. machines

Article

Inverse Kinematics of Robot Manipulator Based on
BODE-CS Algorithm

Minghao Li *{, Xiao Luo 2

check for
updates

Citation: Li, M.; Luo, X;; Qiao, L.
Inverse Kinematics of Robot
Manipulator Based on BODE-CS
Algorithm. Machines 2023, 11, 648.
https://doi.org/10.3390/
machines11060648

Academic Editors: Hermes Giberti
and Zheng Chen

Received: 25 February 2023
Revised: 1 June 2023
Accepted: 9 June 2023
Published: 14 June 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

and Lijun Qiao 3

School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
luox@bit.edu.cn

School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

* Correspondence: 3120170189@bit.edu.cn

Abstract: Differential evolution is a popular algorithm for solving global optimization problems.
When tested, it has reportedly outperformed both robotic problems and benchmarks. However, it
may have issues with local optima or premature convergence. In this paper, we present a novel
BODE-CS (Bidirectional Opposite Differential Evolution-Cuckoo Search) algorithm to solve the
inverse kinematics problem of a six-DOF EOD (Explosive Ordnance Disposal) robot manipulator. The
hybrid algorithm was based on the differential evolution algorithm and Cuckoo Search algorithm.
To avoid any local optimum and accelerate the convergence of the swarm, various strategies were
introduced. Firstly, a forward-kinematics model was established, and the objective function was
formulated according to the structural characteristics of the robot manipulator. Secondly, a Halton
sequence and an opposite search strategy were used to initialize the individuals in the swarm. Thirdly,
the optimization algorithms applied to the swarm were dynamically allocated to the Differential
Evolution algorithm or the Cuckoo algorithm. Fourthly, a composite differential algorithm, which
consisted of a dynamically opposite differential strategy, a bidirectional search strategy, and two other
typically used differential strategies were introduced to maintain the diversity of the swarm. Finally,
two adaptive parameters were introduced to optimize the amplification factor F and cross-over
probability C;. To verify the performance of the BODE-CS algorithm, two different tasks were tested.
The experimental results of the simulation showed that the BODE-CS algorithm had high accuracy

and a fast convergence rate, which met the requirements of an inverse solution for the manipulator.

Keywords: differential evolution algorithm; Cuckoo Search algorithm; inverse kinematics; robotic
manipulator

1. Introduction

Robotics have integrated many achievements in theoretical knowledge and technology,
including controls [1], artificial intelligence [2], and complex mechanisms [3], etc. To solve
the problem of path planning, motion control, and trajectory tracking, among others, a
kinematic analysis is necessary. It includes forward and inverse kinematics, where forward
kinematics [4] describe the process of obtaining the end-effector’s position and orientation
by using the relative configurations of each pair of adjacent links, and inverse kinematics
describe the process of obtaining a set of joint variables based on the desired position
and orientation. The inverse kinematics of the manipulator play an important role in
robotic research.The desired trajectory can be transformed via inverse kinematics into the
corresponding joint trajectories [5]. It is also the fundamental technology for solving many
problems, such as trajectory tracking [6], object grasping [7], and dynamic analysis [8].
It allows for the joint variables associated with the required task to be determined. The
IK (inverse kinematics) problem is a complex coupling problem. Many methods have
been proposed that can be divided into three categories: analytical solutions (closed-form

Machines 2023, 11, 648. https:/ /doi.org/10.3390/machines11060648

https:/ /www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11060648
https://doi.org/10.3390/machines11060648
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0009-0008-7898-1802
https://orcid.org/0000-0003-2574-4594
https://orcid.org/0000-0002-2667-1713
https://doi.org/10.3390/machines11060648
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11060648?type=check_update&version=2

Machines 2023, 11, 648

2 0f 33

solutions) [9], numerical solutions [10], and intelligent algorithms [11]. Regarding the
analytical solutions, they consist of algebraic and geometric aspects [12]. For example,
Gan et al. [13] proposed a complete analytical solution for the inverse kinematics of a P2Arm
robotic arm. The method provided the robot arm access to any position in an undefined
environment. However, traditional closed-form methods are difficult to implement in
robots with particular geometric features. The joint variables of numerical solutions are
obtained for iterative computational procedures. This has been the main approach for
resolving the IK problem of complex articulated manipulators. Unfortunately, traditional
numerical methods, such as pseudo-inverse methods [14], the Newton method [15], and
so forth, are time-consuming [16]. The Jacobian IK method, with its complex matrix
calculations and singularity issues, has made the problem difficult to solve. Similar to
the Jacobian IK method, the iteration of the Newton method is complex and difficult
to implement. Due to the problems with the Jacobian and Newton methods, various
intelligent algorithms have been proposed, such as the GA (Genetic Algorithm) [17,18],
PSO (Particle Swarm Optimization) [19], DE (Differential Evolution) [20], NN (Neural
Networks) [21], ABC (Artificial Bee Colony) [22], and ACS (Ant Colony System) [23]. The
main idea involved in using intelligent algorithms for solving inverse kinematics is to
transform the problem into minimizing or maximizing a fitness function with an iterative
strategy. The comparison of the algorithms is shown as Table 1.

Table 1. A comparison of different algorithms in terms of their advantages, disadvantages, and limitations.

Advantages

Disadvantages Limitation

DE [24]

PSO [25]

CS [26]

ACS [27]

ABC [28]

NN [29]

GA [30]

fast convergence, strong robustness,
and easy to hybridize with

other algorithms

fast convergence, few control
parameters, strong robustness

few control parameters,
convergence, hard to fall into the
local optimal, easy to hybridize
with other algorithms, strong
global search ability.

strong robustness; easy to
hybridize with other algorithms

high global search ability, simple
parameter setting, and wide range
of application

highly parallelized, robust, and
fault tolerant

strong explore ability, suitable for
nonlinear problems, hard to fall
into local optimum

easily influenced by local optima,
premature convergence, and even
search stagnation

easily influenced by local optima,
premature convergence

slow convergence rate and lack
of vitality

time intensive, slow convergence
rate, and easily influenced by
local optimum

slow convergence low precision

sensitive to data quality and noise;
requires a lot of data and
computing resources

the programming is complicated to
implement, and easy to fall into
local optimal solutions

lack of theoretical analysis
of convergence

poor discrete optimization results

difficult to set the search step-size;
better individuals may be discarded
in the search process; poor local
search ability

weak ability to balance the
population diversity and
convergence rate

sensitive to parameter setting

the learning process cannot be
explained, and the computing rate of
neural network is slow

the results is very dependent on the
encoding scheme; the convergence
speed is slow; and the parameter
adjustment is difficult

The Differential Evolution (DE) algorithm is an intelligent optimization algorithm,
which was proposed by Price and Storn [31]. It has many appealing characteristics, such
as fast convergence, few control parameters, and excellent robustness. It has commonly
been used to optimize engineering problems, such as signal processing [32], satellite image
enhancement [33], and numerical optimization [34]. In the robotic area, DE algorithms and
their variants have been widely used in motion planning [35], path trajectory [36], visual
control [37], and so on. A novel DE algorithm was proposed by Ren et al. [38] to plan
a minimume-acceleration trajectory for a humanoid robot. The results indicated that the
improved DE algorithm was effective in generating the minimum-acceleration trajectory
for the humanoid robot with a seven-DOF manipulator. Zhang et al. [39] proposed a

