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Abstract: The performance of the electrohydraulic proportional control valve (EHPV) employed in a
tractor’s automatic steering system directly influences the steering performance. To develop a highly
reliable EHPV, it is essential to analyze the hydraulic characteristics of the EHPV for several working
conditions of tractors. This study aimed to measure and analyze the hydraulic characteristics of
the EHPV according to tractor working conditions. The flow rate and pressure data of the EHPV
were computed through the valve measuring system, and the required power was computed. The
experimental conditions were selected based on engine rotational speed and tractor steering angle.
As a result, it was discovered that the flow rate, pressure, and power all increased when the engine
rotation speed and steering angle conditions increased. Furthermore, the rates of increase in flow
rate, pressure, and power based on the increase in the steering angle were higher than when the
engine rotation speed increased. In the regression analysis results between the two variables and the
hydraulic characteristics of EHPVs, the steering angle demonstrated a higher correlation than the
engine rotation speed. In conclusion, the steering angle and engine rotational speed are the major
variables in the hydraulic characteristics of EHPVs, and the influence of the steering angle is greater.

Keywords: agricultural tractor; automatic steering system; electrohydraulic proportional valve;
hydraulic characteristic; hydraulic system evaluation

1. Introduction

The tractor is a major agricultural machine that performs tasks such as plowing,
harrowing, fertilizing, harvesting, and hauling through attachments. Tractors account
for the highest share of the global agricultural equipment market, 35%, and the tractor
market size is expected to grow to $69 billion by 2029 [1]. Due to the recent high interest in
automated agricultural machinery, many studies on tractor automation technology have
been performed [2]. In particular, advances in communication and sensor technology have
facilitated the rapid development of automation technology for agricultural machinery [3].
The utilization of these automated agricultural machines makes it possible to secure agri-
cultural productivity and carry out highly efficient agricultural work [4]. The autonomous
tractor market is expected to grow to $8.3 billion by 2028 [5].
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One of the major features of autonomous tractors is auto-steering. The significance
of precise steering in agricultural operations has been highlighted [6]. If steering control
is not properly conducted, problems such as lowered work efficiency or deviation from
the route may occur [7]. The performance of the steering system is important for precise
steering of the tractor. Most tractors utilize hydraulic power steering systems, as they are
more reliable than electric motor power steering (EPS), especially in agricultural machinery
that is often exposed to large and fluctuating loads [8]. In such a hydraulic system, steering
performance may be reduced due to factors such as fluid non-linearity and tractor vibra-
tions. The nonlinearity in hydraulic systems arises from fluid incompressibility, friction,
and hydraulic valve characteristics and significantly impacts system performance and
control [9]. Additionally, tractors operating in rough road conditions generate intense vibra-
tions, which can lead to vibration of the valve control elements such as the spool, resulting
in pressure pulsation [10]. To overcome these limitations and develop a high-performance
steering system, an electrohydraulic steering system has been developed. The application
of electrohydraulic steering systems in agricultural and construction machinery has been
extensively studied, and significant research has been conducted on the development of em-
bedded control systems for achieving high performance [11]. The electrohydraulic steering
system, employed in auto-steering tractors, determines the steering direction and flow rate
using an electrohydraulic proportional directional control valve (EHPV). EHPVs have been
extensively employed to implement the precise performance of agricultural machinery.
The performance of the EHPV directly influences the performance of the electrohydraulic
steering system [12]. Thus, the development of high-performance EHPV is important for
the stability and efficiency of the automatic steering system for high-power tractors.

Research on EHPVs employed in agricultural machinery has been performed by
several researchers around the world. These works include studies on the major tractor
components such as a front loader [13], the power shuttle system [14], the hitch con-
troller [15,16], and the transmission [17]. Most related studies focused on the development
of valve control algorithms. The primary aim of these studies was to enhance control re-
sponse speed and accuracy through the development of control algorithms. Bo et al. (2018)
developed a mathematical model of EHPV considering the nonlinearity of the hydraulic
system and evaluated the static and dynamic characteristics [18]. The dynamic characteris-
tics of EHPVs are obtained under conditions such as abnormal signal input and disturbance
by the tractor hydraulic system. By understanding the dynamic characteristics of EHPV, the
performance of EHPV in actual tractor operation can be predicted. When EHPV is tested on
an actual tractor or a test device capable of realizing actual working conditions, changes in
dynamic characteristics according to the working conditions of the tractor can be analyzed.
Lee et al. (2022) developed a steering algorithm through the hardware-in-the-loop (HIL)
test to identify the dynamic characteristics of a tractor hydraulic system [8]. The results
of the study demonstrated that the development of a steering algorithm can effectively
improve the nonlinearity of EHPV. In addition, the use of the EHPV showed less steering
control error and faster response compared to the use of EPS. However, prior research
on the measurement of dynamic characteristics and performance evaluation of the EHPV
considering various tractor working conditions is insufficient. For the development of
high-performance EHPVs, it is necessary to measure the hydraulic characteristics of the
EHPV mounted on an actual tractor under working conditions.

In the field of heavy vehicles, studies on the performance of EHPVs for each working
condition have already been carried out. Heavy vehicles are also similar to tractors in that
they apply EHPVs for stability against high loads. Xia et al. (2016) evaluated the flow rate,
pressure, and spool displacement characteristics of EHPVs based on the driving speed
and steering angular velocity of the vehicle [19]. EHPV performance was evaluated by
developing a mathematical model of the vehicle steering system through the analyzed data.
The developed model shows that application of the EHPV provides a better high-speed
steering feel than using conventional hydraulic power steering. In addition, the hydraulic
characteristics of valves are used as indicators for valve design optimization. Li et al. (2020)
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presented optimized valve core displacement, spring stiffness, and core–shell structure so
that the valve flow rate was output within the tolerance range for the design flow rate [20].
These preceding studies show that EHPV performance prediction and design optimization
can be realized through EHPV hydraulic characteristics analysis.

