) using only a vision system. The remote part consists of the
da Vinci Robotic Arms (dVRAs) and da Vinci Robotic Tools (dVRTs) or Minimally Invasive
Robotic Tools (MIRTs), as shown in Figure 1 [1].

Figure 1. Remote part of the da Vinci Robotic Kit (dVRK) constituted by da Vinci Robotic Tools
(dVRTs) and da Vinci Robotic Arms (dVRAs). Courtesy of the Altair Robotic Lab, University of Verona.

The dVRT is composed of a rear part (assembled on the robotic arm), a tube, and an
End-Effector (E-E), constituted by forceps, or other systems used for MIRS. The dVRT uses
cable-driven mechanisms to move the forceps [1]. Cables passing inside the tube connect
the E-E to the pulleys in the rear part.

During MIRS operations, the dVRT is forced to pass through a trocar (see Figure 1),
i.e., a connection and separation system between the external environment and the interior
of the human body. All tools in contact with the human body must be sterilized.

2.2. Problem Statement: Force Feedback in Robotic Surgery

In order to give force feedback to the surgeon (via the local part of the robot), many
solutions were proposed [1]. One of the desirable solutions is the inclusion of sensitive
elements in the surgical instrument (on the remote part). This solution is not simple to
implement because many constraints should be considered. One of these constraints is to
develop a sensor able to resist the routine sterilization process at high temperature.

Many research solutions proposed the implementation of sensitive elements in the
rear part of the surgical instrument [25,27–29], or on the robotic arm [30]. This approach is
good because it allows the sterilization of the sensor to be avoided (because it is not near
the E-E). However, the signals of the sensor are corrupted by many disturbances, amplified
by the connections between the E-E (of the surgical instrument) and the robotic arm.
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Other solutions include an added sensitive element near the E-E of the tool (see zone
near E-E, Figure 1) [6,31,32]. In this case, the errors in the signal data of the sensor are
reduced, but problems emerge during the sterilization process of the electronic components.

2.3. Proposed Solution: Cable-Driven Force–Torque Sensing Mechanism

We thought to use cable-driven systems, also used in the dVRT for the actuation of
the E-E, to design our force–torque sensitive mechanism. The under-actuation of cables
is convenient in robotic surgery, since it allows direct contact between the electronic part
and the sterilized zone of the surgical instrument to be avoided. In the proposed solution
in this paper, we tried to merge the advantages of the two approaches presented above:
we include the sensitive mechanism near the E-E of the tool (reducing gap errors in the
signal data) and the electronic components of the mechanism outside of the sterilizing zone
(thanks to the cable connections and avoiding the sterilization of the electronic part).

Some innovations of the cable-driven sensitive mechanism proposed in this paper are
given below:

• Hybrid System: the mechanism can be used as a sensor and/or actuator;
• Modelling: the model of the mechanism is constituted by an external mobile part

connected with cables to an internal fixed structure;
• Application: micro- and macro- applications can be performed with the proposed

mechanism;
• Under-actuation: the mechanism is composed of a cable-driven, under-actuated system.

2.3.1. Hybrid System: Sensor and/or Actuator

The proposed solution in this paper allows devices to be created which can be used as
sensors or actuators, respectively measuring forces from the environment or implementing
forces on the environment.

In its general form, our solution is composed of two elements, A and B, as shown in
Figure 2, divided by a C zone. Element A can interact with the external environment as
a sensor (measuring force resultants) or as an actuator (acting force resultants). Element
A can be stationary or in motion with respect to the fixed element B. The C zone can be
constituted by different types of elements or connections between A and B: membranes,
cables, tendons, magnets, etc. Based on the deformation or displacement of the elements
in C, the forces on A (when used as a sensor) or from A (when used as an actuator) can
be determined.

Figure 2. General scheme of the working principle of the invention: trigonometric view (on the
left) and section (on the right). Element A can be stationary or in motion with respect to the fixed
element B. The C zone can be constituted by different types of elements or connections between A
and B: membranes, cables, tendons, magnets, etc.

In this paper, the mechanism is used as a sensor, using cables in the C zone.
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2.3.2. Modelling: An Internal Cable-Driven Fixed Structure

The classical model used to describe CDPR is composed of an external parallelepiped
connected to an internal parallelepiped using cables (pulleys are approximated to
points) [21–23,26]. The fixed and mobile parts are the external and the internal paral-
lelepipeds, respectively. The motion of the internal parallelepiped is calculated with respect
to the external one by using screw theory [7], or other analytical methods, and computing
the tension of the cables.

In order to integrate our solution in the cylindrical tube of the surgical instrument
(with a tube diameter of around 10 mm, see Figure 1), it is convenient to conceive different
models, in which the mobile part (A) is external and the fixed part (B) is internal. Cables
can pass inside the fixed part to connect B to A. We simplified the classical model with
parallelepipeds using the cylindrical symmetry of the system.

