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Abstract: The fault diagnosis of a gearbox is crucial to ensure its safe operation. Entropy has become
a common tool for measuring the complexity of time series. However, entropy bias may occur
when the data are not long enough or the scale becomes larger. This paper proposes a gearbox fault
diagnosis method based on Refined Time-Shifted Multiscale Reverse Dispersion Entropy (RTSMRDE),
t-distributed Stochastic Neighbour Embedding (t-SNE), and the Sparrow Search Algorithm Support
Vector Machine (SSA-SVM). First, the proposed RTSMRDE was used to calculate the multiscale
fault features. By incorporating the refined time-shift method into Multiscale Reverse Dispersion
Entropy (MRDE), errors that arose during the processing of complex time series could be effectively
reduced. Second, the t-SNE algorithm was utilized to extract sensitive features from the multiscale,
high-dimensional fault features. Finally, the low-dimensional feature matrix was input into SSA-SVM
for fault diagnosis. Two gearbox experiments showed that the diagnostic model proposed in this
paper had an accuracy rate of 100%, and the proposed model performed better than other methods in
terms of diagnostic performance.

Keywords: data reduction; fault diagnosis; gearbox; reverse dispersion entropy; support vector machine

1. Introduction

The gearbox is an important component of mechanical equipment [1]. Continuous
work under complex conditions can easily lead to equipment damage [2]. When the
gearbox malfunctions, the entire operating equipment will have safety hazards, and the
fault signals will exhibit complexity and autocorrelation [3,4]. The implementation of safe
and reliable fault diagnosis techniques can effectively prevent serious failures, reduce the
operating and maintenance costs, and improve the reliability on mechanical equipment [5].

Due to the highly nonlinear and nonstationary nature of vibration signals from gear-
box faults, linear feature extraction methods are not applicable [6]. Therefore, based on
nonlinear dynamic theory, entropy methods have been widely used in the detection of
rotating machinery dynamic behaviour [7,8]. Entropy, as a parameter for evaluating the
regularization process and complexity of time series, is particularly suitable for characteriz-
ing nonstationary and nonlinear acceleration signals [9]. Various entropy methods, such as
approximate entropy [10], sample entropy [11], fuzzy entropy [12], and permutation en-
tropy [13], have been proposed and used in fault diagnosis. These methods, however, only
consider signals at one scale and could ignore crucial temporal information. To overcome
this limitation, Costa et al. [14] proposed multiscale entropy. Wang et al. [15] constructed
statistical features based on multiscale sample entropy (MSE) to reflect the information
of rotating machinery. Zheng et al. [16] combined multiscale fuzzy entropy (MFE) with
the SVM to construct an intelligent diagnosis model. Chen et al. [17] combined local mean
decomposition and multiscale permutation entropy (MPE) to enhance the feature extraction
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ability of MPE through pre-processing of the initial signal. These methods have their own
deficiencies. Specifically, MSE cannot measure the similarity of short time series, and the
calculation of MSE and MFE is very time-consuming for long time series. MPE also ignores
the difference between adjacent amplitude values in the time series, which may lead to the
neglect of useful information in the amplitude.

Dispersion Entropy (DE) [18] is a new nonlinear dynamic index that overcomes the
drawbacks of other entropy algorithms in measuring the complexity and irregularity of
time series. When calculating DE, the amplitude of the time series is considered. However,
the recognition ability of DE is not very good when dealing with autocorrelated signals. To
solve this problem, Azami and Escudero [19] proposed the Dispersion Entropy algorithm
based on multiscale fluctuation, which has demonstrated its stability and good recognition
ability in processing signals of neurological disorders. Li et al. [20] proposed the reverse
dispersion entropy (RDE) algorithm to detect sensor signals and demonstrated its excellent
stability through testing with real ship signals. Meanwhile, Xing et al. applied the multiscale
method to the RDE algorithm and achieved good results [21]. However, there are still
some problems with the multiscale method [22]. Coarsening the time series can lead to the
loss of important information. As the scale factor increases, the coarse-grained sequence
becomes shorter, leading to greater entropy value bias [23]. Therefore, an improved MRDE
algorithm needs to be proposed to overcome the above shortcomings by improving the
existing coarse-graining method.

Fault diagnosis usually requires extracting a large number of fault feature sets from
signals, which have characteristics such as nonlinearity and high dimensionality. Although
these features can provide useful fault information, there may be many redundant features
mixed in, which do not help improve the classification accuracy of the classifier but instead
increase the burden on the classifier and reduce the classification efficiency. Therefore,
appropriate dimensionality reduction algorithms are needed to reduce the dimensional-
ity of the feature set. Classic data dimensionality reduction methods such as Principal
Component Analysis (PCA) [24], Linear Discriminant Analysis (LDA) [25], Locally Lin-
ear Embedding (LLE) [26], t-Distributed Stochastic Neighbour Embedding (t-SNE) [27],
and Isometric Mapping (Iso-map) [28] have been widely used in many fields. However,
PCA and LDA are linear transformation methods for dimensionality reduction, which
may produce significant bias when analysing nonlinear samples. Notably, t-SNE is a
non-linear dimensionality reduction method for manifold learning, which performs better
in preserving the local structure of data than other manifold learning methods. Using
t-SNE to map high-dimensional data to low-dimensional space facilitates observing the
distribution of data. In addition, the obtained low-dimensional sensitive feature set can
improve classification efficiency and reduce storage requirements [29].