Machines 2023, 11, 648

30f33

multi-objective algorithm that hybridized the DE algorithm with a PSO. The path length,
the degree of safety, and the degree of smoothness were taken as the objectives to optimize.
The experiment results revealed that the hybrid algorithm outperformed other algorithms
on the path length, the degree of safety, and the degree of smoothness. Cuckoo Search (CS)
is a novel search algorithm proposed by Yang and Deb. It is a widely used algorithm that
has less computational demand, and it can be easily merged into other algorithms. Due to
its simplistic mathematical process, it has been used in multi-objective optimization [40],
neural networks [41], facial recognition [42], and so on. Similar to the DE algorithm, the CS
has also been widely used in robotics for such applications as trajectory tracking [43], path
planning [44], and so forth. Sharm et al. [45] used a tournament selection function, which
considered both path time and length, to optimize the CS algorithm for robot path planning.
Compared to the PSO and the traditional CS, the performance of Sharm’s improved CS
algorithm was better in terms of path length and time optimization. To obtain a higher
efficiency and an automated trajectory, the Adaptive Cuckoo Search (ACS) was proposed
by Zhang et al. [46] In the algorithm, the path time was minimized under strict dynamic
constraints. Compared to other algorithms, the ACS algorithm had better performance,
with a better convergence speed and greater efficiency. Karahan et al. [47] presented a novel
trajectory generation method that considered time optimization, jerk optimization, and
time—jerk optimization. The improved CS was proposed and compared to earlier studies,
and the results showed that the improved CS was more effective than other algorithms.
Despite the significant advantages of the DE and CS algorithms, they are easily influenced
by local optima with low convergence accuracy. Although many variants of the DE
algorithm have been proposed, a single-mutation strategy has often been unable to solve
complex optimization problems; it is also difficult for the basic DE algorithm to balance the
global exploration ability and local development ability. Meanwhile, they usually focused
on optimizing the cross-over probabilities and mutation factors. The quality of the initial
swarm and the weight coefficient in the fitness function has a significant influence on the
results, which is typically ignored. Additionally, if the swarm size is small, the risk of
premature convergence with a DE algorithm increases. To solve the problems and improve
the accuracy and performance of DE algorithms, we proposed a novel hybrid algorithm:
the Bidirectional Opposite Differential Evolution—-Cuckoo Search (BODE-CS) algorithm.
The contributions of this study are summarized in the following:

(1) A novel objective function was formulated according to the structural characteris-
tics of the robot manipulator. By using the D-H (Denavit-Hartenberg) method, the
pose matrix of the robot end effector was analyzed. Then, a novel objective function
was proposed to accelerate the algorithm’s convergence rate. The objective function
considered both the position error and orientation error. The coefficient of the ori-
entation error was associated with link length, link twist angle, link offset, and joint
angle, etc.

(2) A Halton sequence and the opposite strategy were used to initialize the swarm. A
Halton sequence with a low difference was proposed to initialize the swarm instead of
the random initialization method. The Halton sequence could improve the diversity
of the swarm and enable the individuals to be more evenly distributed. Meanwhile,
the opposite strategy was also applied to optimize the swarm quality.

(3) A multi-strategy composite DE algorithm with improved factors was formulated.
To avoid the local optimum, firstly, a dynamical opposite differential evolution al-
gorithm and bidirectional search strategies were introduced. Since the maximum
and minimum values of each dimension were dynamically changed during the itera-
tive process, a smaller search range was more conducive to algorithm convergence.
Therefore, the maximum and minimum values of each dimension were selected as
new boundaries for generating new individuals. Then, by adjusting the differential
evolution formula symbols, new bidirectional individuals could be generated. Based
on the proposed two strategies, two typical DE mutation strategies were also intro-
duced to form and enhance a new multi-strategy composite DE algorithm. Finally, the

Machines 2023, 11, 648

40f33

amplification factor (F) in mutation and the cross-over probability factor (C,) were
both improved.

(4) A multi-strategy CS algorithm was constructed. During the CS algorithm’s opera-
tion, the dynamically opposite strategy, linear global best strategy, improved step
strategy, and linear decreasing abandonment strategy were applied. The linear global
best strategy considered both the current individual and the global best individual. A
weighted method was used to combine them in order to accelerate the swarm conver-
gence. An improved step strategy was used to increase the diversity of the swarm,
and the linear decreasing abandonment strategy could improve the diversity at the
beginning of searching, as well as increased probability to retain the best individual at
the end of searching.

(5) The mechanism for selecting the best algorithm and strategy was established for
the BODE-CS algorithm. First, the BODE algorithm and improved CS algorithm
were dynamically selected by an algorithm selection function. Then, a piece-wise
function was formulated to choose one strategy for the BODE algorithm and optimize
the swarm. Meanwhile, the dynamically opposite strategy and the best linear global
strategy were also applied to improve the CS algorithm.

The remainder of this paper is organized as follows: In Section 2, the kinematic model
of our robot’s end effector is established, and a novel objective function is formulated.
Then, in Section 3, the procedures of the traditional DE algorithm and CS algorithm are
introduced. Additionally, the improved strategies for DE and CS are also introduced to
accelerate convergence and mitigate the influence of the local optima. In Section 4, the
simulations are described, and the comparative results of the BODE-CS algorithm are
presented. Finally, the conclusion and perspectives are provided in Section 5.

2. Kinematic Analysis for the Robot Manipulator
2.1. Mathematical Model of the Manipulator

Each joint is associated with a joint variable q. The expression of variable g is as follows:

g=ln @ .. al, 1)

where g, represents the iy, joint variable; in the case of a revolute joint, the variable g; is
the angle ofrotation, and, in the case of a prismatic joint, it is the joint displacement [48]. n
represents the number of DOFs.

The homogeneous transformation matrix is used to describe the position and orien-
tation of one coordinate system in another coordinate system. It is used to change the
reference frame in which a vector or frame is represented [49]. The superscript of the
matrix indicates the reference coordinate system; the subscript right corner of the matrix
identifies the target coordinate system. It includes a translation matrix P341, a rotation
matrix R3y3,and a1 X 4 matrix (0, 0, 0, 1). According to the D-H method, the homogeneous
transformation matrix A;:_l could be obtained through the following:

Affl = Rot, g Trans, 4. Transy,, Roty q,
[co, —so, 0 O 1 00 0 1 0 0 a 1 0 0 O
B se, ¢co 0 0 01 0 O 01 0 0 0 cq Sa; O
N 0 0 1 0 0 0 1 4 0 01 0 0 so co O
L O 0 01 0 0 0 1 0 0 0 1 0 0 0 1] (2
[co, —S¢.Ca; So;Sa; AiCe,
_ S6; Co;Cu; TCH;Sw; AiSe;
- 0 Su; Ca; d;
L O 0 0 1

where i is the link number, and A;:_l represents the homogeneous transformation matrix
relating the description of a point in Frame 7 (O;-X;-Z;) to the description of the same point

Machines 2023, 11, 648 5 of 33

in Frame (i-1) (O;_1-X;_1-Z;_1). The parameters a;, a;, d;, and 0; represent link length, link
twist angle, link offset, and joint angle, respectively.

Thus, with respect to a reference to the base Frame Oy, — x31;,2, the kinematics function
from the end-effector Frame O, — x,y,z. to the base Frame is calculated as follows:

b b Sl b b

n

Ty = TTAi-1 = | mel@) si(q) a(q) pi(q) | _ | ny sy ay py :[R/ Pe} 3
2(q) 1} o o 1 s 0, 1 3)

where T%(g) represents the pose matrix from the end-effector coordinate system to the base
coordinate system, n%(g), s?(q), and a%(g) represent the unit vectors of a frame attached
to the end-effector, p!(g) represents the position vector from the end-effector coordinate
system to the base coordinate system, RY represents the orientation matrix from the end-
effector coordinate system to the base coordinate system, and P! represents the position
vector from the end-effector coordinate system to the base coordinate system.

2.2. Establishment of the Objective Function

In this study, we used a weighting method to formulate the fitness function. The IK
problem of the robot manipulator aimed to optimize the errors between the desired pose
and the estimated pose. The desired pose matrix T? is given before solving the IK problem.
The estimated pose matrix T? is obtained by substituting the current joint variable g into
the formula.

b b

b _ Re Pe

- @
RL pb

b Re Pe

e ©

where T?, TV € R**4, and RY, P? represent the desired orientation (posture) vector and
position vector, respectively, and RY and P? represent the estimated orientation vector
and position vector, respectively. R and P? are the current rotation matrix and position
matrix, respectively.