Figure 3 shows two cylindrical configurations of our cable-driven mechanism. The two
presented configurations will be analysed in detail in the following sections and represent
the two extreme conditions in which the length of part B (bi) is shorter or longer than the
length of part A (ai):

bmin < biI < amax (1)

amin < biI I < bmax (2)

where biI and biI I are the lengths of the internal cylinder (part B) in the two configurations
I and II; ai is the length of the external cylinder (part A); amax, bmax, amin, and bmin are the
maximum and minimum values of the height of the two cylinders; and DA and DB are the
diameters of the mobile (A) and fixed (B) cylinders, respectively.

Another condition to be respected is the following one:

DA > DB (3)

Figure 3. Two configurations used for the cable-driven mechanism: configuration I (on the left) and
configuration II (on the right). Part A is the mobile part and part B is the fixed part.

2.3.3. Application: Micro/Macro Cable-Driven Applications

From the application point of view, the model has been conceived for micro- applica-
tions (e.g., containing the system in a minimum cylinder of 10 mm diameter). However,
macro-applications can be found in different contexts and domains. This point can be
considered as an open challenge.

Figure 4 shows an example of the implemented configurations on the tube of the
surgical instrument. The analysis of the tension of eight cables allows the external resultant
forces on the mobile part A to be defined.
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Figure 4. Example of implemented configurations on the tube of the surgical instrument. Part A is
the mobile part and part B is the fixed part.

2.3.4. Under-Actuation: Cable-Driven System

The under-actuation allows the use of a light system and separates the zone of motion
of the mobile part from the zone of the electronics part and the sensor’s implementation.
This is very convenient in robotic surgery, bypassing the sterilization problem related to
the use of electronic components. The under-actuation also allows more accurate sensors
to be used because in the rear part of the instrument, minor constraints on dimensions,
permeability, and other features are required.

3. Analysis of the Mechanism’s Configurations
3.1. Details of the Kinematic Model

Figure 5 shows the two reference systems on the fixed B (OB − XBYBZB) and mobile A
platforms (OA − XAYAZA), where i is the cable number from 1 to k and j is the equilibrium
positions, initial j = 0 and final j = 1. The reference system of the mobile platform A
(OA − XAYAZA) is applied to its centre of mass G (OA = G), and in the position j = 0, it is
coincident with OB. NBij, NAij, pBi, and pAi are the two anchor points of the cables (NBij,
NAij) and their two position vectors (pBi, pAi), respectively; Cij is the vector of the cables,
and rij the unit vector of the cables. The position of the mobile platform A with respect to
the fixed one B is shown by the vector pG. P is a general point on A, and pP and pz are
the position vectors of the point P with respect to the reference systems in B (pP) and A
(pz). It is possible to write the kinematic equation of the k cables in a general form, using
the rotational matrix Q to transform the vectors calculated in the mobile platform A with
respect to the fixed platform B:

Cij = −pBi + pG + QpAi; i = 1, . . . , k; j = 0, 1. (4)

If part A is in equilibrium, the resultants of forces (F) and torques (M) are zero:

∑ F = 0 =
k

∑
i=1

Tij + mgG + FP (5)

∑ M = 0 =
k

∑
i=1

(QpAi ∧ Tij) + (pG ∧mgG) + (pP ∧ FP) + MP (6)
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where ∑k
i=1 Tij = ∑k

i=1 Tijrij is the tension of cables applied to the mobile platform A in
NAij; ∑k

i=1 (QpAi ∧ Tij) = ∑k
i=1 (QpAi ∧ Tijrij) is the torque produced by the cables; mgG

is the gravity; and FP and MP are the external forces and torques applied to the point P,
respectively. In a more compact form:

[
r1j . . . rkj

QpA1 ∧ r1j . . . QpAk ∧ rkj

]T1j
...

Tkj

 = −
[

mgG
(pG ∧mgG)

]
−
[

FP
(pP ∧ FP) + MP

]
(7)

STj = −WG −WPj (8)

where S is the force transformation matrix [5]; Tj is the vector of the cables’ tension; and WG
is the gravity vector [26]. The vector of the external forces and torques, applied in the point
P (WPj), is calculated by analysing the variation in the tension of the cables ∆T = T1 − T0,
in which T0 is the vector of the tension of the cables, used as an offset and calculated at the
equilibrium condition j = 0:

ST0 = S

T10
...

Tk0

 = −WG −WP0 (9)

By the analysis of Equation (8) and using the difference between the condition j = 1
and j = 0, WPj is obtained:

WPj =
[
FPX , FPY, FPZ, MPX , MPY, MPZ

]T
= WP0 − S∆T (10)

Figure 5. Sketch to determine the kinematic model of the cable-driven mechanism. A is the local
reference system and B is the absolute reference system.

If the proposed cable-driven mechanism is used as a force–torque sensor, in order
to increase the sensitivity of the entire system, the geometry of the mechanism must be
optimised to obtain low variations in cable tension for small displacements of the mobile
part A.