Nevertheless, analyzing the hydraulic characteristics of EHPV during the practical
agricultural operations of tractors poses significant challenges. Unlike other commercial
vehicles, tractors operate on uneven soil road surfaces. The performance of tractors working
in soil is influenced by various soil variables, including moisture content, soil texture,
and soil strength [21]. This introduces challenges in controlling experimental conditions.
Moreover, as tractors engage in tasks such as tillage that involve direct interaction with
the soil, the impact of soil becomes more pronounced [22]. Therefore, in order to analyze
the dynamic characteristics of the EHPV according to tractor operation, it is essential
to establish a database of hydraulic characteristics that accounts for various working
conditions including soil physical properties. However, since soil physical properties
cannot be controlled by researchers, it is difficult to derive the exact performance of the
EHPV when conducting experiments on soil condition. The hydraulic characteristics of an
EHPV can be defined as real-time flow rate, pressure, and required power characteristics.
The results of analyzing the hydraulic characteristics of EHPVs according to these tractor
working conditions can be used for future EHPV design optimization and control strategy
establishment. The performance of the hydraulic system for steering a tractor differs based
on the engine rotational speed and steering angle. First, the flow rate supplied to the EHPV
is identified from the hydraulic pump directly connected to the tractor engine, which varies
depending on the engine rotational speed based on the hydraulic pump’s displacement.
Second, since the opening and closing amount of the EHPV is presented according to the
steering angle of the tractor, the performance of the hydraulic system differs depending on
the steering angle. Hence, it is essential to measure and analyze hydraulic characteristics
such as flow rate and pressure of the EHPV in line with actual tractor working conditions
so as to secure basic data for the design and development of EHPVs applicable to automatic
steering tractors.

Therefore, the aim of this study is to analyze and evaluate hydraulic characteris-
tics of an EHPV under various working conditions. The specific research objectives
are: (1) development of a flow rate and pressure measurement system for EHPV, (2) mea-
surement of flow rate and pressure characteristics according to working conditions,
(3) required power analysis and statistical analysis based on different working conditions,
and (4) evaluation of the impact of working conditions on hydraulic characteristics through
regression analysis.

2. Materials and Methods
2.1. Agricultural Tractor

In this study, an agricultural tractor (PX1300, Daedong Co., Ltd., Daegu, Republic
of Korea) was employed to obtain data on the hydraulic characteristics of an EHPV. The
specifications of the tractor and hydraulic system are illustrated in Table 1. The tractor had
dimensions of 4290 (L) × 2250 (W) × 2770 (H) mm and weighed 4070 kg. The rated power
of the tractor engine was 93.2 kW at 2200 rpm. The hydraulic pump was a direct-coupled
engine type, and the steering pump had a displacement of 21 cc/rev and a rated flow
rate of 46.2 Lpm at an engine rotational speed of 2200 rpm. The hydraulic oil used in the
steering system was UTF-55 (Daedong Co., Ltd., Daegu, Republic of Korea), with a specific
gravity of 0.865 and a viscosity of 53.79 and 9.428 cSt at 40 and 100 ◦C, respectively.

2.2. Hydraulic Steering System

The schematic diagram of the hydraulic system employed in this study is depicted
in Figure 1. The EHPV was located between the gear pump and the steering cylinder to
regulate the flow rate and direction of the power steering fluid. The steering system of
the tractor used in this research study was a non-load reaction type, fully hydraulic, and
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operated by a hydraulic system without a mechanical linkage structure. The EHPV is a
developmental product designed to be attached as an add-on to existing tractors, enabling
the implementation of automatic steering functionality. The flow rate of the EHPV is
directly controlled through the flow control valve and the directional control valve in the
valve. The flow control valve serves the purpose of regulating the discharge flow rate from
the pump to achieve a specific target flow rate. The specifications of the EHPV are shown
in Table 2.

Table 1. The specifications of the auto-steering tractor used in this study.

Parameters Specifications

Dimension (length × width × height) (mm) 4290 × 2250 × 2770
Engine-rated power (kW) 93.2 (at 2200 rpm)

Engine maximum torque (Nm) 500 (at 1400 rpm)
Empty weight (kg) 4070

Steering pump
Displacement (cc/rev) 21

Efficiency (%) Approximately 95 (at no loads)
The gear ratio of engine pump 1:1

Hydraulic oil
Specific gravity 0.865

Viscosity (cSt) 53.79 (at 40 ◦C)
9.428 (at 100 ◦C)

Machines 2023, 11, x FOR PEER REVIEW 5 of 20 
 

 

Table 1. The specifications of the auto-steering tractor used in this study. 

Parameters Specifications 

Dimension (length × width × height) (mm) 4290 × 2250 × 2770 

Engine-rated power (kW) 93.2 (at 2200 rpm) 

Engine maximum torque (Nm) 500 (at 1400 rpm) 

Empty weight (kg) 4070 

Steering pump 

Displacement (cc/rev) 21 

Efficiency (%) Approximately 95 (at no loads) 

The gear ratio of en-

gine pump  
1:1 

Hydraulic oil 

Specific gravity 0.865 

Viscosity (cSt) 
53.79 (at 40 °C) 

9.428 (at 100 °C) 

2.2. Hydraulic Steering System 

The schematic diagram of the hydraulic system employed in this study is depicted in 

Figure 1. The EHPV was located between the gear pump and the steering cylinder to reg-

ulate the flow rate and direction of the power steering fluid. The steering system of the 

tractor used in this research study was a non-load reaction type, fully hydraulic, and op-

erated by a hydraulic system without a mechanical linkage structure. The EHPV is a de-

velopmental product designed to be attached as an add-on to existing tractors, enabling 

the implementation of automatic steering functionality. The flow rate of the EHPV is di-

rectly controlled through the flow control valve and the directional control valve in the 

valve. The flow control valve serves the purpose of regulating the discharge flow rate from 

the pump to achieve a specific target flow rate. The specifications of the EHPV are shown 

in Table 2. 

Table 2. The specifications of the EHPV used in this study. 