In the past few years, various classifiers have been applied in fault diagnosis, such as
the k-Nearest Neighbour (k-NN) [30], Random Forest (RF) [31], Artificial Neural Network
(ANN) [32], and Support Vector Machine (SVM) [33], etc. In small-sample applications, SVM
has higher generalization ability and more accurate classification results. It is worth noting
that suitable parameters have a significant impact on SVM performance. Chen et al. [34] used
the Particle Swarm Optimization (PSO) to automatically search for the best parameters of SVM.
Dong et al. [13] used the Grey Wolf Optimization (GWO) to achieve good results. However,
many optimization algorithms exhibit poor local search capabilities and slow convergence
speeds when solving complex problems. The Sparrow Search Algorithm [35] (SSA) simulates
the foraging and anti-predator behaviour of sparrows and establishes a mathematical model
by flexibly using producer and scavenger strategies. The SSA has the characteristics of fast
convergence speed and strong optimization ability. This paper introduces the SSA to select
the best parameters for SVM.

This paper proposes a novel feature extraction method based on RTSMRDE. First,
RDE was used instead of traditional DE. Second, inspired by the time-shift process, a
refined time-shift coarse-grained approach was used to reconstruct sub-sequences. Fi-
nally, an improved algorithm was used to extract fault features and reduce errors. The
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extracted fault feature matrix was then dimensionally reduced using t-SNE, resulting in
a sensitive low-dimensional feature matrix. This feature matrix was input into SSA-SVM
for fault classification. Simulation signals and experimental analysis were used to verify
the effectiveness.

Summarizing the above analysis, the main contributions are as follows:

1. This paper proposes a novel RTSMRDE method for the multiscale feature extraction
of gearbox faults.

2. Utilizing data dimensionality reduction methods to extract sensitive features from the
initial high-dimensional feature matrix, resulting in more accurate fault recognition.

3. Constructing an intelligent diagnosis model for gearbox based on RTSMRDE, t-SNE,
and SSA-SVM.

4. Validating the effectiveness through simulation signals, gearbox datasets, and ex-
perimental data. The experimental results indicate that the fault diagnosis model
performs significantly better than six other methods in terms of overall performance.

The rest of this paper is structured as follows: Section 2 introduces RTSMRDE algo-
rithms and selects the optimal parameters of the algorithms through experiments. Section 3
overviews t-SNE and SSA-SVM and proposes the fault diagnosis model. Section 4 verifies
the fault diagnosis method through two experiments. Finally, Section 5 provides a brief
summary of the work in this paper.

2. Refined Time-Shift Multiscale Reverse Dispersion Entropy
2.1. Reverse Dispersion Entropy

Based on the theory of PE, RDE is a new time-series complexity analysis method that
combines the positive aspects of DE and Reverse Permutation Entropy. The following is a
description of the RDE steps [20]:

Step 1. Assuming we have a univariate signal of length X = {x1, x2, · · · , xN}, X
is mapped into Y = {y1, y2, · · · , yN} by the standard normal cumulative distribution
function (NCDF).

yi =
1

σ
√

2π

∫ xi

−∞
e
−(t−γ)2

2σ2 dt (1)

where yi ∈ (0, 1); σ and γ denote the standard deviation and mean of X, respectively.
Step 2. Mapping Y to c classes. We map Y to Zc =

{
zc

1, zc
2, · · · , zc

N
}

using
round(c · yi + 0.5), where c is the number of classes, and zi is a positive integer from 1
to c.

Step 3. Z is reconstructed to embedding vectors T using time delay d and embedding
dimension m, respectively. The matrix comprising embedding vectors can be expressed
as follows: 

{
zc

1
, zc

1+d
, · · · , zc

1+(m−1)d

}
...

...{
zc

j
, zc

j+d
, · · · , zc

j+(m−1)d

}
...

...{
zc

t , zc
t+d

, · · · , zc
t+(m−1)d

}


(2)

where N − (m− 1)d is the number of embedding vectors t.
Step 4. Each value zj in each vector group corresponds to the subscript of pattern

πvov1···vm−1 , as shown below:

zc
j
= v0, zc

j+d
= v1, zc

j+2d
= v2, · · · , zc

j+(m−1)d
= vm−1 (3)

where cm is the number of potential dispersion patterns, because each zc
j

has m members,
and each one can be an integer between 1 and c.



Machines 2023, 11, 646 4 of 24

Step 5. The following is an expression for the ith dispersion pattern’s relative frequency:

p(πi) =
Number{πi}
N − (m− 1)d

(1 ≤ i ≤ cm) (4)

where p(πi) represents the probability of the ith dispersion patterns.
Step 6. The RDE calculation illustrated below:

RDE(x, m, c, d) =
cm

∑
i=1

(p(πi)−
1

cm )
2

(5)

When p(πi) = 1/cm, the value of RDE(x, m, c, d) is 0 (minimum value). When
p(πi) = 1, πi is the only existing dispersion pattern, the value of RDE(x, m, c, d) is 1− 1/cm

(maximum value). Thus, the normalized RDE can be expressed as follows:

NRDE =
RDE(x, m, c, d)

1− 1/cm (6)

2.2. Multiscale Reverse Dispersion Entropy

MRED is an improved algorithm combining RDE with multiscale entropy. Non-
overlapping multiscale means are calculated at different scales to form a new sequence,
and then the RDE values are calculated. The MRDE algorithm can be described below.