The pose errors consist of the orientation error AR and the position error AP. Many
earlier scholars have assigned the coefficients of AR and AP according to their experience
or through a significant amount of calculation. However, the process can be time intensive,
and the results lack theoretical guidance and controllable parameters. The position and
posture of the robot end effector is determined by the D-H parameters. Therefore, based
on the D-H parameters, we proposed a new method to calculate the coefficients of AR and
AP to define a novel fitness function in the end. Then, a novel fitness function is proposed
as follows:

f = wpAP + wRAR (6)

Neyr = (nx — 7x)? + (ny — fy)? + (nz — 7iz)?
Serr = (Sx — 8x)2 + (s — §y)? + (52 — 52)?
Ay = (ay — dy)* + (ay — a}/)z + (a; —)2 @)
AR = \/Nepr + Serr + grr
AP = [(pr = Po)? + (py — By + (p — P
wp =1 (8)

n

larm = Z(‘di|+|ai‘) 9
i=1
)\p _ POSmax — POSmin (10)

larm

Machines 2023, 11, 648 6 of 33

Ap+Ag=1 (11)
/\R'Crad
121 (eimaxfeimin)
WR = = (12)
)LP

where posmax and posmin are the maximum distance and minimum distance from the end-
effector position to the origin of the base coordinate position, respectively; Iy represents
the sum of all link lengths |a;| and link offsets |d;| of the manipulator; and 6;,,,, and 6,
are the iy, dimension upper and lower boundaries, respectively. The parameter c,,; was
equal to 1 rad, and it was used to adjust the unit of wg. The convergence precision of
the orientation and position errors is different. In order to balance the difference between
orientation and position errors, we proposed a novel weighted method. Meanwhile, due to
the end-effector’s position being affected by D-H parameters (link length, link offset, and
joint angle, etc.), we associate the position error AP of the end effector with the link length
and link offset, and we associate the orientation error AR with joint angle (Formula (12)).
We calculate the workspace of the robot manipulator using the Monte Carlo method and
obtain the maximum distance pos;;;;y and minimum distance pos,,;, of the robot’s end
effector. The process of calculating wp, is as follows: Firstly, wp is assigned to 1, and the
parameter I, is calculated by considering the absolute value of link length 4; and link
offset d; with Formula (9). Secondly, calculate the parameter A, by considering the posax,
POSpin, and Iy, (Formula (10)). Thirdly, calculate the parameter Ag using Formula (11).
Finally, calculate the parameter wr using Formula (12).

3. Hybrid BODE-CS Algorithm
3.1. Standard DE Algorithm

DE is a random heuristic algorithm, which works in two stages: initialization and
evolution. The process of initialization usually generates the individuals randomly, and, in
the second stage, the individuals usually go through mutation, crossover, and processing.
The process of DE is detailed as follows:

(a) Initialization

To begin, each individual in the swarm is generated randomly. If the swarm consists
of N individuals, and each individual has a D dimension, the population initialization
process would be the following:

X = X min + (Y max — Xkmin) - rand(0,1) (13)

where x5, and xy ,,,i, are the upper and lower boundaries of the variable j, respectively,
and rand(0, 1) is a random uniform distribution number in (0, 1). The variable j represents
the jy, individual in the swarm, and k represents the k;, component of the x; individual.

(b) Mutation
In this procedure, new individuals are generated by introducing the differential vector.
The basic mutation process is calculated as the following;:

vf (1) = 2y (1) + F - (1 (1) — 15(1)) (14)

where F € [0,2] is the scale factor, and the indices r1, 72, r3 € {1,2,3,...,N}, and
(r1 # rp # r3) have random values from 1 to N; t and t + 1 represent t;, and (t + 1)y
iterations, respectively. Many variant DE algorithms have been proposed, and the most
common DE variants are the following:

Machines 2023, 11, 648 7 of 33
(1) DE/rand/1:
o(t+1) = 2k (1) + F- (xhy (1) — 25 (1)
(2) DE/best/1:
O (E+1) = xpp (1) + F - (x5 (t) — x53(1))
(3) DE/best/2:
OF(E+1) = xpper () + F - (x5 (£) — x5 (1)) + A - (x5 (8) — xj4(1)) (15)

(4) DE/rand/2:

vf (1) = x5y (1) + F - (1 () = x55(8)) + A (2 (1) — xj5(8))

(5) DE/current-best/1:

Of (£ 4+ 1) = 2 (1) + F - (x (1) = x§(1)) + A+ (3 (1) = x5(8))

The indices rq, 12, 13, 14, and 15 € {1,2,3,..., N} represent the index of five random
individuals in the swarm, and 7| # 7y, # r3 # 14 # 75; xlg o5 (1) and x}‘ (t) represent the
best individual and current individual in the swarm, respectively; and F and A are the
scale factors. With the development of the DE algorithm, various DE variants have been
proposed as well, such as ODE [50], CODE [51], MADE [52], JDE [53], NSDE [54], JADE [55],
SDE [56], and so forth.

(c) Crossover

In the crossover operation, u}‘(t + 1) is generated based on the following

k ' _
u}“(t—l—l):{ vi(t+1) if rand(0,1) <Cr or (k= kepa) (16)

x}‘ (1) otherwise,

where u? (t + 1) represents the new individual established by the crossover process, and it
is the ky, component of vector u;(t +1); v k (t + 1) represents the new individual generated
by the mutation, and it is the ky, component of vector v;(f +1); x X; k(t) represents the original

individual in the parent group, and it is the kth component of vector x;(t); C, € (0,1)
represents the cross-over rate; and k,,,,4 is a random number, and, in k,,,5 € (1,2,...,D), D
is the problem dimensionality.

(d) Selection

The selection procedure determines which candidate solution (u}‘ or x}‘) survives to
the next generation. The operation is described as follows:
K1) — u;‘(t +1) if fitness(u; kKt+1)) < fitness(x;‘(t)) 17
x] (+) k . ()
x; (1) otherwise,
where fitness(u;‘(t + 1)) represents the fitness value of u;‘(t +1),and fitness(x;‘(t)) repre-

sents the fitness value of xj.‘ (t).

3.2. Improved Strategy for Differential Evolution Algorithm

The traditional DE algorithm usually generates the individuals randomly; however,
the individuals then have a non-uniform distribution, and the convergence rate of the
algorithm is usually unstable. Therefore, we introduced a Halton sequence strategy to
generate a uniform distribution of individuals and improve the convergence rate of the

Machines 2023, 11, 648

8 of 33

swarm. Then, the bidirectional search strategy and dynamical opposite DE were introduced
into the DE/best-best/1 algorithm to obtain high-quality individuals. We also combined
the two proposed strategies, DE/rand-best/1 and DE/rand-best/1, to form a composite
DE algorithm; the selection of the five equations was determined by an adaptive piece-
wise function.

3.2.1. The Halton Sequence Strategy for the DE Algorithm

In this section, a Halton sequence strategy [57] was used to initialize the swarm of the
BODE-CS algorithm. This is a popular multi-dimensional low-discrepancy sequence. The
sequence was generated based on a deterministic method, and several co-prime numbers
were used to discretize its search space. The D-dimensional Halton sequence is expressed
as follows:

HD(n> = {Gl’bl(”)/ quZ(n)/ B @bD(n)}/n =123,..,N, (18)

where b; is a prime number, and ¢;j(1) is the jth radical inverse function of the following:
n .
P, ()= Y ahal; - bj_l_l,O < ahal; < bj — 1. (19)
i=1

Therefore, the initialization could be expressed as follows:
U;C = Xk,min + (xk,max - xk,min) : HD (])/ (20)
where Hp () is the Halton sequence of the jy, individual.