Item Specifications 

EHPV 

Maximum flow rate (Lpm) 60 

Control flow rate (Lpm) 25 

Maximum pressure (bar) 220 

 

Figure 1. Schematic diagram of the tractor hydraulic system used in this study. 

2.3. Measurement System 

To attain the flow rate and pressure data of the steering system, a hydraulic charac-

teristic measurement system of the EHPV was built utilizing a pressure sensor, a flow rate 

sensor, and a data acquisition system, as demonstrated in Figure 2. A pressure sensor 

(Hysense PR130, Hydrotechnik, Limburg an der Lahn, Germany) and a flow rate sensor 

(Hysense QG100, Hydrotechnik, Limburg an der Lahn, Germany) were installed in ports 

A and B of the EHPV, respectively. Continuous flow rate and pressure data were obtained 

Figure 1. Schematic diagram of the tractor hydraulic system used in this study.

Table 2. The specifications of the EHPV used in this study.

Item Specifications

EHPV
Maximum flow rate (Lpm) 60

Control flow rate (Lpm) 25
Maximum pressure (bar) 220

2.3. Measurement System

To attain the flow rate and pressure data of the steering system, a hydraulic character-
istic measurement system of the EHPV was built utilizing a pressure sensor, a flow rate
sensor, and a data acquisition system, as demonstrated in Figure 2. A pressure sensor
(Hysense PR130, Hydrotechnik, Limburg an der Lahn, Germany) and a flow rate sensor
(Hysense QG100, Hydrotechnik, Limburg an der Lahn, Germany) were installed in ports A
and B of the EHPV, respectively. Continuous flow rate and pressure data were obtained
over time through a data acquisition system (Q.brixx A107, Gantner, Nuziders, Austria).
The specifications of each sensor are illustrated in Table 3.
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Table 3. Specifications of the sensor system used to measure hydraulic characteristics in this study.

Item Specifications

Flow rate sensor
(Hysense QG100)

Measuring principle: displacement
Viscosity range: 10–500 mm2/s (cSt)

Output signal: 4–20 mA
Range: 0.7–70 Lpm

Supply voltage: 12–24 VDC
Environmental temperature: max. +80 ◦C

Accuracy: 0.4%

Pressure sensor
(Hysense PR130)

Measuring principle: piezo-resistive
Pressure type: relative pressure

Output signal: 4–20 mA/0–10 VDC
Range: 250 bar

Weight: 85 g
Accuracy: 0.5%

Data acquisition
(Q.brixx A107)

4 universal analog input channels
Fast, high-accuracy digitalization 24-bit ADC,

10 kHz sample rate per channel
Power supply: 10–30 VDC

Environmental temperature: −20 ◦C–60 ◦C
Accuracy: 0.01% typical

2.4. Experiment Method

To assess the hydraulic characteristics of the EHPV, experiments were conducted
to collect flow rate and pressure data during steering operations. The study focused
on the influence of engine rotational speed and steering angle, which directly impact
the performance of EHPVs. To measure the stable hydraulic characteristics, the tractor
remained stationary under urethane road surface conditions. The EHPV controlled the
valve opening through an integrated control unit. A control signal was applied to rotate
the tractor wheel from 0◦ to the target steering angle and back to 0◦. Steering sensors (424A,
Elobau, Leutkirch, Germany) were installed on the right wheel of the tractor to measure
the steering angle. The experiments involved categorizing the steering direction (left and
right) and were conducted under a total of 18 working conditions, considering variations
in steering direction, engine speed (900, 1400, and 2200 rpm), and steering angle (16◦,
38◦, and 54◦). The selected engine speed levels represented idle, maximum torque, and
maximum power conditions, respectively, corresponding to different operational scenarios
of the tractor. The engine speed was consistently maintained at a fixed level using the
tractor’s throttle lever. Furthermore, 3 steering angle conditions of 16◦, 38◦, and 54◦ were
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chosen, representing approximately 30%, 70%, and 100% of the maximum steering angle
of 54◦, respectively. The steering angle is a crucial parameter in assessing the steering
ability of a tractor, and multiple steering angle conditions were selected to comprehensively
evaluate the steering performance across diverse working conditions. Each experiment
was performed in 2 repetitions under the same working conditions displayed in Figure 3.
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2.5. Data Analysis Method

In this research, the hydraulic characteristics of the EHPV based on engine rota-
tional speed and steering angle were evaluated. Hydraulic power was computed through
Equation (1) employing the collected flow rate and pressure data to assess the power
needed for tractor steering. The hydraulic efficiency was applied as 90% in consideration
of the results of previous studies [23]. To analyze the variability of the obtained data, the
coefficient of variation (CV) was examined through Equation (2).

Pt = ηv ×
p × Q

0.6
, (1)

where Pt is the hydraulic power requirement (W); ηv is the hydraulic efficiency (−); p is the
pressure (bar); and Q is the flow rate (Lpm).

CV =
SD

Average
(2)

where CV is the coefficient of variation; and SD is the standard deviation.
To analyze the effect of engine rotational speed and steering angle on the hydraulic

characteristics of the tractor hydraulic system, a one-way analysis of variance (ANOVA)
and post hoc analysis employing least significant difference (LSD) were carried out using
IBM SPSS Statistics (SPSS 25, SPSS Inc., New York, NY, USA). The analysis approach
referred to prior research [24]. Two groups were judged to display statistically significant
differences when p < 0.05 was satisfied.

Additionally, regression analysis was carried out to assess the effect of steering angle
and engine rotational speed on hydraulic characteristics. Through Equation (3), the coef-



Machines 2023, 11, 674 7 of 18

ficient of determination (R2) of the hydraulic characteristics of the EHPV were attained.

R2 =
∑(ŷi − y)2

∑(yi − y)2 (3)

where R2 signifies the coefficient of determination; ŷi represents the estimated value; yi is
the average of value; and yi denotes the measured value.