In line with [26], we optimise the geometrical dimensions of the two configurations of
the mechanism (shown in Figure 3) to find the best solution providing more sensitivity;
however, we use a different method than the one proposed in [26].
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Figure 3 shows the two studied configurations. The difference between the two
configurations is underlined by the different positions of cables with respect to the two
parts, A and B. In configuration I, the height of cylinder B (biI) is less than the height of
cylinder A, as shown in Equation (1). The opposite is shown in configuration II, Equation (2),
in which the height of cylinder B (biI I) is larger than the height of cylinder A. Part A is in
equilibrium: the resultant of forces and torques are zero (∑ F = 0 and ∑ M = 0).

Our final objective is to find the most optimised geometry for the two presented
configurations in order to measure the tension of the cables. If the external forces/torques
are applied to the system, the variation in the tension of the cables gives us information on
the entity of the external forces/torques.

3.2. Configuration I

Figure 6 (on the left) shows a general representation of the configuration I. Thanks to
the cylindrical symmetry of the entire system, the calculations can be simplified and the
mechanism can be studied in the planar case. Part B is partially fixed, only allowing the
rotation around the axial cylindrical axis, and part A is in equilibrium. The forces acting on
part A are:

• External forces and torques in condition j = 1: WP1 = [FPX , FPY, FPZ, MPX , MPY, MPZ]
T ;

• Gravity: WG = [0, 0,−mgG, 0, 0, 0]T ;
• Tension of cables in condition j = 1: T1 = [T11, T21, T31, T41, T51, T61, T71, T81]

T ;
• Offset in condition j = 0: T0 = [T10, T20, T30, T40, T50, T60, T70, T80]

T .

Figure 6. Configurations I (on the left) and II (on the right): spatial and planar representations.
WP1 = [FPX , FPY , FPZ, MPX , MPY , MPZ]

T are the external applied vectors of forces and torques;
T0 = [T10, T20, T30, T40, T50, T60, T70, T80]

T are the vectors of the tension of the cables in condition
j = 0.

Using the equilibrium conditions (∑ F = 0, ∑ M = 0), the vector WP1 can be deter-
mined by finding the SI matrix for configuration I with cθI = cos(θI) and sθI = sin(θI):

SI0 =



−sθ −sθI +sθI +sθI 0 0 0 0
0 0 0 0 −sθI −sθI +sθI +sθI

+cθI −cθI +cθI −cθI +cθI −cθI +cθI −cθI
0 0 0 0 −hI0 −hI1 +hI0 +hI1

+hI0 −hI1 −hI0 +hI1 0 0 0 0
0 0 0 0 0 0 0 0

 (11)
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where
hI0 = ((L2 − amax/2)sin(θI) + (DA/2) cos(θI)) (12)

hI1 = ((L2 + amax/2) sin(θI)− (DA/2) cos(θI)) (13)

The geometrical dimensions amax, bi, DA, and DB can be optimised and can be included
in the angle θI and in the length of the cable CI :

CI =
√
((amax − bi)/2)2 + ((DA − DB)/2)2 (14)

θI = arctan((DA − DB)/(amax − bi)) (15)

3.3. Configuration II

Figure 6 (on the right) shows configuration II, following the relative equations with
SI I matrix for configuration II and with cθI I = cos(θI I) and sθI I = sin(θI I):

SI I0 =



−sθI I −sθI I +sθI I +sθI I 0 0 0 0
0 0 0 0 −sθI I −sθI I +sθI I +sθI I
−cθI I +cθI I a −cθI I +cθI I −cθI I +cθI I −cθI I +cθI I

0 0 0 0 −hI I0 −hI I1 +hI I0 +hI I1
+hI I0 +hI I1 −hI I0 −hI I1 0 0 0 0

0 0 0 0 0 0 0 0

 (16)

where
hI I0 = (L2 − ai/2) sin(θI I)− (DA/2) cos(θI I) (17)

hI I1 = (L2 + ai/2) sin(θI I) + (DA/2) cos(θI I) (18)

The geometrical dimensions bmax, ai, DA, and DB, can be optimised and can be
included in the angle θI I and in the length of the cable CI I :

CI I =
√
((bmax − ai)/2)2 + ((DA − DB)/2)2 (19)

θI I = arctan((DA − DB)/(bmax − ai)) (20)

4. Configurations I and II: Comparison and Simulation

The elements of the two matrices (SI0 and SI I0) have their first three rows function
according to the two angles (θI and θI I).

Equation (10) shows that the first three rows of the matrix S allow one to find the
three force components (FPX, FPY, FPZ) of the applied vector in P (WP1). The advantage
of using one configuration over another one is not underlined by the values of θI and θI I .
If θI → π/2− and θI I → π/2−, or θI → 0+ and θI I → 0+, it is possible to note that the
first three rows of the matrices have the same values with the opposite signs. This means
that the geometry of the configuration cannot give any other contribution to optimise the
entire system.