For time series X = {x1, x2, · · · , xN}, the initial time series X is divided into non-
overlapping segments of length s. Then, the mean of each segment is calculated, and they
are arranged in order together. This process is called coarse graining, as shown below:

ys
j =

1
s

js

∑
i=(j−1)s+1

xi, 1 ≤ j ≤ bL/sc (7)

where s is scale factor. When s = 1, y1 is the initial time series. When s > 1, the original
sequence is divided into s coarse graining sequences of length bL/sc.

For each set of coarse graining data, RDE is calculated as:

MRDE(X, m, c, d, s) = RDE(ys, m, c, d) (8)

MRDE analysis is used to calculate the RDE of the coarse-grained sequence under
multiple scales. The method overcomes the limitation of RDE in measuring the complexity
of signals only at a single scale. MRDE uses a coarse-grained multiscale process, but it
has a high requirement for the length of the time series. When the scale factor increases,
the length of the coarse-grained sequence becomes shorter, which may result in larger
errors. In other words, during the coarse-graining process, the original signal is blurred into
multiple signals, which simplifies the calculation but also poses a risk of ignoring important
fault information.

2.3. Refined Time-Shift Multiscale Reverse Dispersion Entropy

In this subsection, RTSMRDE is proposed aiming at the above problems of MRDE,
and the detailed steps of RTSMRDE can be described as follows:

For time series X = {x1, x2, · · · , xN}, β and α are positive integers, where
β = 1, 2, · · · , α; then, α new time series can be constructed by:

uα
β =

{
xβ, xβ+α, xβ+2α, · · · , xβ+b(N−β)/αcα

}
(9)

where α is the time-shift interval; b(N − β)/αc represents positive integers less than or
equal to (N − β)/α.
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For a given scale factorα, uα
β is composed of (N/α) signal points. Thus, the pα

β

(
πv0v1···vm−1

)
of each uα

β can be acquired using RDE. Then, we define the probability average of time-shift
multiscale coarse-grained sequences when scale equal to α.

pα

(
πv0v1···vm−1

)
=

1
α

α

∑
β=1

pα
β

(
πv0v1···vm−1

)
(10)

The final RTSMRDE value at scale α as follow:

RTSMRDE(X, m, c, d, α) =
cm

∑
i=1

(pα
β(πv0v1···vm−1)−

1
cm )

2
(11)

The RTSMRDE algorithm processes the original sequence using time-shift methods to
form a sequence group consisting of multiple sub-sequences, each of which is still a part
of the original sequence. This maximally preserves the information in the original signal,
and the mean probability of the dispersion patterns also resolves the error caused by the
increasing scale factor. The flowchart of RTSMRDE is shown as Figure 1.
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Figure 1. The flowchart of the RTSMRDE method.

2.4. Parameters Selection

There are four parameters for the RTSMRDE that must be manually configured,
namely the scale s, the time delay d, the embedding dimension m, and the class c. In total,
30 sets of pink noise (pn) and white noise (wn) were used as test signals. In machine fault
detection, white noise refers to a random noise signal with uniform power spectral density
whose energy in the frequency domain is basically equal in each frequency band and has
no obvious frequency distribution characteristics; pink noise is a type of noise signal with a
1/f power spectral density distribution characteristic, and the energy in its low-frequency
part is more than that in the high-frequency part.

First, we considered how the algorithm would be affected by the time delay d and
scaling factor s. According to [20], there may be confusion when the time delay d exceeds 1,
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even though the impact of time delay on the algorithm is minimal. Therefore, we decided
to set the time delay to 1. In addition, choosing an incorrect scale factor s could pose a
challenge in accurately extracting the signal’s fault feature information. If the scale factor is
too large, it can negatively impact the algorithm’s performance and generate inaccurate
entropy values. In order to obtain reliable results, we chose to comprehensively consider a
scale factor of 20.

Second, we considered the impact of the embedding dimension m on the RTSMRDE
algorithm. Regarding the selection of the embedding dimension m, if it is set too small, it
may be difficult to detect the dynamic behaviour of the signal. As shown in Figure 2, the
entropy values of both the signal and the noise decrease with increasing m, but the general
pattern remains the same. However, as shown in Table 1, increasing m will require more
processing time. Moreover, the entropy values between different noises tend to converge at
larger scales. Therefore, we decided to set m equal to 2.
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Figure 2. Different m on RTSMRDE: (a) m = 2, (b) m = 3, (c) m = 4, (d) m = 5.

Table 1. Running time of RTSMRDE for different m values.