3.2.2. A Bidirectional Search Strategy for the DE Algorithm

The bidirectional search is a strategy that uses the best solution as the base vector. The
solution and search process included two opposite directions. The operations are described
as Formulas (21) and (22).

(+ 1) - xbest() +F- (xlffl() - x ()) +A- (xbest(t) xlr<3(t)) (21)
(+ 1) = xbest(t) E- (xlifl (t) - xl;Z(t)) —A- (xlljest() (t)) (22)
F = (Fmax — Fmin) - (2 — e{Taax 02y (23)

where F and A are adaptive scale factors for the two differential vectors, respectively. Fyax,
F.in, and A are constants in the formulas. Tj;4y represents the maximum iteration number.

To enhance the explosive ability of the improved algorithm, an adaptive cross-over
probability C, was used in this study; the expression is the following:

t

Cr = Cmin + (Cmax - Cmin) . ()/ (24)

Tmax

where Cyyx and C,,;;, are constants.

3.2.3. An Improved Opposite Strategy on the DE Algorithm

The ODE is an opposition-based method. It enhances the search process by generating
the opposite points of initial individuals. By utilizing this method, the diversity of the
swarm could be improved. In this study, we used traditional and contraction ODE methods
to initialize the swarm and produce new solutions, respectively, during the iteration process.
The dynamic contraction ODE increased the possibility of finding a better position and
assisted in fine-tuning the evolution of the algorithm.

Machines 2023, 11, 648 9 of 33
(a) Opposition-Based swarm initialization
The initial individuals were calculated by the following:
v;'c(t + 1) = Xk,max + Xk min — xj'%t)' (25)

After the opposition-based method was executed, the fitness values of the initial
individual and the opposition-based individuals were calculated. Then, we selected the
individuals with lower fitness values as the next generation.

(b) Contraction-Opposition-Based swarm optimization

As compared to the process of swarm initialization, during the iterative process, the
maximum and minimum values of each dimension in the current swarm were dynamically
changed. To fine-tune and generate new individuals, we used the maximum and minimum
of each swarm dimension, instead of the initial upper boundary and lower boundary, to
optimize the swarm.

U?(t + 1) = Sk,max(t) + Sk,min(t) - (1 - Ccsor * Cwmd)x;‘((t) (26)

where Si max, Sk min Tepresent the maximum and minimum values of each dimension in
the swarm, respectively—during the search process, the boundary (S in, Sk max) becomes
increasingly smaller than the predefined boundary (X, Xmax); Cesor is a constant; C,,,4 is
a random number between 0 and 1; and the C¢sor and C,,,,4 form an adaptive coefficient for
the ODE formula. The two factors in the Formula (26) promoted the adaptive change in the
current individual.

3.2.4. The Procedure of the BODE Algorithm

In this section, we proposed a novel composite strategy to optimize the robot manipu-
lator problem. The BODE algorithm consisted of five variant algorithms and a piece-wise
function, which were utilized to enable the BODE algorithm to randomly select the mu-
tation operations. The piece-wise function and specific mutation operations are defined

as follows:
rbasel—og 0.2- ()2

Thase2 = 0.65—-02- ()2

Tcol = Thase2 + wﬂiﬁ% (27)
Tco2 = Thase2 + M
vlé‘(- xlb{ﬁ‘“()+ F- (e () — x5 () + A (xbest(t) —x5(1), if TDE > Thasel
U t+ 1) = S] max() + S] mm(t) (1 Ccsor Cmnd) ;((t), if Teo2 <TDE < Thasel
;(() (1(t) xlrcz(t)) (xbest() X S(t)) if Teol < TDE < Teo2 (28)
;((t + 1) - xbest() (x l(t) X Z(t)) (xbest() X 3(t))’ if Tbase2 < 'DE < et
O (E+1) = 2 (1) + F - (x5 (8) = x5(8) + A+ (x5, (1) — x5 (1)), if TDE < oo

where 744501, Tpase2s Teo1, and 72 are the parameters used to select the proper strategy in
order to operate the mutation process of the BODE-CS algorithm, and Cgs is a constant.
The first equation in Formula (28) is DE/best-best/1, the second equation is based on the
dynamical opposite strategy, the strategy of the third equation is DE/current-best/1, and
the fourth equation and the first equation are mutated based on bidirectional strategy. The
strategy of the last equation is DE/rand-best/1. The pseudo-code of the BODE algorithm
is given in Algorithm 1.

Machines 2023, 11, 648

10 of 33

Algorithm 1: The pseudo-code of the BODE algorithm. IK for robot manipulator
based on BODE algorithm.

1

2:

Q1 = W

6
7
8
9

: f < objective function defined in Formula (6)

Initialization parameters

: for each individual j do

: Initialize individual position x; with Halton sequence strategy (Formulas (18)—(20))

: optimize the individuals by considering an opposite strategy with the following
Formula (25)

: end

Compare the fitness value of the individuals generated by the opposite strategy
with theinitial individual, respectively and update the individuals

: repeat

10: for each individual j do

1

1: randomly select x,, x, and xk,

12: randomly generate a number rpr and compare this with Formula (27)

13: select the proper DE strategy by using Formula (28) and compute a new mutant
14: vector v;-‘ (t+1)

15: calculate the adaptive crossover probability C, by using Formula (24)

k

16: and do crossover operation. Calculate a trial vector u? using Formula (16)

17: select the individual with smaller fitness for the next generation using
18: Formula (17)
19: until stop criteria or the Tj;;;y is met.

The position x; (q1, - - ., 4u) represents the joint angle in each dimension, and rpg is a

randomly generated number between 0 and 1.

3.3.

Standard Cuckoo Search Algorithm

In the CS algorithm, there are three control parameters: the switch parameter, the scale

factor, and the step size. The operation is calculated as follows:

Each cuckoo randomly selects one nest in which to lay an egg.

The nest with the best fitness value eggs is selected as the best nest and retained for
the next generation.

The host bird may remove an alien egg with a probability (P;) or abandon it and build
a new nest elsewhere.

Due to Lévy flight, the search speed of the CS algorithm could be improved efficiently.

This provided a random walk, which led the search for a new environment; the step size

use

d the Lévy distribution. The algorithm could efficiently balance the local search and

global search. The local and global random walk formulas of Lévy flight were calculated
and are defined as follows:

The local random walk:

i (t+1) = xE(8) + ays @ H(Py — &) @ (x5 (1) — xfg (1)), (29)
The global random walk:
(1) = xf () +ag @ L(s,A),j = 1,2,...,m (30)
AcL(A¢) sin(7<)
= <
L(s, Ac) () ,(1<A<3), (31)

where a; and a, represent positive step-size scaling factors; ¢ is a random number in (0,1);

k

x}‘(t + 1) represents a new location; X; (t) represents the current location; ® represents

the

entry-wise multiplication of two vectors; H() represents the Heaviside function; I'()

Machines 2023, 11, 648

11 0f33

represents the gamma function; x’lj o5 (1) is the best solution; s represents the step length;

and L(s, A.) represents the Lévy distribution.
In Mantegna’s algorithm [58], the step length s is computed by the following:

s=—m_ (32)

|Vm]

>l

3
where § is an index parameter that is usually defined as 5 and u,, and v;, are calculated

using the normal distribution method.
tm ~ N(0,08,,),vm ~ N(0,05,,), (33)

where 0y, and o, are defined as follows:

™=

T(1+ B)sin(Z)
Oum= (1+p) -1
(8]

L Oom = 1. (34)

The specific steps were the following:
(a) Initialization

The individuals were individualized, and all the parameters for the algorithm were set.
(b) Lévy flight

The individuals were updated according to the Formula (29) or Formula (30).
() Random walking

Nests were abandoned by considering P;, and new nests were generated according
to the local random walk. In addition to the method mentioned in Formula (29), the
method with two random individuals was also widely used. The formula is expressed by
the following:
x}‘(t)—i—mnd(O,l) (xk =k o), rand(0,1) > P, (35)

x;.‘ (1) , otherwise

xj?(t+1)_{

where indices rcsl, res2 € {1,2,3,...,N} represent the index of two random different
individual in the swarm.