The advantage of using one configuration instead of the other is identified by analysing
the last three rows of the matrices, which allows one to find the three torque components
(MPX , MPY, MPZ) applied in P, as shown in Equation (10). The last three rows of the two
matrices SI0 and SI I0 (shown in Equations (11) and (16)) have the same forms, and the
differences between the two configurations are represented by the four elements hI0, hI1,
hI I0, and hI I1, as shown in Equations (12), (13), (17), and (18) and by their signs. A detailed
comparison is shown in Figure 7 between the four elements, modifying the two angles θI
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and θI I and using the dimensions shown in Figure 6: L2 = 50 mm, amax = bmax = 40 mm,
DA = 10 mm, DB = 4 mm, ai = bi = [10, ..., 40]T mm.

In order to find the best configuration between the two mentioned above, the two
force transformation matrices SI0 and SI I0 (shown in Equations (11) and (16)) and their
elements should be analysed. Using Equation (10), it is possible to write:

∆W = WP0 −WP1 = S∆T (21)

and then
‖S∆T − ∆W‖2 = 0 (22)

In order to obtain the minimum in the Equation (22), based on the properties of the
norms and modifying only the matrix S, we should have a minimum value of ‖S‖2.

Unfortunately, SI0 and SI I0 are rectangular matrices, and this aspect does not permit
us to use simplifications for the square matrices. However, we used the singular value
decomposition method [33] in order to find the singular values of the two matrices and
to have an index on their characteristics. The singular values of S are correlated to the
eigenvalues of the matrix STS and with the Euclidean norm of S (‖S‖2). The following
formulation is true:

σs(S) =
√

λs(STS) (23)

‖S‖2 = σ1(S) (24)

where σs and λs are the s singular values of S and s eigenvalues of the matrix STS
(s = 1, ..., p and σ1 > σ2 > ... > σp 6= 0); ‖S‖2 is the Euclidean norm of S; and σ1 the
largest singular value of S.

The following results have been found:

• The two matrices SI0 and SI I0 have the same rank, equal to 5;
• ‖SI0‖2 < ‖SI I0‖2.

To simplify the Equation (22), it is convenient to use configuration I with a smaller
value of its Euclidean norm. However, configuration I has geometrical limitations with
respect to configuration II. All cables in configuration I converge to the point OB, and
this limits the capacity of the structure to be fixed. Furthermore, the difference between
two elements of the same configuration (hI0, hI1, or hI I0, hI I1) is smaller in configuration I
compared to configuration II; this is shown in Figure 7. For these reasons, configuration II
is selected as the best for our scope.
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Figure 7. Comparison between the four h values (hI0, hI1, hI I0, hI I1) of the two matrices SI0 and SI I0.

5. Analytical Formulation of Configuration II
5.1. Force Transformation Matrix

The matrices SI0 and SI I0 (found in Equations (11) and (16), respectively) are the
simplified matrices for the two configurations in starting position (condition j = 0). Based
on the analysis performed in previous sections, configuration II is the one recommended
for our scope.

In order to use Equation (21) and to find the vector of the external forces and torques
(WPj), the force transformation matrix (SI I j) and the vector of the variation in the tension
of cables between the two conditions j = 0 and j = 1 (∆T) must be calculated. In order to
simplify the calculation, we used the model of configuration II shown in Figure 8, obtained
with ai = 0. In our case, WP0 = 0, and we can re-write Equation (10) it as:

WPj =
[
FPX , FPY, FPZ, MPX , MPY, MPZ

]T
= −SI I j∆T (25)

The new force transformation matrix SI I j is:

SI I j =



S11j S12j S13j S14j S15j S16j S17j S18j
S21j S22j S23j S24j S25j S26j S27j S28j
S31j S32j S33j S34j S35j S36j S37j S38j
S41j S42j S43j S44j S45j S46j S47j S48j
S51j S52j S53j S54j S55j S56j S57j S58j
S61j S62j S63j S64j S65j S66j S67j S68j


(26)
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where the elements of the SI I j matrix are shown in the following:

S11j = −sin(α11)cos(γb + ψ); S12j = −sin(α21)cos(γb + ψ); S13j = sin(α31)cos(γa); (27)

S14j = sin(α41)cos(γa); S15j = sin(α51)sin(γc); S16j = sin(α61)sin(γc); (28)

S17j = sin(α71)sin(γd + ψ); S18j = sin(α81)sin(γd + ψ); (29)

S21j = sin(α11)sin(γb + ψ); S22j = sin(α21)sin(γb + ψ); S23j = sin(α31)sin(γa); (30)

S24j = sin(α41)sin(γa); S25j = sin(α51)cos(γc); S26j = sin(α61)cos(γc); (31)

S27j = sin(α71)cos(γd + ψ); S28j = sin(α81)cos(γd + ψ); (32)

S31j = −cos(α11); S32j = cos(α21); S33j = −cos(α31); S34j = cos(α41); (33)