Type m = 2 m = 3 m = 4 m = 5

Seconds 1.121 s 3.403 s 14.575 s 80.805 s

Finally, we considered the impact of varying values of c on the algorithm, with m set
to 2. If c is set too small, it will be challenging to distinguish between classes with varying
amplitudes. On the other hand, a large value of c can increase the system’s susceptibility to
noise and result in a higher computational load. Figure 3 shows that, despite a decrease
in the entropy values of the two noises with higher c values, the overall trend remained
largely unchanged. However, setting too many categories can significantly increase the
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computation time, as shown in Table 2. Therefore, to strike a balance between reliable
statistical measurements and computational efficiency, we decided to set the number of
categories c equal to 6.
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Table 2. Running time of RTSMRDE for different c.

Type c = 5 c = 6 c = 7 c = 8

Seconds 1.025 s 1.092 s 1.290 s 1.549 s

In conclusion, the appropriate values for the RTSMRDE parameters were m = 2, c = 6,
d = 1, and s = 20.

2.5. Comparison of RTSMRDE and Other Entropy Methods Using White Noise and Pink Noise

We compared our proposed method to other existing entropy algorithms, with specific
parameters listed in Table 3. For the convenience of comparison, we set the scale factor of the
seven algorithms to 20. White noise and pink noise, each configured with 30 samples, were
used for the comparison. The running times and results of the seven entropy algorithms
are presented in Table 4 and Figure 4, respectively.

Table 3. Selection of parameters with different entropy.

Entropy Methods Parameters

MSE [36] m = 2, n = 2, d = 1, s = 20, r = 0.15 SD
MFE [37] m = 3, d = 1, s = 20, r = 0.15 SD
MDE [38] m = 3, c = 6, d = 1, s = 20

RCMDE [39] m = 2, c = 9, d = 1, s = 20
MRDE [40] m = 3, c = 5, d = 1, s = 20

RCMRDE [41] m = 2, c = 5, d = 1, s = 20
RTSMRDE (proposed) m = 2, c = 6, d = 1, s = 20
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Table 4. Running time for different entropies.

Type RTSMRDE RCMRDE MRDE RCMDE MDE MFE MSE

Seconds 1.081 s 4.576 s 0.550 s 4.380 s 0.549 s 4.315 s 3.305 s
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As shown in Figure 4, the entropy curves calculated by MSE, MFE, MDE, and MRDE
exhibited significant fluctuations with the increasing scale. Among them, MSE and MRDE
also showed an increasing error at larger scale factors. In contrast, the entropy values
derived by the entropy algorithm following refinement operation and composite coarse-
grained structure were more stable. In addition, RTSMRDE combined with the time-shifted
structure could correctly distinguish the two noises at full scale, and no crossover occurred.
Furthermore, the reverse dispersion entropy was defined as the distance of the signal from
the white noise, and only the white noise value of RTSMRDE was closest to 0 among
RTSMRDE, RCMRDE, and MRDE, which was consistent with the reality. Finally, Table 4
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shows that MDE and MRDE had the shortest calculation time. RTSMRDE had the next
shortest time. The calculation time of the other methods was three to four times that
of RTSMRDE. In conclusion, the RTSMRDE is of superior quality than the comparative
algorithms mentioned above.

3. The Proposed Intelligent Gearbox Fault Diagnosis Method
3.1. Data Reduction Method

The t-SNE is a nonlinear dimensionality reduction algorithm commonly used for
the dimensionality reduction and visualization of high-dimensional data. The algorithm
maps high-dimensional data into low-dimensional space, so that the relative distance
between data points can be preserved, and the effect of dimensionality reduction and
visualization is achieved. Specifically, the t-SNE algorithm defines similarity matrices in
high-dimensional and low-dimensional spaces, respectively, and optimizes the mapping
relationship by minimizing the Kullback–Leibler divergence between the two similarity
matrices. Through the gradient descent algorithm, each data point in the high-dimensional
space is mapped to the corresponding data point in the low-dimensional space. Compared
with the traditional linear dimensionality reduction algorithm, the t-SNE algorithm can
preserve the local structure information between data more completely, so it performs
better in visualizing high-dimensional data. More detailed algorithm steps can be found in
the relevant literature [27].

3.2. Support Vector Machine

SVM is an efficient classification model. The basic idea of SVM is to find an optimal
hyperplane in the feature space, which separates the samples of different classes and
maximizes the margin between different samples. In SVM, the sample points closest to
the hyperplane determine the location of the hyperplane. Those sample points are called
support vectors. The ultimate goal of SVM optimization is to find the hyperplane with the
largest margin and minimize the classification error. For non-linearly separable data sets,
slack variables are usually introduced, or kernel functions are used to map the data into
high-dimensional space. The specific algorithm of SVM can be referred to in [33].

3.3. Sparrow Search Algorithm

The SSA simulates the foraging and anti-predator behaviour of sparrows and estab-
lishes a mathematical model flexibly using producer and scavenger strategies. The specific
theoretical method can be referred to in [35], and its mathematical model can be briefly
described as follows.

Represent the position of sparrows using the following matrix:

M =


M1,1 M1,2 · · · M1,y
M2,1 M2,2 · · · M2,y

...
...

...
...