3.4. Improved Strategy for CS
3.4.1. An Opposite Strategy for the Swarm

The opposition-based strategy is an effective exploration enhanced method. In this
section, we also used the dynamical ODE mentioned previously to enhance the explosive
ability of the BODE-CS algorithm. In contrast to the ODE applied in the DE algorithm, when
many strategies were applied, the time consumption increased. To reduce the calculation
time and accelerate convergence, the parameter r.5, was introduced to determine whether
the ODE method applied to the CS. The 7, is expressed as follows:

t
Teso = Co(l -

) (36)

Tmax

where Ty,qy represents the maximum iteration number, and C, is a constant.

Machines 2023, 11, 648

12 0f 33

3.4.2. A Linear Global Best Strategy for the Swarm

The linear global best strategy is used to generate new individual by considering
current information and the best information in the swarm.

v}‘(t +1) = wjxj?(t) + wghestxgbest(t) (37)

where w; and wgy,s; are the coefficients of the current vector and the global best vector,
respectively. The two coefficients are constants. To balance the calculation time and the
diversity of the swarm, we introduced a criterion to determine whether the linear global
best strategy would be used or not; the criterion is as follows:

fitmax - fitave)

fitmax - fitmin (38)

Tesvi = Ci(

where Cy,; is a constant, and fitax, fitsee, and fit,,;, are the maximum fitness value, average
fitness value, and minimum fitness value of the swarm, respectively.

3.4.3. An Improved Step Strategy and Linear Decreasing Abandonment Strategy for
Random Walking

The scaling factor «; in the step size of the Lévy flight was fixed, because, if the a5 were
to be set too high, the convergence rate cannot be guaranteed. Therefore, we optimized the
step size of the Lévy flight with a random coefficient:

5= g x — (39)
|| ?
2 1
ae — cos(n;css) + (40)

where 7.5 is a random number between 0 and 1.

Meanwhile, due to the probability P, of abandonment, the better individual could
be abandoned. Therefore, a P, with a linearly decreasing strategy and the new nest
was generated after abandoning a biased/selective random walk strategy. The linearly
decreasing P, is expressed as the following;:

t

Tmax

Py = Pamax — (Pamax — Pamin) X (41)
where Pyax and Py, represent the maximum probability of abandonment and the mini-
mum probability of abandonment, respectively. Both the improved step strategy and the
linearly decreasing abandonment strategy were used to improve the diversity of the swarm
and the convergence rate.

3.5. The Procedure of Improved CS

As previously mentioned, four strategies were introduced into the CS algorithm, and,
based on the strategies and the standard CS, we proposed a multi-strategy framework to
maximize the performance of each individual. The details of the improved CS algorithm
are shown in Algorithm 2.

Machines 2023, 11, 648

13 0f 33

Algorithm 2: The pseudo-code of improved CS. IK for robot manipulator based
on an improved CS algorithm.

1: f < objective function defined in Formula (6).
2: Initialization parameters and individuals.
3: repeat

4: for each individual j do

5: Generate a new nest using Lévy flights method (Formulas (29), (33) and (34))
6: (Formulas (39) and (40)) evaluate its fitness value and update the nest

7: update the nest with a better fitness value

8: end

9: Abandon a fraction (P,) of the worst nests and build new nests via Lévy flights
10: (Formulas (35) and (41)) and find the best nest in the current swarm

11: keep the best nest with quality solution

12: for each individual j do

13: Generate a random number 7, and compare it with 75, by using

14: Formula (36).

15: if 7, < 7. then

16: Optimize the individuals by considering the opposite strategy and

17: calculating new solutions using Formula (26).

18: evaluate its fitness value and update the new nest with the old nest

19: update the nest with a better fitness value

20: end if

21: Generate a random number r;, and compare it with 7.g; using Formula (38)
22: if rp < rogp; then

23: Optimize the individuals considering linear global best strategy and

24: calculate new solutions by using Formula (37).

25: evaluate its fitness value and update the new nest with the old nest

26: update the nest with a better fitness value

27: end if

28: end

29: Until (t < Tmax) or (stop criterion)

3.6. Hybrid Strategy for DE and CS Algorithm

Based on the proposed BODE algorithm and improved CS algorithm, a multi-strategy
serial framework was proposed to optimize the results of the IK problem. In the serial
framework, we used a criterion to determine the algorithm to employ for optimizing the IK
problem. The criterion is described as follows:

fitm;e - fitmin 2
fitmax

f itqet = ((42)
Before the iteration, a random number rprcs between 0 and 1 was generated; then, we
compared rpgcs with fitge. If ¥ppcs was less than fit ., then the improved CS algorithm
would be applied; otherwise, the BODE would be used.
The schematic diagram of the BODE-CS algorithm is shown in Figure 1:

Machines 2023, 11,

648 14 of 33

Begin

v

Initialization parameter ‘

A4
Initialization individual position
with Halton sequence strategy by
using Formula (18)-Formula (20)

Calculate the'ﬁtness of each ‘

individual
A4
Optimize the initial individuals with

improved opposite-based strategy by
using Formula (25)

v
Calculate the fitness of each new
individual

A4
Compare the fitness of each new
individual with the old one and
update the individual with less

fitness value
4

o NO Returnthebest
— ,,t<rTm:n or Perm?S;tqp, = value N\\ End

YES

v YES Generate new nests by using Lévy flights with Formula (29), Formula

] '7 VrDECS< Sity 7) = (33), Formula (34), Formula (39), Formula (40) and calculate the
T~ fitness of new individuals

N
l ‘ Update the nests with smaller fitness value
Randomly generate a 1

coefficient 7pr and determine
the strategy to mutate by

Generate a fraction (P,) to determine whether the host bird abandon
the nest to build a new one Formula (35), Formula (41) or not

considering Formula (27), 3
Formula (28) Calculate the fitness of new nests and update the nests with smaller
l fitness
Apply crossover strategy by ””7””,,,,,,,1,,,,
using Formula (24), Formula ~ ———— Random(0,1) < r,, ,Formula(3¢)
(16) to generate new individual, YES | NO
and update the swarm with Apply the opposite strategy with Formula (26) to generate and
smaller fitness calculate the fitness of new nests, update the nests with smaller fitness
Apply greedy selection strategy 4::::::11:',:7,7,::7wrrﬂRandom(O,l) < Fepi» Formula (38)777,,,,,,:::::::::::
By using Formula (17) to NO
generate new individual, update YES ,
the swarm with smaller fitness | | Apply the linear global best strategy with Formula (37) to generate and
| calculate the fitness of new nests, update the nests with smaller fitness
[
v
Set t=t+1

Figure 1. The schematic diagram of BODE-CS algorithm.

4. Simulation Result and Discussion

To realize the efficient demolition and rapid disposal of explosives, our team developed
a new EOD robot, as shown in Figure 2. It consists of two systems: one is the main
mechanical arm system (the left arm, with claw), and the other is the auxiliary mechanical
arm system (the right arm, with the cutting tool).

The main manipulator has 6-DOF, which were used to capture and dispose of ex-
plosives, and the auxiliary manipulator has six degrees of freedom, which were used to
disassemble explosives, as well as assist the main manipulator in observing and defusing
explosives. In this paper, we selected the main manipulator as the object to analyze the
proposed BODE-CS algorithm. The 3D structure diagram is shown in Figure 3.