S35j = −cos(α51); S36j = cos(α61); S37j = −cos(α71); S38j = cos(α81); (34)

S41j = C11sin(α11)sin(γb + ψ)cos(α11); S42j = −C21sin(α21)sin(γb + ψ)cos(α21); (35)

S43j = C31sin(α31)sin(γa)cos(α31); S44j = −C41sin(α41)sin(γa)cos(α41); (36)

S45j = C51sin(α51)cos(γc)cos(α51); S46j = −C61sin(α61)cos(γc)cos(α61); (37)

S47j = C71sin(α71)cos(γd + ψ)cos(α71); S48j = −C81sin(α81)cos(γd + ψ)cos(α81); (38)

S51j = −C11sin(α11)cos(γb + ψ)cos(α11); S52j = C21sin(α21)cos(γb + ψ)cos(α21); (39)

S53j = C31sin(α31)cos(γa)cos(α31); S54j = −C41sin(α41)cos(γa)cos(α41); (40)

S55j = C51sin(α51)sin(γc)cos(α51); S56j = −C61sin(α61)sin(γc)cos(α61); (41)

S57j = C71sin(α71)sin(γd + ψ)cos(α71); S58j = −C81sin(α81)sin(γd + ψ)cos(α81); (42)

S61j = S62j = S63j = S64j = S65j = S66j = S67j = S68j = 0. (43)

The terms of the elements of the SI I j matrix are described below, with the help of
Figures 8–10. Angle αij is the angle between the cable i (in the condition j) and the fixed
central cylinder; Cij is the length of the part of the cable i (in the condition j) between the
two points NAij and NBij; ψ is the angle that the component of the applied force in the XY
plane has with respect to the YB axis; and γa, γb, γc, and γd are the angles in the XY plane,
formed by the cables as shown in the sketch of Figure 10, after displacement and rotation of
the mobile reference system (centred in OA), with respect to the absolute reference system
(centred in OB).

Figure 8. Trigonometric view (left) and planar XZ representation (right) of the architecture of the
mechanism in j = 0 condition.
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Figure 9. Sketch of the trigonometric view in translation and rotation of the local reference system
(centred in OA) with respect to the absolute reference system (centred in OB). Displacement and
rotation of OA − XAYAZA are in the direction of the applied force F.

Figure 10. Sketch in the XY plane of the translation and rotation of the reference system centred in
OA with respect to the reference system centred in OB. Displacement and rotation of OA − XAYAZA

are in the direction of the applied force F.

Using Carnot’s theorem, the angle between two cables and the angle αij can be calcu-
lated as a function of the lengths p3 and Cij, shown in Figure 8, for the condition j = 0. In
the following, this formulation is used to obtain αij:
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α121 = arccos((C2
11 + C2

21 − p2
3)/(2C11C21)); (44)

α341 = arccos((C2
31 + C2

41 − p2
3)/(2C31C41)); (45)

α561 = arccos((C2
51 + C2

61 − p2
3)/(2C51C61)); (46)

α781 = arccos((C2
71 + C2

81 − p2
3)/(2C71C81)); (47)

α11 = arccos((p2
3 + C2

11 − C2
21)/(2C11 p3)); (48)

α21 = arccos((p2
3 + C2

21 − C2
11)/(2C21 p3)); (49)

α31 = arccos((p2
3 + C2

31 − C2
41)/(2C31 p3)); (50)

α41 = arccos((p2
3 + C2

41 − C2
31)/(2C41 p3)); (51)

α51 = arccos((p2
3 + C2

51 − C2
61)/(2C51 p3)); (52)

α61 = arccos((p2
3 + C2

61 − C2
51)/(2C61 p3)); (53)

α71 = arccos((p2
3 + C2

71 − C2
81)/(2C71 p3)); (54)

α81 = arccos((p2
3 + C2

81 − C2
71)/(2C81 p3)). (55)

With the obtained αij, the Z components of the length Cij can be computed as a function
of Cij:

C11z = −C11cos(α11); C21z = C21cos(α21); C31z = −C31cos(α31); C41z = C41cos(α41); (56)

C51z = −C51cos(α51); C61z = C61cos(α61); C71z = −C71cos(α71); C81z = C81cos(α81). (57)

Then, the angles that OA − XAYAZA forms with respect to OB − XBYBZB in X (αX) and Y
(αY) are obtained, and ψ and αA (shown in Figure 10) can be calculated.