Mx,1 Mx,2 · · · Mx,y

 (12)

where x is the number of sparrows, and y is the number of optimization parameters.
The fitness value of all sparrows can be expressed by matrix below:

FM =


f
([

M1,1 M1,2 · · · M1,y
])

f
([

M2,1 M2,2 · · · M2,y
])

...
f
([

Mx,1 Mx,2 · · · Mx,y
])
 (13)

where FM represents the fitness value.
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During the search process, producers with higher fitness have higher priority in
obtaining food. The location update of the producer is described as:

Mt+1
i,j =

{
Mt

i,j · exp
(

−x
α·itermax

)
Mt

i,j + Q · L
R2 < ST
R2 ≥ ST

(14)

where t represents the iteration number; Xt
i,j represents the ith sparrow in the jth dimension

after t iterations; itermax is a constant representing the maximum number of iterations;
R2 and ST are the alarm value and safety threshold, respectively; α is a random number
between 0 and 1; Q is a random number following normal distribution. L is a matrix of size
1 × y with all elements equal to 1.

The scroungers need to monitor the producers’ predation. When producers have food,
they will compete for it. If the scroungers fail, they will continue to monitor. The update of
the scrounger’s position is shown as follows:

Mt+1
i,j =

 Q · exp
(

Mt
worst−Mt

i,j
i2

)
i > n

2

Mt+1
P +

∣∣∣Mt
i,j −Mt+1

P

∣∣∣ · A+ · L i ≤ n
2

(15)

where A represents a matrix whose elements are either 1 or−1, and A+ = AT(AAT)−1;Mp
is the best position located by the producer; Mworst represents the current worst position.
When i > n/2, it means that ith scrounger has a risk of insufficient energy.

The initial position of sparrows in the population is randomly generated, the formula
is shown below:

Mt+1
i,j =


Mt

best + β ·
∣∣∣Mt

i,j −Mt
best

∣∣∣ fi > fg

Mt
i,j + K ·

( ∣∣∣Mt
i,j−Mt

worst

∣∣∣
( fi− fw)+ε

)
fi = fg

(16)

where Mbest represents the current global optimal location; β is the step control parameter;
the value of K is between −1 and 1; fi is the fitness value; fw and fg represent the current
worst and best adaptation, respectively; ε is the minimum constant. When fi > fg, this
indicates that the sparrow is at the edge of the group; when fi = fg, this indicates that
the sparrows in the middle of the population realize the danger and need to be closer to
other sparrows.

3.4. The Proposed Fault Diagnosis Scheme

Based on RTSMRDE, t-SNE and SSA-SVM, the flowchart of proposed method is shown
in Figure 5. The steps are summarized as follows:

First, the rotating machinery fault experimental platform collected the gearbox vibra-
tion signals under various failure conditions.

Second, the proposed RTSMRDE was used to compute the entropy values and create
a high-dimensional feature set in order to completely extract the feature information of the
gearbox fault signals.

Third, the dimensionality of the initial RTSMRDE feature set was reduced using the
t-SNE to generate a sensitive low-dimensional feature set.

Finally, an optimized SVM model was constructed using SSA. The test set was fed into
the optimized SVM for fault classification.
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4. Experimental Verification

Through two gearbox fault experiments, the performance of the proposed fault di-
agnostic technique was evaluated. In addition, the proposed fault diagnosis model was
compared with the existing diagnosis algorithm to verify its superior performance. All
experiments were performed on the MATLAB R2022a environment running on an AMD
Ryzen 7 5800 H 3.2 GHz, 16.0 GB RAM, and Windows 11 computer.

4.1. Case 1: Data from Southeast University Gearbox Dataset
4.1.1. Description and Division of Data

The experimental data (D1) of the gearbox in Case One were provided by Southeast
University [42]. Dataset D1 selected the vibration signal collected by the Y-axis sensor on
the planetary gearbox in the original dataset, which was operated under the condition that
the load of the speed system was set to 20 Hz–0 V. As shown in Table 5, the D1 dataset
had five operating states, namely Normal, Chipped tooth, Surface wear, Root wear, and
Missing tooth. Each operating state consisted of 50 sub-samples with a data length of 2048.
Therefore, there was a total of 250 samples in dataset D1. These samples were divided into
10 training samples and 40 testing samples for fault diagnosis. The time-domain signals of
the five operating states are shown in Figure 6, where it can be clearly seen that there were
obvious impact components in the time-domain waveform under faulty conditions.
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Table 5. Description of D1.

Fault Types Motor Speed
(r/min)

Number of
Training Samples

Number of
Testing Samples Class Label

Normal 1200 10 40 NOR
Chipped tooth 1200 10 40 CTF
Surface wear 1200 10 40 SWF

Root wear 1200 10 40 RWF
Missing tooth 1200 10 40 MTF

Machines 2023, 11, x FOR PEER REVIEW 13 of 27 
 

 

Through two gearbox fault experiments, the performance of the proposed fault diag-
nostic technique was evaluated. In addition, the proposed fault diagnosis model was com-
pared with the existing diagnosis algorithm to verify its superior performance. All exper-
iments were performed on the MATLAB R2022a environment running on an AMD Ryzen 
7 5800 H 3.2 GHz, 16.0 GB RAM, and Windows 11 computer. 