Machines 2023, 11, 648

15 0f 33

Figure 2. The schematic of the explosive ordnance disposal robot.

Figure 3. The 3D structure diagram of the main manipulator.

The configuration of the main manipulator is shown in Figure 4:

b

6
xg /26

ds
a R as
Vi V> V3
X2 X3
. z; 0 Z3
d
Zy
Zy
J
X
0 Yo
Yo

Figure 4. The configuration of the main manipulator using standard D-H method.

The D-H parameters are shown in Table 2:

Machines 2023, 11, 648 16 of 33
Table 2. D-H parameter settings for EOD robot manipulator.

i a (mm) « (rad) d (mm) Ounax (rad) 0,,in (rad)
1 0 T 113.5 T T
2 2 2
2 —425 0 0 n _n
2 2
3 —374.9 0 0 n _
2 2
4 0 _ 92.8 T _
2 2 2
5 0 T 110.3 n _
2 2 2
6 0 0 56.8 n _r
2 2

In Table 2, the parameters a, «, d, and 6 represent link length, link twist angle, link
offset, and joint angle, respectively.

The main idea involved in BODE-CS algorithms for solving inverse kinematics is to
transform the problem to minimize a fitness function, so the final solution is only one. To
validate the performance of the BODE-CS algorithm, two simulation experiments were
designed: a random-points task and a trajectory-tracking task. The random-points task
generated 100 random points and solved the IK problem according to these points. The
trajectory-tracking task tracked the respective trajectories of four different curves. The
specifications of the test machine were an Intel(R) Core(TM) i5-7500 CPU 3.40 GHz with
8.0 GB of RAM.

4.1. Parameter Setting

The aim of the simulations was to verify the performance of the BODE-CS algorithm
to solve the IK problem. In the simulated experiment, several comparative experiments
were designed to compare the performance among the BODE-CS algorithm, DE/rand /1
(Standard DE), DE/best/1, DE/rand/2, DE/best/2, DE/current-best/1, SDE [56], CS
(Standard CS), PSO, GA, and ODE. A swarm size is typically 5-10 times the population
dimension. The dimension of our robot manipulator was six, so we defined the swarm size
of all the algorithms as 30. In this study, the robot’s manipulator position accuracy could
reach 10~! mm, so we defined the stop criterion as Ssrop = 1 ¥ 10~ mm. This criterion
could not only compare the position accuracy of different algorithms, but could also meet
the position accuracy requirements of robots. Based on the experience of scholars who
have studied DE, CS, and other algorithms, we defined the maximum iteration number
Tnax of all the algorithms as 100. The parameters of the BODE-CS algorithm were &) = 0.01,
B =3/2, and wp = 1. With many comparative experiments, when we selected A = 0.1,
Fnax = 0.9, Fyin = 0.5, wj = 0.7, Wepest = 0.3, Cax = 0.8, Cpyiyy = 0.5, Co = 0.2, Cp; = 0.15, Cesor
=0.05, Payax = 0.25, and P,y,;;, = 0.05, the BODE-CS algorithm showed better performance.
Similarly, based on the experience of other scholars, we defined the factor F and Cg in
DE/rand/1, DE/rand/2, DE/best/1, DE/best/2, DE/current-best/1, SDE, and ODE, as
0.9 and 0.5, respectively; the factor A in DE/rand/2, DE/best/2, and DE/current-best/1
was defined as 0.1.

The other algorithms’ parameter settings are shown in Table 3.

Table 3. The parameter setting of CS, PSO, and GA.

Algorithm Parameter Setting
s P, =0250;=001,a,=1,=3/2
PSO c1=12,¢c0=1.2;

GA Py, =02,P.=04,

Machines 2023, 11, 648

17 of 33

The ¢; and ¢, values represent the acceleration constant; P, represents mutation
probability; and P represents the crossover probability.

Before obtaining the coefficient wg of the BODE algorithm, we used the Monte Carlo
method to calculate the posmax and posmin and obtain A,, where 300,000 random points
were selected in the workspace to calculate posmax and posmin. Then, we calculated the A,
for a total of 30 independent times, the results are shown as follows:

Due to the posyax and pos,,;, being affected by g, when calculating Ap using
Formula (10), the difference between pos;.x and pos,,;,, divided by Iy, After that, when
calculating wg, AR also divided by the sum of the difference between joint angle upper bound-
ary and joint angle lower bounday in each dimension. As shown in Figure 5, the value of A,
approximated to ranges from 0.5725 to 0.5848. To reduce the increase in computational time
caused by high-precision decimals, in this paper, we defined A, = 0.58.

)\p value by Monte Carlo method

0.584

0.582

0.58

0.574

0.572 "

0.57 : :
0 10 20 30
Number of Repeated Calculation

Figure 5. The results of Ap in the repeated calculation using the Monte Carlo method.

4.2. Task Description

For Task 1, 100 randomly selected points were given, as shown in Figure 6. To ensure
the desired random points were generated in the workspace, we used the Monte Carlo
method to generate the random points. A comparative study of the IK problem of the
random points was conducted. The position and the orientation of all the points were
different. The influence of the different weight coefficients on the objective function was
first tested; then, the fitness value f and position error P,,; were reported. Finally, the
iterative processes of the different algorithms were also evaluated.

For Task 2, the trajectory-tracking simulation was conducted. In this task, we used
sinusoidal, circular, trapezoidal, and rose curves to analyze the BODE-CS algorithm. The
formulas of the four curves are shown in Formulas (43)—(46), the unit of the four curves is
in mm. The main testing included the fitness value f, the position error P, and so on.
To display the statistical variation results of the simulation, a box plot was also used.

Trajectory 1: Sinusoidal

py = —500
py € [—520, =520 + 3007] (43)
pz = —100 + 400sin (15, py)

Machines 2023, 11, 648

18 of 33

Trajectory 2: Circular

6, € [0,271]
px = —500
py = —200 + 300sin(6)) (44
p- = —100 + 300cos(6,)
Trajectory 3: Trapezoidal
px = 500
py € [~520, —100]
rp = —200 + 400sin(Zpy)
0 if r,>0 (45)
p:=1{ —400 if rp< —400
p otherwise
Trajectory 4: Rose curve
px = —500
Bp € [0, 7]
rp = 300cos(3B,) (46)

py = —520 +rp cos(Bp)
pz = rpsin(pp)

The desired orientation matrix matrix of all the trajectories resulted in the following:

0.2838 0.8639 —0.4161
Rot = | 0.6716 0.1307 0.7293 (47)
0.6844 —0.4865 0.5431

1000 .
° :o. LY ... :.; °
500 - o % ce®
—~ ° % ° ¢ .o °
g . .
g/ O ° "...‘ ° ¢
N ° ° . [] '] []
. %9 o fo °
-500 . o, 00
% S .‘ °
-1000 . N
1000 \\\ L
\\\ o~ 500
0 \\\ o } 0
N - -500
y(mm) -1000 -1000 x(mm)

Figure 6. The distribution of 100 random points.

4.3. Simulation Results for the Robot IK Problem
4.3.1. Results Obtained for Task 1

Task 1 aimed to verify the performance of the proposed fitness function (Formula (6)).
Several different coefficients were compared, and the results are shown in Figure 7.

To graphically display the statistical variation for the results, box plots were used. The
smaller data distribution the algorithm shows, the better performance will be. The BODE-CS

Machines 2023, 11, 648

19 of 33

represents the weight coefficient of the proposed weight calculation method. As shown in
Figure 7, when equipped with the proposed weight method, the fitness of the manipulator
could guide the search of the algorithm to converge efficiently. An extensive performance
comparison with seven weight coefficients indicates that the proposed BODE-CS reported
small data distribution errors and showed the best performance among the eight weight
coefficients. The results of the BODE-CS algorithm were precise, with a maximum value of
fitness of 0.112. wg was related to Ap, Ag and 0;,,,5x, Oimin; Ap was related to posax, POSmin
and l;,,,; Ag was related to Ap; and 1, was related to d; and a,. Thus, wgi was related to the
robot structural parameters. The fitness value calculated by the proposed weight method
(Formulas (6)—(12)) was smaller for the optimized coefficients when considering the robot
structural parameters.