3. Results
3.1. Profile of the Hydraulic Characteristics for Auto-Steering Tractor EHPV
3.1.1. Flow Rate

Figure 4 shows the flow rate profile of the EHPV under three steering angles, three
engine rotational speeds, and two steering directions. The hydraulic characteristics of the
EHPV exhibit different outcomes for each condition, and it was observed to be affected by
the steering angle condition and engine rotational speed condition. The flow rate increased
as the steering angle increased at the same engine rotational speed, and, likewise, the
flow rate increased as the engine rotational speed increased at the same steering angle.
Moreover, a higher flow rate was demonstrated in right steering (Figure 4D–F) compared
to left steering (Figure 4A–C). The flow rate at steering angles of 16◦, 38◦, and 54◦ under an
engine rotational speed of 900 rpm during left steering was found to fluctuate in the range
of 0.02–6.69, 0.01–7.72, and 0.01–9.47 Lpm, respectively. According to the same steering
angle conditions, the flow rates ranged from 0.01 to 8.81, 0.01 to 8.62, and 0.10 to 10.48 Lpm
at an engine rotational speed of 1400 rpm, and ranged from 0.01 to 8.58, 0.01 to 9.93, and
0.13 to 10.95 Lpm at an engine rotational speed of 2200 rpm. Additionally, the flow rate at
steering angles of 16◦, 38◦, and 54◦ under an engine rotational speed of 900 rpm during right
steering ranged from 0.01 to 7.81, 0.01 to 9.22, and 0.60 to 10.21 Lpm, respectively. Under
the same steering angle conditions, the flow rates ranged from 0.01 to 8.77, 0.01 to 9.78, and
0.30 to 10.63 Lpm at an engine rotational speed of 1400 rpm, and ranged from 0.01 to 10.40,
0.01 to 10.14, and 0.64 to 12.95 Lpm at an engine rotational speed of 2200 rpm, respectively.

The flow rate distribution at LS (left steering) and RS (right steering) exhibits temporal
fluctuations due to real-time adjustments of the spool position through the steering con-
troller in the EHPV’s electrical control unit. In the case of steering angle conditions of 16◦,
the control unit initially sets the spool to open the valve by 30%. The actual steering of the
wheel is influenced by various factors such as tire characteristics, road surface conditions,
fluid viscosity, and hysteresis. To ensure stable steering, the control unit continuously
adjusts the spool position and compensates for any deviations in input. Consequently, the
flow rate rapidly increases, undergoes fluctuations, and gradually decreases, resulting in
varying outcomes across experiments.

A noteworthy observation is that while the flow rate distribution shows differences
between experiments, the average and maximum values consistently exhibit similar results
within a ±10% margin of error across the two repeated experiments. This highlights the
stability and reproducibility of the collected data and reinforces the reliability of the data
collection method.

3.1.2. Pressure

The pressure profile of the EHPV under three different steering angles, three engine
rotational speeds, and two steering directions is displayed in Figure 5. The operating
pressure, which is the absolute difference between the port pressures on both sides of
the EHPV, was obtained. The pressure was amplified as the steering angle increased
at the same engine rotational speed, and, likewise, the pressure increased as the engine
rotational speed increased at the same steering angle. The maximum value of the pressure
characteristic at the same engine rotational speed varied according to the steering angle.
Specifically, at the maximum steering angle of 54 degrees, the pressure of the EHPV
increased to a level similar to the operating pressure of the relief valve. Furthermore, higher
pressure was demonstrated when steering right (Figure 5D–F) compared to when steering
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left (Figure 5A–C). The pressure at steering angles of 16◦, 38◦, and 54◦ under an engine
rotational speed of 900 rpm when steering left was observed to fluctuate in the range
of 10.0 to 41.7, 9.4 to 54.5, and 2.1 to 143.1 bar, respectively. Based on the same steering
angle conditions, the pressure ranged from 17.6 to 40.9, 7.7 to 50.3, and 0.9 to 147.2 bar
at an engine rotational speed of 1400 rpm, and ranged from 13.6 to 49.4, 15.9 to 62.3, and
12.3 to 156.1 bar at an engine rotational speed of 2200 rpm. Additionally, the pressure at
steering angles of 16◦, 38◦, and 54◦ under an engine rotational speed of 900 rpm when
steering right ranged from 14.1 to 43.2, 0.1 to 56.2, and 15.2 to 145.2 bar, respectively. Under
the same steering angle conditions, the pressure ranged from 16.4 to 43.1, 6.4 to 56.3, and
10.4 to 150.6 bar at an engine speed of 1400 rpm, and ranged from 15.2 to 50.5, 2.7 to 56.6,
and 15.5 to 161.1 bar at an engine speed of 2200 rpm.
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Figure 4. Representative results of flow rate measurement for the EHPV based on each working
condition case (A–F): Case (A) = left steering, engine speed 900 rpm; Case (B) = left steering, engine
speed 1400 rpm; Case (C) = left steering, engine speed 2200 rpm; Case (D) = right steering, engine
speed 900 rpm; Case (E) = right steering, engine speed 1400 rpm; and Case (F) = right steering, engine
speed 2200 rpm.

The distribution of pressure is shown to be similar to the shape of the distribution of
flow rate. However, it is slightly different in that the pressure rises gradually as the flow
rate is supplied. Additionally, except for the case where steering is performed up to the
maximum steering angle, fluctuations in pressure are not more severe than fluctuations
in flow rate. This is because, in the ideal case, the pressure of a fluid passing through a
pipe is proportional to the square of the flow rate. This can be confirmed by the fact that
the pressure has a lower CV value than the flow rate under the same conditions, except for
the case of 54◦ in Section 3.2. In the pressure distribution, it can be seen that the pressure
is applied even after the flow rate supply is stopped. This phenomenon is caused by
oil remaining inside the steering cylinder. In particular, under maximum steering angle
conditions, the steering cylinder becomes full of oil and causes a rapid increase in pressure.
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Fluids in bodies with no free volume develop high pressures due to their incompressibility.
This accounts for the pressure surge at the maximum steering angle.
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Figure 5. Representative results of pressure measurement for the EHPV based on each working
condition case (A–F): Case (A) = left steering, engine speed 900 rpm; Case (B) = left steering, engine
speed 1400 rpm; Case (C) = left steering, engine speed 2200 rpm; Case (D) = right steering, engine
speed 900 rpm; Case (E) = right steering, engine speed 1400 rpm; and Case (F) = right steering, engine
speed 2200 rpm.