4.1. Case 1: Data from Southeast University Gearbox Dataset 
4.1.1. Description and Division of Data 

The experimental data (D1) of the gearbox in Case One were provided by Southeast 
University [42]. Dataset D1 selected the vibration signal collected by the Y-axis sensor on 
the planetary gearbox in the original dataset, which was operated under the condition that 
the load of the speed system was set to 20 Hz–0 V. As shown in Table 5, the D1 dataset 
had five operating states, namely Normal, Chipped tooth, Surface wear, Root wear, and 
Missing tooth. Each operating state consisted of 50 sub-samples with a data length of 2048. 
Therefore, there was a total of 250 samples in dataset D1. These samples were divided into 
10 training samples and 40 testing samples for fault diagnosis. The time-domain signals 
of the five operating states are shown in Figure 6, where it can be clearly seen that there 
were obvious impact components in the time-domain waveform under faulty conditions. 

Table 5. Description of D1. 

Fault Types Motor Speed 
(r/min) 

Number of 
Training Sam-

ples 

Number of 
Testing Samples 

Class Label 

Normal 1200 10 40 NOR 
Chipped tooth 1200 10 40 CTF 
Surface wear 1200 10 40 SWF 

Root wear 1200 10 40 RWF 
Missing tooth 1200 10 40 MTF 

 

 

0.0 0.2 0.4 0.6 0.8 1.0
-0.08

-0.04

0.00

0.04

0.08

A
cc

el
er

at
io

n 
(g

)

Time (s)
(a)

 NOR

0.0 0.2 0.4 0.6 0.8 1.0
-0.04

-0.02

0.00

0.02

0.04

A
cc

el
er

at
io

n 
(g

)
Time (s)

(b)

 CTF

0.0 0.2 0.4 0.6 0.8 1.0
-0.04

-0.02

0.00

0.02

0.04

A
cc

el
er

at
io

n 
(g

)

Time (s)
(c)

 SWF

0.0 0.2 0.4 0.6 0.8 1.0
-0.06

-0.03

0.00

0.03

0.06

A
cc

el
er

at
io

n 
(g

)

Time (s)
(d)

 RWF

Machines 2023, 11, x FOR PEER REVIEW 14 of 27 
 

 

 
Figure 6. The time-domain signals of D1 in the experiment. (a) NOR; (b) CTF; (c) SWF; (d)RWF; (e) 
MTF. 

4.1.2. Feature Extraction for D1 
Using the RTSMRDE as a feature extraction tool, fault features were extracted from 

the experimental dataset D1 consisting of 250 samples. In the end, we obtained a 250 × 20 
fault feature matrix, where 250 is the number of samples and 20 is the dimension of feature 
extraction. Figure 7 shows the error bar plot of entropy calculation for dataset D1. It can 
be seen from the figure that the trends of the five fault states in the multiscale calculation 
were the same and stable; except for a small error in the normal state, the errors in the 
other states were almost invisible. This indicates that the RTSMRDE algorithm can effec-
tively overcome the defects of entropy calculation in multiscale and control the entropy 
bias phenomenon. 

 

 
Figure 7. RTSMRDE value on D1. (a) NOR; (b) CTF; (c) SWF; (d) RWF; (e) MTF; (f) Five kinds of 
fault entropy values. 

4.1.3. Data Reduction and Visualization 
Relying solely on the entropy curve to determine the fault status of the gearbox is a 

challenging task. Therefore, the t-SNE dimension reduction algorithm was employed to 

0.0 0.2 0.4 0.6 0.8 1.0
-0.04

-0.02

0.00

0.02

0.04

A
cc

el
er

at
io

n 
(g

)

Time (s)
(e)

 MTF

0 4 8 12 16 20
0.000

0.004

0.008

0.012

0.016

En
tr

op
y 

va
lu

e

Number of scale
(a)

 NOR

0 4 8 12 16 20
0.000

0.004

0.008

0.012

0.016

0.020

En
tr

op
y 

va
lu

e

Number of scale
(b)

 CTF

0 4 8 12 16 20
0.000

0.004

0.008

0.012

0.016

En
tr

op
y 

va
lu

e

Number of scale
(c)

 SWF

0 4 8 12 16 20
0.000

0.003

0.006

0.009

0.012

En
tr

op
y 

va
lu

e

Number of scale
(d)

 RWF

0 4 8 12 16 20
0.000

0.003

0.006

0.009

0.012

En
tr

op
y 

va
lu

e

Number of scale
(e)

 MTF

0 4 8 12 16 20
0.000

0.004

0.008

0.012

0.016

0.020

En
tr

op
y 

va
lu

e

Number of scale
(f)

 NOR
 CTF
 SWF
 RWF
 MTF

Figure 6. The time-domain signals of D1 in the experiment. (a) NOR; (b) CTF; (c) SWF; (d) RWF;
(e) MTF.