The results of different w_ value Fitness value

R
2.5 :
Q |
I
15
T
g 1 '
0.5 — 0 = R
O-!-J- LL-T-J%%---._

BODE-CS 1 05 02 01 0.05 002 0.01

Different W value

Figure 7. Fitness value results for different wg.

Additionally, to verify the performance of proposed strategies in the BODE-CS algo-
rithm, we compared the ky;, point iteration process of the BODE-CS algorithm with other
algorithms. Figure 8 shows the iteration results for the inverse kinematics problem of
100 random points. The reported results indicate that the proposed BODE-CS algorithm
could balance the global search with the local search and outperformed the other algo-
rithms, with a minimum fitness value of 0.0833. The second-lowest minimum fitness value
among the other 10 algorithms was 0.3868 (CS). The DE/best-best/1 strategy made the
BODE-CS algorithm have a fast convergence rate and better results; when the iteration
number reached 63, the fitness value was less than 0.1. The BODE-CS algorithm showed
faster convergence than the other algorithms.

Two parameters were used to compare the stability of the algorithms—the maximum
fitness value and maximum position errors. The maximum position error and the maximum
fitness value represented the maximum position error and the maximum fitness value of all
the 100 random points, respectively. The results for solving the IK problem of 100 random
points are illustrated in Table 4. The introduction of the algorithm selection function
streamlined the balance between the global and local searches. As shown in Table 4, the
BODE-CS had the best performance, with the lowest fitness value and position errors of all
the algorithms.

Machines 2023, 11, 648

20 of 33

The iteration results of different algorithms
300 ~BODECS |

--CS
DE/rand/1
DE/best/1
- -DE/best/2
DE/rand/2
---DE/current-best/1
SDE
PSO
GA

(o]
S
()

—
S
S

Fitness value

-
!
!
1

* e

E—
40 60 80 100

No. of Iteration

Figure 8. The k;, random point iteration process with different algorithms.

Table 4. Inverse kinematics with 100 random points using different algorithms.

Algorithm Maximum Position Error (mm) Maximum Fitness Value
BODE-CS 0.070 0.112
DE/rand/1 13.484 13.552
DE/best/1 6.770 6.874
DE/best/2 11.466 11.466
DE/rand /2 12.939 12.939
DE/current-best/1 129.239 129.253

SDE [56] 15.359 15.385
CS 10.897 10.898
PSO 14.963 15.213
GA 78.271 78.377
ODE 16.694 16.705

To verify the influence of swarm size on the convergence results, four different-sized
swarms were selected; the swarm sizes were 30, 50, 80, and 100; the Sstop = 1029 mm, and
the results are shown in Figure 9.

The Fitness value of different swarm size value

o 0.1 : _:— T _:_

2 1 1 1 |

< 1 1

>

20.05 L

= 1] I

i ! ! : :
I

30 50 80 100

Different swarm size value

Figure 9. The fitness value results for different swarm sizes.

As shown in Figure 9, with the increases in swarm size, the maximum fitness values of
the iterations were always less than 0.15; the results for 30 individuals were similar to the
other numbers of the individuals. The precision requirements for the explosive removal
were not very high when the number of the trajectory or random points was less than 100.

Machines 2023, 11, 648

21 0f 33

The smaller the swarm size was, the shorter the calculation time would be, so the swarm
size selected in this study was appropriate.

Generally, the Jacobian-based method has the advantage of fast convergence and
high precision; to verify the performance of the BODE-CS algorithm, we also compared
the BODE-CS algorithm with the Newton—Raphson algorithm (Jacobian-based method).
The initial solution of Newton-Raphson was set to [0 0 0 0 0 0]; the stop criterion of
Newton-Raphson was equal to the BODE-CS algorithm. The comparison results of Newton—
Raphson and the BODE-CS algorithm were shown ains Table 5:

Table 5. The comparison results of Newton—-Raphson and BODE-CS in solving 100 random-
points task.

Algorithm Position Error (mm) Fitness Value
Min Mean Max Min Mean Max
BODE-CS 7.184 x 107 5.895 x 104 0.0070 9.690 x 1073 6.707 x 102 0.112
Newton-Raphson ~ 2.842 x 10714 57.150 14279 2843 x 1014 57.151 1427.9

The results show that, compared with the Newton—-Raphson algorithm, the BODE-CS
algorithm performed better, with a smaller mean or maximum position error, as well
as mean or maximum fitness value. The Newton—-Raphson algorithm showed a better
minimum position error and fitness value. The precision of the Newton-Raphson algorithm
was high; however, the solutions calculated by the Newton—-Raphson algorithm were not
stable. This is because of the influence of singular configuration and initial solution setting.
In most situations, the precision of the Newton—-Raphson algorithm is high; however, with
the influence of singular configuration or initial solution setting, the result was difficult to
converge. Thus, in general, the performance of the BODE-CS algorithm was better than
Newton—Raphson.

In many situations, the EOD robot did not require high orientation accuracy when
grabbing or defusing explosives. Thus, we designed another 100 random-points trjaectory
task, which only considered the position requirements (wp = 1, wg = 0 in Formula (6)) to
verify the applicability of the proposed algorithm in solving different tasks.The kth random
point iteration process for different algorithms is shown below.

As shown in Figure 10, the proposed BODE-CS algorithm also outperformed the
other algorithms. The algorithm selection function and other improved strategies kept the
diversity and accelerated the swarm convergence, with a minimum fitness value of 0.00012.
The second-lowest minimum fitness value among the other algorithms was 0.04316 (GA).
When the iteration number reached 46, the fitness value of the BODE-CS algorithm was
less than 0.1.

As shown in Formula (6), when wr = 0, the value of fitness is equal to the position
error AP. Therefore, we only need to compare the maximum fitness value to select the
best algorithm. As shown in Table 6, with the introduction of the improved Lévy flight
strategy and the DE/best-best/1 strategy, the proposed algorithm could balance the global
search and local search. The premature phenomenon could also be avoided. The simulation
results of the BODE-CS strategies showed the best performance. The maximum fitness
value of BODE-CS algorithm was 0.0075. It was also the smallest of all the algorithms.

Machines 2023, 11, 648

22 of 33

The iteration results of different algorithms

3 00 :-:g(S)DE—CS

DE/rand/1
DE/best/1
- -DE/best/2
DE/rand/2
—--DE/current-best/1
SDE
PSO
GA
~=-ODE

Fitness value

60 80 100
No. of Iteration

Figure 10. The kth random point iteration process of different algorithms (position requirements).

Table 6. Inverse kinematics with 100 random points using different algorithms (position requirement).

Algorithm Maximum Fitness Value
BODE-CS 0.0075
DE/rand/1 15.9222
DE/best/1 9.0836
DE/best/2 7.8957
DE/rand/2 14.5838
DE/current-best/1 161.2696

SDE 15.5102
CS 12.461
PSO 52.8607
GA 110.2148

ODE 18.4566

To further verify the applicability of the BODE-CS algorithm, we introduced a 7-DOF
Baxter redundant manipulator and solved its inverse kinematics problem of 100 random
points. The coordinate system of link i, D-H parameters, and the distribution of 100 random
points are shown in Figure 11, Table 7, and Figure 12, respectively. Therein, the offset of 6,
is /2.

d- d; d; d;

Z, A y1 Z2 y3

2
. Zz
Xi ng | a X; 3

4 4 y
5
Vi

d 2 =1
{12{) a6 -x5v Z; y7
I Yo X4 s —F—
Vs ! Z7
X() x6 x7

Figure 11. The coordinate system of Baxter’s manipulator using modified D-H method.