3.1.3. Required Power

Figure 6 demonstrates the power profile of the EHPV under three steering angles,
three engine rotational speeds, and two steering directions. The power was amplified
as the steering angle increased at the same engine rotational speed, and, likewise, the
power increased as the engine rotational speed increased at the same steering angle. At the
same engine rotational speed, the maximum value of the power characteristic varied based
on the steering angle. In particular, the maximum output of the EHPV at the maximum
steering angle of 54 degrees was very high, owing to the pressure. Furthermore, a higher
power was demonstrated when steering right (Figure 6D–F) compared to when steering
left (Figure 6A–C). The power at steering angles of 16◦, 38◦, and 54◦ under an engine
rotational speed of 900 rpm when steering left was observed to fluctuate in the range of
1 to 378, 0 to 615, and 0 to 1684 W, respectively. Under the same steering angle conditions,
the power ranged from 0 to 470, 0 to 598, and 0 to 1351 W at an engine rotational speed
of 1400 rpm, and ranged from 0 to 629, 0 to 914, and 3 to 1980 W at an engine rotational
speed of 2200 rpm. Additionally, the power at steering angles of 16◦, 38◦, and 54◦ under an
engine rotational speed of 900 rpm when steering right ranged from 0 to 495, 0 to 767, and
14 to 1665 W, respectively. Based on the same steering angle conditions, the power ranged
from 0 to 502, 0 to 799, and 5 to 1456 W at an engine rotational speed of 1400 rpm, and
ranged from 0 to 719, 0 to 825, and 18 to 1724 W at an engine rotational speed of 2200 rpm.
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Figure 6. Representative results of required power measurement for the EHPV based on each working
condition case (A–F): Case (A) = left steering, engine speed 900 rpm; Case (B) = left steering, engine
speed 1400 rpm; Case (C) = left steering, engine speed 2200 rpm; Case (D) = right steering, engine
speed 900 rpm; Case (E) = right steering, engine speed 1400 rpm; and Case (F) = right steering, engine
speed 2200 rpm.

The power distribution was found to demonstrate large fluctuations. In particular, the
power consumption tended to increase rapidly at the point where the maximum steering
angle was reached, which means that the sudden increase in steering torque must be
considered when designing EHPVs. Considering that the experiment was conducted on
smooth, urethane road surface conditions, this suggests that more fluctuations in power
can occur when the tractor is working on soil. In conclusion, for the stability of the tractor
auto steering system, it is helpful to reduce the variation of flow rate and pressure in the
design of the EHPV.

3.2. Statistical Analysis of the Hydraulic Characteristics for Auto-Steering Tractor EHPVs
3.2.1. Flow Rate

The statistical analysis findings for the flow rate characteristics of the EHPV in line
with each working condition are illustrated in Table 4. The average value of the flow rate in
the working conditions was in the range of 4.87–9.42 Lpm, and the maximum value was
in the range of 6.69–12.95 Lpm. CV ranged from 0.160 to 0.361. The LSD outcomes in line
with the steering angle (indicated by subscripts a, b, and c in each row) were observed
to be statistically significantly different under all engine rotational speed conditions. The
LSD results based on the engine rotational speed (indicated by subscripts A, B, and C
in each column) also displayed statistically significant differences in all steering angle
conditions. The results of the LSD post-validation show that both the steering angle and
engine rotational speed are major factors affecting the flow rate characteristics of EHPVs.
The flow rate supplied to the steering unit through the gear pump is entirely proportional
to the engine rotational speed, but most EHPVs have a structure in which a reduced flow
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rate within the designed range is supplied through a flow control valve. Nevertheless, the
engine rotational speed has a clear influence on the flow rate characteristics of the EHPV,
and it can be expected that the higher the engine rotational speed of the tractor, the more
flow rate is supplied to the EHPV and the faster the steering is performed.

Table 4. Statistical analysis results of the flow rate for the tractor steering system according to the
working conditions (unit: Lpm).

Engine
Speed (rpm)

Descriptive
Statistics

Left Steering Right Steering

SA 16 * SA 38 SA 54 SA 16 SA 38 SA 54

900

Max. 6.69 7.72 9.47 7.81 9.22 10.21
Min. 0.02 0.01 0.01 0.01 0.01 0.60

Avg. ± std. 4.87 ± 1.28 Cc 5.52 ± 1.42 Cb 6.84 ± 1.71 Ca 6.04 ± 1.42 Cc 6.22 ± 1.74 Cb 7.84 ± 1.48 Ca

CV 0.263 0.256 0.250 0.235 0.280 0.189

1400

Max. 8.81 8.62 10.48 8.77 9.78 10.63
Min. 0.01 0.01 0.10 0.01 0.01 0.30

Avg. ± std. 5.57 ± 1.81 Bc 6.04 ± 1.73 Bb 7.46 ± 1.73 Ba 6.39 ± 1.49 Bc 6.65 ± 2.09 Bb 8.10 ± 1.30 Ba

CV 0.324 0.286 0.232 0.264 0.314 0.160

2200

Max. 8.58 9.93 10.95 10.40 10.14 12.95
Min. 0.01 0.01 0.13 0.01 0.01 0.64

Avg. ± std. 6.41 ± 1.85 Ac 7.03 ± 1.93 Ab 8.39 ± 1.57 Aa 6.54 ± 2.36 Ac 7.10 ± 2.27 Ab 9.42 ± 2.02 Aa

CV 0.289 0.275 0.187 0.361 0.319 0.214

* SA 16, 38, and 54 indicate steering angles at 16◦, 38◦, and 54◦, respectively. Note: Means with different
superscripts (a, b, c) in each row and different superscripts (A, B, C) in each column are significantly different at
p < 0.05 according to LSD multiple range tests.