4.1.2. Feature Extraction for D1

Using the RTSMRDE as a feature extraction tool, fault features were extracted from
the experimental dataset D1 consisting of 250 samples. In the end, we obtained a
250 × 20 fault feature matrix, where 250 is the number of samples and 20 is the dimension
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of feature extraction. Figure 7 shows the error bar plot of entropy calculation for dataset
D1. It can be seen from the figure that the trends of the five fault states in the multiscale
calculation were the same and stable; except for a small error in the normal state, the errors
in the other states were almost invisible. This indicates that the RTSMRDE algorithm can
effectively overcome the defects of entropy calculation in multiscale and control the entropy
bias phenomenon.
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Figure 7. RTSMRDE value on D1. (a) NOR; (b) CTF; (c) SWF; (d) RWF; (e) MTF; (f) Five kinds of
fault entropy values.

4.1.3. Data Reduction and Visualization

Relying solely on the entropy curve to determine the fault status of the gearbox is a
challenging task. Therefore, the t-SNE dimension reduction algorithm was employed to
process the high-dimensional feature set. The reduced fault feature set only consisted of the
most sensitive fault features, which not only saved time in computation but also facilitated
visualization. As shown in the Figure 8, the visual results of the sample features obtained
after two-dimensional and three-dimensional dimension reduction show that each group of
samples was well-clustered, with no sample mixing or blurred boundaries observed among
the five operating status samples of the gearbox. These results indicate that the t-SNE
algorithm is capable of effectively extracting crucial information from high-dimensional
features and accurately identifying the status of the gearbox.

4.1.4. Analysis of Diagnosis Results

Finally, the intelligent diagnosis of the gearbox faults was achieved by inputting the
low-dimensional sensitive feature set into SSA-SVM. To train the model, 10 sets of samples
for each state were randomly selected as the training set, and the remaining 40 sets were
used as the test set. There was a total of 50 training samples and 200 test samples. The SSA
was used to optimize the SVM parameters. Then, the optimized support vector machine
model was established, and the test set was input into the model for classification. As
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shown in the Figure 9, the proposed method could effectively identify various faults with a
recognition accuracy of up to 100%.
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Figure 8. (a) The 2D result obtained using the t-SNE; (b) The 3D result obtained using the t-SNE.
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4.2. Case 2: Data from MFS
4.2.1. Description and Division of Data

The gearbox data set (D2) was provided by a mechanical failure simulation experiment
system (MFS). The MFS manufactured by SQI company can simulate various common
mechanical equipment, and the modular component design of the experimental bench is
powerful and reliable, so it can be used to simulate common bearing and gear failures of
the wind turbine drive train. As shown in Figure 10, the main part of the experimental
system consisted of the integrated mechanical fault simulation experimental bench and the
data acquisition equipment. As shown in Figure 11, the gearbox fault diagnosis study kit
used for the experiment consisted of a missing tooth fault gear, a broken tooth fault gear,
and a tooth wear gearbox.

The experiments were conducted at a motor speed of 1750 rpm to test the normal state
and three fault states, respectively. The original samples were divided into 50 sub-samples,
and each sample was 2048 in length. The D1 is shown in Table 6. The vibration signals of
four faults are shown in Figure 12.
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4.2.2. Feature Extraction for D2

The MFS experimental platform collected vibration signals from four faults and
selected 50 sample signals for each fault. The entropy value was calculated for these
200 samples, and the RTSMRDE algorithm was used to extract feature from the fault sig-
nals. The resulting fault feature matrix had a size of 200 × 20, where 200 represents the
number of samples and 20 represents the number of dimensions. As shown in the Figure 13,
the RTSMRDE values indicate a stable trend, and the error value was extremely small,
making it nearly invisible in the error bar graph. Zooming in on the region of scale range
from 4 to 20 in Figure 13e, it can be seen that the entropy values calculated for the four fault
states were not equal but existed in an alternating manner. Although using RTSMRDE can
make the results of entropy calculation more stable and reduce entropy bias, directly using
a high-dimensional feature matrix for classification cannot produce the best results.
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4.2.3. Data Reduction and Visualization

Using the t-SNE algorithm to reduce the size of the initial feature matrix of 200 × 20,
the visualization results of the dimensionality reduction are shown in Figure 14, and the
four fault states are clearly distinguished. Each fault state signal existed independently
in different regions without confusion. The 2D and 3D visualization results both showed
ideal results. This indicates that the t-SNE algorithm can effectively extract key information
from high-dimensional features, making it easier to distinguish the state of the gearbox.
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4.2.4. Analysis of Diagnosis Results

The fault classification was achieved using SSA-SVM. As shown in the Figure 15, the
method proposed in this paper could effectively identify various faults with a recognition
accuracy of up to 100%.
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4.3. Contrast Analysis

To fully verify the advantages of the proposed fault diagnosis model, we used two
sets of control experiments to compare the advantages of RTSMRDE and data dimension
reduction in the fault diagnosis model.