Machines 2023, 11, 648 23 of 33

Table 7. Baxter’s Denavit-Hartenberg parameters.

i a (mm) « (rad) d (mm) 0nax (rad) 0,,in (rad)
1 0 0 270.35 Z -5
20 3 6 -1
3 0 z 364.35 Z -
4 69 -7 0 5 0
5 0 z 374.29 Z -Z
6 10 - 0 Z -z
7 0 z 229.529 Z -
500 , .
0
E L ° 1 } .. ® .
Tq/ 'f ° ° - ° ° ; g
'500 R * ° > 00 ..: e® o .o".
e, .:.‘ ° o
1000 * te
1000
0 0
y(mm) -1000 -1000 x(mm)

Figure 12. A distribution of 100 random points for 7-DOF robot IK problem.

Additionally, to verify the applicability of the BODE-CS algorithm, we compared the
iterative process of the BODE-CS algorithm with other algorithms. The maximum iteration
number T, was 200; the swarm size was 70. Figure 13 shows the iteration results for
the inverse kinematics problem of 100 random points. The proposed BODE-CS algorithm
outperformed the others, with a minimum fitness value of 0.0572. The second-lowest
minimum fitness value among the other 10 algorithms was 0.1265 (DE/current-best/1).
The BODE-CS algorithm had a fast convergence, and, when the iteration number reached
164, the fitness value was less than 0.1. The BODE-CS algorithm shows wide applicability
and faster convergence than other algorithms.

The maximum fitness value and position error for solving the IK problem of 100 ran-
dom points are illustrated in Table 8. The maximum position error and maximum fitness
value were also used to compare the stability of the algorithms. The introduction of al-
gorithm selection function makes it easy to balance the global search and local search in
solving the 7-DOF IK problem. Therein, the BODE-CS algorithm also showed the best
performance, with the smallest fitness value and position error in all the algorithms. The
applicability of the widely used algorithm is further proved.

Machines 2023, 11, 648

24 of 33

The iteration results of different algorithms

300 ---BODE-CS ‘
--CS

| DE/rand/1
" DE/best/1

\ - -DE/best/2
200 DE/rand’2
- —--DE/current-best/1
SDE

Fitness value

0 . I o gy O RIS

0 50 100 150 200
No. of Iteration

Figure 13. The ky, random point iteration process of different algorithms.

Table 8. Inverse kinematics of a 7-DOF redundant robot manipulator with 100 random points using
different algorithms.

Maximum Position Error (mm) Maximum Fitness Value
BODE-CS 0.0062 0.1014
DE/rand/1 28.0690 28.14704
DE/best/1 19.9514 20.0162
DE/best/2 23.8813 23.9331
DE/rand/2 20.8778 20.9458
DE/current-best/1 46.3560 46.4510
SDE 24.8601 249414
CS 3.1545 3.1707
PSO 36.2566 36.3429
GA 62.0163 62.1044
ODE 21.3118 21.3953

4.3.2. Results Obtained for Task 2

In Task 2, to better verify the performance of the BODE-CS algorithm, we selected
200 trajectory points for tracking. Due to the increase in the trajectory points, the calcula-
tions were more complex; thus, the probability of higher fitness values or position errors
increased. Therefore, we redefined the swarm size as 60. As shown in Table 9, the maxi-
mum position errors corresponding to the IK solution of DE/current-best/1 and GA in the
four curves were all more than 10 mm. Due to the relatively large maximum position error
values, the IK solutions calculated by the two algorithms were unacceptable. Although
the IK solutions obtained from the other eight algorithms were smaller, the cumulative
error of adjacent points in a trajectory could considerably increase, and the stability of
robot motion would be affected. The BODE-CS algorithm obtained the first rank with the
minimal maximum position error and maximum fitness values in the four curves, and the
maximum position errors of all four curves were less than 0.1 mm. The results show better
performance than those of the other 10 algorithms.

Machines 2023, 11, 648 25 of 33
Table 9. The results of four curves trajectories tracked using different algorithms.
Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4
Algorithm Maximum Maximum Maximum Maximum Maximum Maximum Maximum Maximum

Position Fitness Position Fitness Position Fitness Position Fitness

Error Value Error Value Error Value Error Value

BODE-CS 0.017 0.100 0.016 0.120 0.004 0.110 0.083 0.182
DE/rand/1 7.706 7.713 6.946 6.958 9.254 9.356 8.56 8.635
DE/best/1 4.779 4.832 4.895 4.897 6.446 6.472 4.083 4.155
DE /best/2 4.782 4.784 4.200 4214 7.785 7.806 4415 4.425
DE/rand/2 7.303 7.347 7.772 7.790 9.943 9.978 7.384 7.413
DE/current-best/1 43.999 44.009 73.680 73.700 49.421 49.445 54.278 54.322
SDE 11.419 11.439 11.672 11.713 10.025 10.030 9.239 9.299

Cs 4.538 4.610 4.649 4.661 4.036 4.139 4.871 4.954

PSO 4.111 4.154 5.203 5.249 2.466 2.535 6.577 6.594

GA 41.721 41.758 48.613 48.656 46.981 47.004 43.831 43.874

ODE 10.543 10.548 10.672 10.740 9.584 9.658 10.163 10.179

To compare the trajectory-tracking results of all the algorithms in different curves, the fit-
ness and postion distributions of all the algorithms were also analyzed. In Figures 14 and 15,
DE1, DE2, DE3, DE4, and DE5 represent DE /rand /1, DE/best/1, DE/best/2, DE/random/2,
and DE/current-best/1, respectively. The position error results and fitness value results
are displayed graphically. When the wr was small, the influence of orientation error times
wpr showed smaller values for the fitness function, so the position error was sometimes
almost equal to the fitness value. For example, the results in Figure 14b were similar those
in Figure 15b, so the fitness value analysis results were similar to the position error analysis
results; thus, we only needed to discuss the analysis results for the position errors.

The position errors of the DE/current-best/1 and GA during the trajectory tracking
were distributed over a large range. There are three reasons that may have influenced the
results of DE/current-best/1 and GA: small swarm size, the quality of initial individuals,
and the influence of the best individual. Due to the small swarm size and poor quality of
initial solutions, the convergence of DE/current-best/1 and GA may have been slow, or
premature phenomenon; if there are many same local best individuals in the swarm early
on, the explore ability will decrease, and the swarm will show poor results. Therefore, the
DE/current-best/1 and GA were not suitable for tracking the four trajectories. DE/best/1,
DE/rand/1, and the other six algorithms had better performance results than DE/current-
best/1 and GA; however, when compared to our proposed algorithm, their stabilities were
poor, and the maximum position error was also large. Therefore, the proposed BODE-CS
algorithm was the most suitable algorithm for trajectory tracking.

To further verify the trajectory tracking iteration results of the BODE-CS algorithm,
we analyzed the iteration results of all the algorithms in four different curves. The results
are shown as Figure 16, for all the trajectory iteration results generated by the algorithms,
the BODE-CS algorithm acquired the first rank, with the following minimum fitness values:
0.065 (Trajectory 1), 0.059 (Trajectory 2), 0.100 (Trajectory 3), and 0.075 (Trajectory 4). Com-
pared to the other algorithms, the BODE-CS algorithm also showed a rapid convergence
rate when the fitness value reached 0.1. The iteration numbers when the fitness value reach
0.1 were 62 (Trajectory 1), 50 (Trajectory 2), 53 (Trajectory 3), and 43 (Trajectory 4). The
proposed BODE-CS algorithm showed better convergence than the other algorithms.

Moreover, Figures 17-20 show the Trajectory 14 tracking results of the DE/best/1
and BODE-CS algorithm, respectively. The black<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>