3.2.2. Pressure

The pressure characteristics of EHPVs based on each working condition are shown
in Table 5. The average value of the pressure according to the working conditions was in
the range of 31.4–59.7 bar, and the maximum value was in the range of 40.9 to 161.1 bar.
CV ranged from 0.173 to 0.435. Owing to the rapid increase in pressure under the steering
angle condition of 54◦, the CV of the pressure was high at 0.357 to 0.435. The pressure
characteristics demonstrated a statistically significant difference according to steering angle
for all steering direction conditions of LS and RS. Conversely, it was verified that the
pressure based on the engine rotational speed did not demonstrate a statistically significant
difference in specific conditions (LS 38◦; RS 16◦; RS 16◦). Hence, it was verified that the
steering angle possessed a greater effect on the pressure characteristics of the EHPV than
the engine rotation speed.

Table 5. Statistical analysis results of the pressure for the tractor steering system according to the
working conditions (unit: bar).

Engine
Speed (rpm)

Descriptive
Statistics

Left Steering Right Steering

SA 16 * SA 38 SA 54 SA 16 SA 38 SA 54

900

Max. 41.7 54.5 143.1 43.2 56.2 145.2
Min. 10.0 9.4 2.1 14.1 0.1 15.2

Avg. ± std. 31.4 ± 6.5 Cc 37.8 ± 9.2 Bb 48.3 ± 20.2 Ca 34.7 ± 6.5 Bc 38.4 ± 9.7 Cb 53.3 ± 19.1 Ba

CV 0.208 0.244 0.418 0.188 0.252 0.357

1400

Max. 40.9 50.3 147.2 43.1 56.3 150.6
Min. 17.6 7.7 0.9 16.4 6.4 10.4

Avg. ± std. 32.3 ± 5.6 Bc 37.7 ± 9.2 Bb 50.9 ± 22.1 Ba 35.0 ± 6.5 Bc 41.2 ± 8.3 Bb 53.9 ± 22.6 Ba

CV 0.173 0.201 0.435 0.185 0.200 0.419

2200

Max. 49.4 62.3 156.1 50.5 56.6 161.1
Min. 13.6 15.9 12.3 15.2 2.7 15.5

Avg. ± std. 37.2 ± 7.7 Ac 46.9 ± 10.5 Ab 53.6 ± 23.3 Aa 38.1 ± 8.0 Ac 43.4 ± 9.2 Ab 59.7 ± 23.0 Aa

CV 0.208 0.225 0.435 0.211 0.212 0.385

* SA 16, 38, and 54 indicate steering angles of 16◦, 38◦, and 54◦, respectively. Note: Means with different
superscripts (a, b, c) in each row and different superscripts (A, B, C) in each column are significantly different at
p < 0.05 according to LSD multiple range tests.
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3.2.3. Required Power

The power characteristics of EHPVs based on each working condition are demon-
strated in Table 6. The average value of power according to the working conditions was
in the range of 238–819 W, and the maximum value was in the range of 378–1980 W. CV
was 0.294–0.473. Owing to LSD post-analysis, power characteristics following the steering
angle conditions portrayed statistically significant differences in all engine rotation speed
conditions. Alternatively, no statistically significant differences existed in power under
some of the engine rotational speed conditions (900 rpm and 1400 rpm) and under RS and
38◦ steering angle conditions. The steering angle exhibited a greater effect on the power
characteristics of the EHPV than the engine rotation speed. When steering at a steering
angle of 54◦, a high output of up to 1980 W is required, but this is primarily applicable when
the tractor wheels are almost fully turned. In actual tractor operation, it can be predicted
that the average power demand of the EHPV is below 1000 W.

Table 6. Statistical analysis results of the required power for the tractor steering system according to
the working conditions (unit: W).

Engine
Speed (rpm)

Descriptive
Statistics

Left Steering Right Steering

SA 16 * SA 38 SA 54 SA 16 SA 38 SA 54

900

Max. 378 615 1684 496 767 1665
Min. 1 0 0 0 0 14

Avg. ± std. 238 ± 89 Cc 321 ± 130 Cb 498 ± 220 Ca 324 ± 112 Cc 373 ± 146 Bb 621 ± 217 Ca

CV 0.375 0.403 0.441 0.346 0.390 0.349

1400

Max. 470 598 1351 502 799 1456
Min. 0 0 0 0 0 5

Avg. ± std. 280 ± 115 Bc 349 ± 132 Bb 570 ± 219 Ba 349 ± 125 Bc 423 ± 168 Bb 639 ± 202 Ba

CV 0.409 0.380 0.384 0.358 0.396 0.316

2200

Max. 629 914 1980 719 825 1724
Min. 0 0 3 0 0 18

Avg. ± std. 373 ± 158 Ac 520 ± 180 Ab 683 ± 293 Aa 396 ± 187 Ac 477 ± 186 Ab 819 ± 241 Aa

CV 0.423 0.346 0.429 0.473 0.410 0.294

* SA 16, 38, and 54 indicate steering angles of 16◦, 38◦, and 54◦, respectively. Note: Means with different
superscripts (a, b, c) in each row and different superscripts (A, B, C) in each column are significantly different at
p < 0.05 according to LSD multiple range tests.

3.3. Evaluation of Hydraulic Characteristics of EHPVs According to Engine Rotational Speed and
Steering Angle
3.3.1. Evaluation of Hydraulic Characteristics following Engine Rotational Speed

Figure 7 depicts the effect of engine rotational speed on the hydraulic characteristics
(flow rate, pressure, and hydraulic power) of the EHPV. Figure 7A–C display the results of
steering left, and Figure 7D–F illustrate the outcomes of steering right. A high R2 value
means a high linear relationship between engine speed and hydraulic characteristics. The
R2 of the flow rate, pressure, and power of the tractor when steering left ranged from
0.993 to 0.999, 0.852 to 0.986, and 0.939 to 0.999, respectively, according to the steering angle.
The flow rate depicted a high range of R2 compared to pressure and power. The R2 of the
flow rate, pressure, and power of the tractor when steering right ranged from 0.875 to 0.987,
0.907 to 0.955, and 0.909 to 0.997, respectively, based on the steering angle.