4.3.1. Comparison of RTSMRDE with Other Different Entropy Algorithms

To verify the advantages of the RTSMRDE, it was compared with six other entropy
algorithms mentioned in Table 3 using the D1 and D2 dataset. The entropy calculation
results of each algorithm are shown in Figures 16 and 17, respectively. The entropy values
calculated by the MSE, MFE, MDE, and MRDE algorithms showed increasing errors
with increasing scale, and the entropy curves showed significant fluctuations. However,
the refined composite entropy algorithm showed smaller errors and smoother curves,
indicating that the algorithm is more stable and effective. The entropy curve calculated by
the samples processed by the refined time-shift algorithm showed the smallest error and
the most stable curve among all the results, indicating the best performance.
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The feature sets extracted by each algorithm were sent to the SSA-SVM for classifica-
tion, and the results are shown in Figures 18 and 19, respectively. As shown in Figure 18,
the numbers of the misclassified samples for RTSMRDE, RCMRDE, MRDE, RCMDE, MDE,
MFE, and MSE on D1 were 1, 5, 7, 5, 8, 11, and 15, respectively. The average correct rate of
the RTSMRDE algorithm was 99.5%, which was the highest among the seven algorithms,
with accuracy rates of 2%, 3%, 2%, 3.5%, 5.5%, and 7.5% higher than the other six algo-
rithms, respectively. As shown in the Figure 19, the numbers of the misclassified samples
for RTSMRDE, RCMRDE, MRDE, RCMDE, MDE, MFE, and MSE on D2 were 2, 3, 7, 2,
8, 10, and 13, respectively. The RTSMRDE algorithm exhibited an average correct rate of
98.75%, surpassing the other six algorithms by 0.625%, 3.125%, 0%, 3.75%, 5.625%, and
6.875% in terms of accuracy rates.
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Figure 17. Different entropy values of D2.

Figure 20 shows the accuracy of different algorithms on two datasets. In addition,
the running time of each algorithm is shown in Table 7. It is clear that the MDE and
MRDE algorithms had the shortest computation time of approximately 2 s. The RTSMRDE
algorithm took approximately 4 s, which was the second shortest. The computation
time of other algorithms exceeded 10 s, which was three to four times longer than that of
RTSMRDE. In summary, the proposed method performed better for fault classification of the
gearbox dataset.
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4.3.2. Comparison between Using and Not Using Data Reduction Methods

By comparing Figures 9 and 15, the first subfigures of Figure 17, and the first subfigure
of Figure 18, it can be observed that the classification result obtained without using data
dimension reduction algorithm had one misclassified sample in D1 and two misclassified
samples in D2. However, after applying the data dimension reduction algorithm, all
samples could be correctly classified. This indicates that the sensitive feature set extracted
through data reduction can effectively improve the classification accuracy.
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Table 7. Running times for different entropies.

Data RTSMRDE RCMRDE MRDE RCMDE MDE MFE MSE

D1 4.62 s 17.56 s 2.40 s 17.65 s 2.36 s 19.26 s 14.08 s
D2 3.76 s 14.23 s 1.81 s 14.36 s 1.83 s 15.77 s 12.22 s

5. Conclusions

The vibration signal of a gearbox has non-continuous and non-linear characteristics.
When a gearbox local fault occurs, periodic fault signals with impact characteristics will
appear. Therefore, we proposed a feature extraction method based on RTSMRDE, t-SNE,
and SSA-SVM to construct a new intelligent diagnosis method for gearbox faults. The
effectiveness and superiority of this method compared to existing methods were verified
through simulation signals and fault simulation experiments. The proposed method had a
positive impact on the fault diagnosis of rotating components, such as gearboxes in wind
turbines. The following conclusions have been drawn:

1. The RTSMRDE is based on MRDE, combined with the ideas of time shifting coarse-
graining operations. It overcomes the shortcomings of traditional multiscale reverse
dispersion entropy and can effectively and comprehensively extract the fault charac-
teristics of gearboxes.

2. The t-SNE can effectively remove redundant features in high-dimensional fault feature
sets, thus obtaining a sensitive and easily classifiable low-dimensional feature set.

3. Constructing a novel diagnosis model for gearbox faults based on RTSMRDE, t-SNE,
and SSA-SVM.

4. The proposed method was validated with noise signals and experimental datasets and
demonstrated a more prominent overall performance in terms of feature extraction
capability and computational speed.

Author Contributions: Conceptualization, X.W. and H.J.; methodology, X.W. and H.J.; validation, X.W.
and H.J.; investigation, X.W. and H.J.; resources, X.W.; data curation, X.W. and H.J.; writing—original
draft preparation, H.J.; writing—review and editing, X.W.; visualization, H.J.; supervision, X.W.; project
administration, X.W.; funding acquisition, X.W. All authors have read and agreed to the published
version of the manuscript.

Funding: The project of software and hardware development of online vibration condition monitor-
ing and intelligent fault diagnosis for rotating machinery (3612403222440) supported by scientific
research Foundation of Nanjing Institute of Technology.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interests.

Abbreviations

The following abbreviations are used in this manuscript:

MSE Multiscale Sample Entropy
MFE Multiscale Fuzzy Entropy
MPE Multiscale Permutation Entropy
DE Dispersion Entropy
MDE Multiscale Dispersion Entropy
RCMDE Refined Composite Multiscale Dispersion Entropy
RDE Reverse Dispersion Entropy
MRDE Multiscale Reverse Dispersion Entropy
RCMRDE Refined Composite Multiscale Reverse Dispersion Entropy
RTSMRDE Refined Time-Shifted Multiscale Reverse Dispersion Entropy
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t-SNE t-distributed Stochastic Neighbour Embedding
SSA-SVM Sparrow Search Algorithm-Support Vector Machine
PN pink noise
WN white noise
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