αX = arctan((|C5z − C7z|)/p1); αY = arctan((|C3z − C1z|)/p1); (58)

ψ = arctan((tan(αY))/(tan(αX)); (59)

αA = arctan(tan(αX)/cos(ψ)) = arctan(tan(αY)/sin(ψ)). (60)

In conclusion, the four angles γa, γb, γc, and γd (shown in Figure 10) can be obtained
as follows:

γa = arccos((p2cos(ψ))/(C31sin(α31)))− ψ; (61)

γb = arccos((p2cos(ψ))/(C11sin(α11))); (62)

γc = arccos((p2cos(π/2− ψ))/(C51sin(α51)))− π/2 + ψ; (63)

γd = π/2− γc − arccos((p2sin(ψ))/(C71sin(α71))). (64)

Using the formulations in the previous equations, the X and Y components of the Cij
are obtained:

C11x = −C11sin(α11)cos(γb + ψ); C11y = −C11sin(α11)sin(γb + ψ); (65)

C21x = C11x; C21y = C11y; C31x = C31sin(α31)cos(γa); (66)

C31y = −C31sin(α31)sin(γa); C41x = C31x; C41y = C31y; (67)

C51x = C51sin(α51)sin(γc); C51y = −C51sin(α51)cos(γc); (68)

C61x = C51x; C61y = C51y; C71x = C71sin(α71)sin(γd + γc); (69)

C71y = −C71sin(α71)cos(γd + γc); C81x = C71x; C81y = C71y. (70)
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Now, it is possible to compute the displacement of the centre of the mobile system OA
(x1, y1, z1) and of the point P (xP, yP, zP) of the applied external forces:

x1 = |C31x| − |C11x|; y1 = |C71y| − |C51y|; (71)

z1 = p3/2− (|C51z|+ |C71z|+ |C31z|+ |C11z|)/4. (72)

xP = x1 + J1sin(αY); yP = y1 + J1sin(αX); zP = z1 − J1(1− cos(αA)) + J3. (73)

5.2. Vector of the Cable’s Tension

All formulations shown in the last sub-section are functions of the cable’s length Cij,
computed with the following equations.

In our proposed idea, the cables are supposed to be non-extensible. Figure 11 (left)
shows a planar sketch of the behaviour of the entire sensor in the two conditions (e.g.,
j = 0 and j = 1). Each cable is connected with a spring with a stiffness coefficient ki. The
variation in the length Cij is a function of the displacement in each spring of the sensor:

∆Ci10 = ∆Lmi10; ∆Ci10 = Ci1 − Ci0; ∆Lmi10 = Lmi1 − Lmi0; (74)

Ci1 = Ci0 + Lmi1 − Lmi0. (75)

In Equation (75), the cable’s length in the condition j = 1 is obtained. Lmij is the
difference between the length of the spring i (in the condition j) and its initial length. The
values of Cij in the initial conditions (j = 0) are obtained as follows:

C10 = C20 = C30 = C40 = C50 = C60 = C70 = C80 =
√
(p3/2)2 + (p2)2; (76)

α10 = α20 = α30 = α40 = α50 = α60 = α70 = α80 = arctan (p3/2p2). (77)

Using the same approach, it is possible to calculate the ideal cable tension near the
spring in the two conditions Ti1m and Ti0m:

Ti1m = kiLmi1; Ti0m = kiLmi0; ∆Ti10m = Ti1m − Ti0m. (78)

Figure 11 (right) shows the tensions of cables 1 and 2. Based on the forces shown in
the picture, the cable’s tension near the mobile part (T11p or T21p) is function of the force of
the spring (T11m or T21m).

Figure 11. Planar sketch of the behaviour of the sensitive mechanism in the two conditions (j = 0 and
j = 1) (left) and example of the calculation of the cable’s tension in cables 1 and 2 (right). Each cable is
considered inextensible, and the motion of the condition j = 1 is possible thanks to the displacement
of the springs: k1, k2, k3, k4.
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In order to calculate the cables’ tension on the mobile part, the following formulations
can be obtained for cables 1 and 2. µ is the friction coefficient between the cable and the
pulley. If the pulley is fixed, the cable crawls on the cylindrical surface of the pulley. This is
the case analysed in this paper.

(T + dT)cos(dσ/2)− Tcos(dσ/2)− dFT = 0; (79)

dFN − (T + dT)sin(dσ/2)− Tsin(dσ/2) = 0. (80)

cos(dσ/2) ≈ 1; sin(dσ/2) ≈ dσ/2; (81)

dT = dFT ; dFN − Tdσ = 0; dFT = µdFN ; µTdσ = dT; (82)

T2 = T1eµλ. (83)

T11p = T11meµ(3π/2−α11); T21p = T21meµ(pi/2+α21); T31p = T31meµ(3π/2−α31); (84)

T41p = T41meµ(pi/2+α41); T51p = T51meµ(3π/2−α51); T61p = T61meµ(pi/2+α61); (85)

T71p = T71meµ(3π/2−α71); T81p = T81meµ(pi/2+α81); (86)

T10p = T10meµ(3π/2−α10); T20p = T20meµ(pi/2+α20); T30p = T30meµ(3π/2−α30); (87)

T40p = T40meµ(pi/2+α40); T50p = T50meµ(3π/2−α50); T60p = T60meµ(pi/2+α60); (88)