The results of the simple linear regression analysis for evaluating the hydraulic char-
acteristics of the EHPV using engine rotational speed are presented in Table 7. The overall
performance is high across most conditions, indicating that the hydraulic characteristics of
the EHPV, including flow rate, pressure, and power, can be effectively described solely by
the engine rotational speed. Moreover, it suggests that once the engine rotational speed
condition is identified, the hydraulic characteristics of the EHPV can be estimated.
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Figure 7. Evaluation results of hydraulic characteristics of the EHPV based on engine rotational
speed: Case (A–C) = left steering; Cases (D–F) = right steering.

Table 7. Outcomes of regression analysis of the hydraulic characteristics of the tractor EHPV following
engine rotational speed.

Items Steering Steering Angle Equation Pearson’s r R2 Adj. R2

Flow rate

LS
16 y = 0.00117Se* + 3.8633 0.996 0.993 0.985
38 y = 0.00117Se + 4.4476 0.999 0.997 0.995
54 y = 0.00119Se + 5.7754 0.999 0.999 0.999

RS
16 y = 0.00036Se + 5.7805 0.935 0.875 0.750
38 y = 0.00067Se + 5.6560 0.993 0.987 0.973
54 y = 0.00126Se + 6.5640 0.972 0.944 0.888

Pressure

LS
16 y = 0.00457Se + 26.7773 0.970 0.940 0.880
38 y = 0.00746Se + 29.6195 0.923 0.852 0.703
54 y = 0.00401Se + 44.8996 0.993 0.986 0.972

RS
16 y = 0.00275Se + 31.8236 0.952 0.907 0.814
38 y = 0.00375Se + 35.3689 0.977 0.955 0.911
54 y = 0.00511Se + 47.9787 0.955 0.913 0.826

Power

LS
16 y = 0.10518Se + 139.2046 0.997 0.994 0.988
38 y = 0.14224Se + 176.6751 0.969 0.939 0.878
54 y = 0.14189Se + 370.8443 0.999 0.999 0.999

RS
16 y = 0.05528Se + 273.3504 0.999 0.997 0.995
38 y = 0.07910Se + 305.7478 0.994 0.987 0.975
54 y = 0.15918Se + 454.3579 0.953 0.909 0.818

* Se indicates engine rotational speed.

3.3.2. Hydraulic Characteristics Evaluation according to the Steering Angle

Figure 8 outlines the effect of the steering angle on the hydraulic characteristics
(flow rate, pressure, and hydraulic power) of the EHPV. Figure 8A–C depict left steering
outcomes, and Figure 8D–F display right steering results. The R2 of the flow rate, pressure,
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and power of the tractor when steering left ranged from 0.864 to 0.923, 0.897 to 0.999,
and 0.858 to 0.963, respectively, based on the steering angle. All hydraulic characteristics
depicted a high range of R2. The R2 of the flow rate, pressure, and power of the tractor when
steering right ranged from 0.749 to 0.827, 0.828 to 0.920, and 0.801 to 0.873, respectively,
according to the steering angle. All hydraulic characteristics demonstrated high R2 values
but slightly lower than the outcomes when steering left.
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Table 8 indicates the outcomes of a simple linear regression assessment on the hy-
draulic characteristics of the EHPV using a steering angle. The overall performance is
high in all conditions, so the hydraulic characteristics (flow rate, pressure, power) of the
EHPV can be described only by the steering angle. Specifically, R2 values for pressure are
higher than those caused by engine rotational speed. When the steering angle condition is
identified, it shows that the hydraulic characteristics of the EHPV can be predicted, and the
accuracy for pressure is estimated to be high.

3.3.3. Evaluation of the Influence of Working Conditions on the Hydraulic Properties
of EHPV

Table 9 presents the outcomes of a multiple regression analysis investigating the impact
of engine rotational speed and steering angle on EHPV hydraulic characteristics. The use of
standardized coefficients allows for a convenient comparison of the effects of independent
variables on the dependent variable, as it eliminates the dependence on specific units.
The standardized coefficients indicate the magnitude of the regression coefficients. The
results of the multiple regression analyses revealed R2 values of 0.937, 0.942, and 0.928 for
flow rate, pressure, and power, respectively, in the LS condition, while the corresponding
values for the RS condition were 0.826, 0.876, and 0.835. The standardized coefficients
consistently indicated that steering angle exerted a stronger influence on the hydraulic
characteristics of the EHPV compared to engine rotational speed across all conditions. Thus,
it can be inferred that the steering angle has a more significant effect on the EHPV hydraulic
characteristics than the engine rotational speed.
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Table 8. Results of regression analysis of the hydraulic characteristics of tractor EHPVs according to
the steering angle.

Items Steering Engine Speed Equation Pearson’s r R2 Adj. R2

Flow rate

LS
900 y = 0.05046As* + 3.9264 0.961 0.923 0.846

1400 y = 0.04788As + 4.6329 0.930 0.864 0.729
2200 y = 0.05076As + 5.4468 0.955 0.912 0.824

RS
900 y = 0.07287As + 5.0645 0.910 0.827 0.655

1400 y = 0.04290As + 5.5012 0.890 0.792 0.585
2200 y = 0.04488As + 5.0854 0.866 0.749 0.498

Pressure

LS
900 y = 0.43440As + 23.5246 0.973 0.947 0.894

1400 y = 0.47379As + 23.2502 0.947 0.897 0.794
2200 y = 0.43272As + 30.3204 0.999 0.999 0.999

RS
900 y = 0.54714As + 27.3615 0.929 0.864 0.728

1400 y = 0.48524As + 25.9252 0.959 0.920 0.840
2200 y = 0.46994As + 25.2074 0.910 0.828 0.657

Power

LS
900 y = 6.67659As + 112.0829 0.957 0.916 0.832

1400 y = 7.34466As + 135.2262 0.926 0.858 0.715
2200 y = 8.01223As + 230.1733 0.981 0.963 0.925

RS
900 y = 7.4635As + 170.6954 0.895 0.801 0.603

1400 y = 7.39471As + 204.1820 0.934 0.873 0.745
2200 y = 10.69033As + 179.1830 0.908 0.824 0.649

* As indicates steering angle.

Table 9. Results of multiple regression analysis of EHPV hydraulic characteristics according to engine
rotation speed and steering angle conditions.

Items Steering Equation R2 Adj. R2 SE *
SC **

Se *** As ****

Flow rate
LS y = 0.0012Se + 0.0497As + 2.906 0.937 0.916 0.3169 0.610 0.751
RS y = 0.0009Se + 0.0575As + 3.858 0.790 0.720 0.5861 0.391 0.798

Pressure
LS y = 0.0053Se + 0.4470As + 17.675 0.942 0.923 2.2896 0.369 0.898
RS y = 0.0039Se + 0.5058As + 20.091 0.872 0.830 3.7797 0.240 0.903

Power
LS y = 0.1300Se + 7.3440As − 35.494 0.928 0.904 45.6628 0.500 0.823
RS y = 0.0988Se + 8.7457As + 25.401 0.823 0.764 80.9260 0.333 0.844

* Standardized error, ** Standardized coefficients, *** Engine rotational speed, **** Steering angle.

It is important to note that these results are contingent on the performance of the
EHPV’s flow control valve. The study employed a control flow rate of 16–24 Lpm for the
EHPV. However, if the designer modifies the control flow rate of the flow control valve,
the impact of engine speed on the EHPV hydraulic characteristics may either decrease
or increase. Therefore, when designing an EHPV for automatic tractor steering, it is
advisable to select the control flow rate based on the specific specifications and performance
requirements of the tractor.

4. Discussion

A tractor is distinct from a car in that its primary purpose is work rather than trans-
portation. The conventional work of tractors is carried out by fixing the engine rotational
speed to the rated speed condition [25]. When employing the automatic steering function
in actual work, left and right steering control will be carried out in the process of following
the target path, which results in a change in steering angle. High-performance EHPVs
are needed for fast and accurate steering control of auto-steering tractors. To develop
high-performance EHPVs, it is essential to secure a high level of design reliability. Specifi-
cally, since tractors function under various working conditions, it is crucial to obtain actual
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vehicle data for each EHPV condition. Thus, the data on the hydraulic characteristics of
EHPVs under several working conditions collected in this study can be used as basic data
for designing highly reliable EHPVs. The hydraulic characteristic data can serve as a useful
reference for optimizing design, predicting and enhancing performance during practical
usage, as well as developing control algorithms that consider the working conditions of the
tractor. Furthermore, since the hydraulic characteristics of EHPVs also impact the lifetime
and reliability of EHPVs, the obtained data can be employed for research such as valve
life evaluation.

Because of this study, it was verified that the steering angle condition had a higher
correlation with the hydraulic characteristics of EHPVs than the engine rotation speed
condition. Additionally, the rate of increase in each flow rate, pressure, and power based on
the increase in the steering angle was higher than that in the case of engine rotation speed.

Nevertheless, since this study was performed when the tractor was stationary, there
is a limitation in not including data when the tractor was running. Xia et al., (2016)
demonstrated that the pressure on the steering cylinder increases as the speed of the vehicle
decreases [19]. Specifically, the stronger the torque is on the steering wheel, the greater the
difference, since the pressure rises more steeply at low speeds. These factors may result in
lower pressure in the EHPV during actual driving. However, the load on the tractor that
happens when the tractor is driven in soil conditions increases the flow rate, pressure, and
power requirements of the EHPV. As such, several conditions, such as speed conditions and
road surface conditions, can affect the dynamic characteristics of the tractor EHPV. Thus, to
expand the study’s outcomes, it is essential to secure data for each condition. If experiments
are conducted by subdividing them based on soil conditions and tractor operation types, it
is anticipated that the reliability of the hydraulic properties of the EHPV will be enhanced.
In addition, the utilization of EHPV’s hardware data in conjunction with the development
of a mathematical model can greatly benefit the design of control systems. By conducting
research on the control response performance of the EHPV, we can anticipate significant
advancements in both control system design and the steering performance of automatic
steering tractors. These contents mentioned above will be addressed in future studies.

5. Conclusions

This study, as a fundamental investigation for the design of the EHPV in auto-steering
tractors, aimed to assess the hydraulic characteristics of the EHPV based on tractor engine
rotation speed and steering angle. The hydraulic properties of valves play a crucial role in
valve design, performance prediction, lifespan evaluation, and reliability assessment. The
key findings of this study are summarized as follows.

(1) ANOVA analysis revealed statistically significant differences in the hydraulic char-
acteristics of the EHPV under different engine rotation speeds and steering angle
conditions. These results clearly demonstrate that both working conditions have a
significant impact on the hydraulic properties of the EHPV.

(2) The required power exhibited the highest coefficient of variation. By minimizing flow
rate fluctuations, it is possible to reduce power fluctuations and enhance the stability
of the EHPV.

(3) Through the results of the regression analysis, it was revealed that the engine rotation
speed and steering angle had a linear relationship with the hydraulic characteris-
tics of the EHPV and that the steering angle had a greater effect on the hydraulic
characteristics.

(4) The design specifications of the flow control valve in the EHPV have a substantial
influence on its hydraulic characteristics. Excessive control flow rate may lead to
increased power fluctuations, while insufficient control flow rate could compromise
steering performance.

In conclusion, this study provides valuable insights into the hydraulic characteristics
of the EHPV in auto-steering tractors. The results emphasize the significance of engine
rotation speed and steering angle in influencing the hydraulic properties. These findings can
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contribute to the design, performance optimization, and reliability enhancement of EHPV
systems. Future research should focus on analyzing the EHPV hydraulic performance
when the tractor is operating in actual soil conditions.
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