T70p = T70meµ(3π/2−α70); T80p = T80meµ(pi/2+α80); (89)

The general equation can be obtained as follows:
If i = 1, 3, 5, 7:

Tijp = Tijmeµ(3π/2−αij); (90)

If i = 2, 4, 6, 8:

Tijp = Tijmeµ(pi/2+αij). (91)

The vector of the cable tension can be obtained using the following equation:

∆T1p = T11p − T10p; ∆T2p = T21p − T20p; ∆T3p = T31p − T30p; ∆T4p = T41p − T40p; (92)

∆T5p = T51p − T50p; ∆T6p = T61p − T60p; ∆T7p = T71p − T70p; ∆T8p = T81p − T80p. (93)

∆Tp = [∆T1p∆T2p∆T3p∆T4p∆T5p∆T6p∆T7p∆T8p]
T . (94)

The final equation to consider in order to find the external forces and torques is:

Wp = −SI I j∆Tp. (95)

6. Model Validation and Physical Implementation with Two Test Bench Prototypes
6.1. Model Validation

In order to test how much the physical dimensions of the mechanism and the fric-
tion on the cables influence the proposed model, we decided to test our model in two
test benches of different dimensions of the mechanism and with different levels of cable
friction. Our basic idea is that if our model gives good answers in different dimensions
of the mechanism, this would confirm the feasibility of recreating our system in reduced
dimensions and its ability to be used (in the near future) inside a surgical instrument of a
maximum diameter of 10 mm. Test bench I (TBI) is the bigger and planar mechanism. Test
bench II (TBII) is the smaller spatial mechanism. The dimensions of the two test benches
used are shown in Table 1.
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Table 1. Dimensions of the test bench prototypes. Measures (p1, p2, p3, p4, p6, p10) are shown
in Figure 8.

p1 (mm) p2 (mm) p3 (mm) p4 (mm) p6 (mm) p10 (mm) µ

TBI 23 85 100 43 7 82 0

TBII 16 8.75 13.5 11.8 12 2.5 0.3; 0.25 [34]

6.2. Planar Test Bench Prototype: TBI

Figure 12 shows the scheme of TBI, and Figure 13 shows the prototype developed
to validate and implement the proposed cable-driven mechanism. In TBI, we analysed
the planar application using four cables. Part B is fixed and part A is the mobile part.
Pulleys are attached to part B, and four cables connect part A with part B. Four springs
are connected to the four cables, and thanks to their movements, the motion of point P is
found. Another cable connects the applied load to point P. The spherical joints are attached
between the mobile part A and the planar base (fixed plane) in order to enable the motion
of part A in the plane, reducing friction. The pulleys in the Figure 13 are used to validate
the behaviour of the mechanism without friction acting on the cables.

Figure 12. Scheme of the planar test bench prototype (TBI) to study the behaviour of the sensi-
tive mechanism.

6.3. Spatial Test Bench Prototype: TBII

Figure 14 shows the TBII prototype realized with a 3D printer and used to study the
sensing mechanism. Part A is the mobile part consisting of a hollow cylinder with radial
holes for the cable connections and a central shaft for the application of the external forces.
Part B consists of a central shaft and an external hollow cylinder fixed on a plane. Part B
includes holes that facilitate the connection with the cables. Part A is assembled on the
central shaft of part B, in its zone with a minimum diameter. A planar section is shown
in Figure 14 with cables 5, 6, 7, 8 and stiffness coefficients k5, k6, k7, k8. Two cable blocks
are used to fix cables 6 and 5 and cables 8 and 7 to part A. The motion of part A can be
evaluated using the displacement of the springs.

Figure 15 shows the TBII used for the experiments. An external force F is applied in the
YZ plane, modifying the cables’ tension. Measuring the displacement of the springs allows
us to find the displacement of the point of the applied force F, and thanks to Equation (94),
the vector of the cables’ tension (∆Tp) is computed. Using Equation (95), the external forces
and torques are measured.
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Figure 13. Planar test bench prototype (TBI) to study the behaviour of the sensitive mechanism. A is
the mobile part and B is the fixed part.

Figure 14. Spatial test bench prototype (TBII) to study the behaviour of the sensing mechanism:
section with cables inside the test bench; realized prototype (with a 3D printer) of parts A (mobile
part) and B (fixed part).

6.4. Springs and Cables

In order to test the sensitive mechanism, we tried many types of cables and springs,
and in the following, we will show only the selection used in the experiments. The material
of the cable is nylon, with a diameter of 0.6 mm. The dimensions of the spring used in the
experiments are shown in Table 2. The stiffness coefficient of the spring is calculated by
applying a load (after a preload condition) and measuring the displacement of the spring
obtained with the applied load.

Table 2. Dimensions of the type of spring used in the experiment: De is the external diameter; d
is the diameter of the wire; Lm is the initial length of the spring; n is the number of wraps; k is the
stiffness coefficient.

De (mm) d (mm) Lm (mm) n k (N/mm)

Spring 9.4 1 24.8 25 0.6786
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Figure 15. Experiments with the TBII for the behavioural analysis of the sensitive mechanism:
external applied force F and eight cables’ tensions: T1jm, T2jm, T3jm, T4jm, T5jm, T6jm, T7jm, T8jm. A
is the mobile part and B is the fixed part.

The springs are connected between the cable and external fixed connections. Manual
calibration of the cable tension is performed on the external connections using screws.

6.5. Implementation

Part B of the test bench prototype is fixed on a plane using screws. Part A is connected
to part B, as described in the previous sections. In the first step, we attached the nylon
cable to part A, after passing the cables through part B (in the pulleys of TBI or in the holes
of TBII). An external force F is applied on part A, as shown in Figures 13 and 15. Force is
created by adding different weights to the point of attachment for the weights, shown in
Figures 13 and 15. In each experiment using TBI or TBII, we performed the same process,
described as follows:

1 Attachment of the spring to the cable;
2 Attachment of the spring to the fixed part;
3 Centring of part A and calibration using screws in the fixed part;
4 Measuring the spring’s length in the condition j = 0;
5 Applying weights to the point of attachment for the weights;
6 Measuring the spring’s length in the condition j = 1.

In each test (TBI and TBII), we applied loads in the sequence shown in Table 3.

Table 3. Sequence of the Applied Loads.

1 (N) 2 (N) 3 (N) 4 (N) 5 (N) 6 (N) 7 (N)

TBI 6.46 7.48 8.49 9.85 10.94

TBII 3.25 4.26 5.27 6.46 7.48 8.49 9.57

Using the formulations shown in the previous sections, we considered only the positive
cable tension values in order to transfer the information to the software that the cable is
only able to pull and not to push.
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7. Comparison between Measured and Calculated Forces: Results and Discussion
7.1. Results

In following, the results of the comparison between measured and calculated forces
on the point P are shown. By using formulations shown in the last sections, the values
shown in Tables 1–3 and Figures 16 and 17 are obtained. The black points represent the
measured applied loads on point P; the blue points represent the points computed using
the following formulation (96) to calculate the applied resultant forces:

Fcalculated =
√

F2
X + F2

Y + F2
Z. (96)

where FX , FY, and FZ are the first three elements of the vector WPj.

Figure 16. TBI: Comparison between measured and calculated external forces on the point P. The
error is obtained by the absolute difference between measured and calculated values of the force.

7.2. Discussion

Figure 16 shows the comparison between measured and computed external forces on
the point P if the planar TBI is used. Figure 17 shows the same situation in which TBII is
used. In TBI, it seems that if the sequence of load increases, the error is reduced. A different
behaviour is noted in TBII, in which the error seems to have a more constant behaviour,
maybe influenced by the friction.

In TBII, it is possible to note a maximum absolute error of around 0.64 N and a
minimum error of around of 0.03 N if the friction coefficient µ = 0.25 is used. The mean
of all errors obtained for the seven loads are around 0.33 N. In case of using µ = 0.3, the
maximum absolute error is around 2 N, and a minimum error is around 0.13 N. The mean of
all errors noted in each applied load is around 1.13 N. In conclusion, in TBII, the maximum
percentage of relative error to calculate the external force is around 28% if µ = 0.3 is used,
and 9% if µ = 0.25 is used. The absolute error is calculated as the difference between
the measured and calculated value of the force (or displacement). The percentage of the
relative error is calculated as the ratio between the absolute error and the measured value
multiplied by 100.
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Figure 17. TBII: Comparison between measured and calculated external forces on the point P using
two different values of friction: µ = 0.25 and µ = 0.3 [34]. The error is obtained by the absolute
difference between measured and calculated values of the force.

Based on the obtained results, it is important to underline that this is a first test of
these prototypes, and two points of contact between each cable and the part B are present in
TBI and TBII. This generates many errors, because no pulley is used in TBII. However, the
model presented in this paper gives the same behaviour of the forces in the two different
test bench prototypes. This is a very good initial result and opens new possibilities for
future developments of the mechanism.

8. Conclusions

In this paper, we present a new cable-driven model of an under-actuated sensing
mechanism for robotic surgery and micro/macro applications, where the under-actuation
is a fundamental aspect of the design. The proposed mechanism is conceived with an under-
actuated system with cables and could solve the big problem of sterilization in robotic
surgery, permitting the use of electronic parts in surgical instruments while avoiding their
sterilization. This paper presents the first results of the implementation of the proposed
model in two test bench prototypes of different dimensions. Future works are oriented
toward realizing another spatial test bench with reduced dimensions and to perform other
tests with digital sensors for comparison. We would like to reduce the dimensions of the
test bench of the mechanism in order to implement the model in a prototype of a 10 mm
diameter, which will be directly mounted on the robotic surgery tool. Furthermore, we will
try to reduce friction, including pulleys, in the spatial test bench.
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