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Abstract: Prognostic and health management (PHM) methods focus on improving the performance
and reliability of systems with a high degree of complexity and criticality. These systems include
engines, turbines, and robotic systems. PHM methods involve managing technical processes, such as
condition monitoring, fault diagnosis, health prognosis, and maintenance decision-making. Various
software and applications deal with the processes mentioned above independently. We can also
observe different development levels, making connecting all of the machine’s technical processes in
one health management system with the best possible output a challenging task. This study’s objective
was to outline the scope of PHM methods in real-time conditions and propose new directions to
develop a decision support tool for marine diesel engines. In this paper, we illustrate PHM processes
and the state of the art in the marine industry for each technical process. Then, we review PHM
methods and limitations for marine diesel engines. Finally, we analyze future research opportunities
for the marine industry and their role in developing systems’ performance and reliability. The main
added value of the research is that a research gap was found in this research field, which is that new
advanced PHM methods have to be implemented for marine diesel engines. Our suggestions to
improve marine diesel engines’ operation and maintenance include implementing advanced PHM
methods and utilizing predictive analytics and machine learning.

Keywords: prognostic and health management; marine diesel engines; expert systems; new
research directions

1. Introduction

Almost 90% of global trade is carried out by 90,000 commercial ships, and despite
the international trend for intelligent and eco-friendly power systems, diesel engines are
still the primary power source for over 99% of commercial ships [1,2]. However, the main
reasons for operating diesel engines on ships are the unpredictable changing conditions and
the need for a highly flexible system that can cover all of the complicated, weather-related,
and unstable conditions. Marine diesel engines are still the most reliable and efficient
power source for marine vehicles. On the other hand, most alarm monitoring systems on
these engines depend on operator experience and engineers’ knowledge, and these experts
are not always available to assess the condition and data. In addition, modern vehicles are
trending toward intelligent analysis and unmanned systems, which has led to the necessity
of installing advanced prognostic and health management (PHM) systems [3,4]. A proper
selection of prognostic and health management systems will improve engine performance
and efficiency.

Many relevant papers in the literature have been reviewed in the prognostic and health
management research field. The most recent and comprehensive study was published by
Peng Zhang et al. They explored a significant amount of the literature to offer a viewpoint
for scientists and crucial advice for the design, operation, and maintenance of marine
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equipment diagnosis and maintenance systems [5]. Based on their conclusions and similar
studies on different machinery systems [6,7], we explored possible applications for marine
diesel engine operation and maintenance.

In a recent study, Çaglar Karatug et al. proposed that implementing intelligent algo-
rithms for diagnosing the condition of marine diesel engines could enhance operational
efficiency and reduce operational costs. To achieve this, they suggested a condition-based
maintenance strategy incorporating a fault diagnostic approach based on artificial neu-
ral networks. The methodology is adaptable to various marine engines and systems on
board, making it a versatile solution to prevent minor and major faults before they oc-
cur. By developing this approach, human errors in maintenance can also be reduced [1].
Jerzy Kowalski et al. suggested a new method to identify faults in four-stroke marine diesel
engines. Their fault diagnosis system addresses 14 fault conditions using extreme learning
machine techniques to analyze the signals from the composition of the exhaust gas [8].
Others have studied reliability and sustainability improvements depending on optimizing
the maintenance strategy [9–12]. Meanwhile, Lan et al. focused on the development trend
of performance prediction methods for marine diesel engines. The authors concluded, after
an analysis of the literature, that the foundation of the prognostic and health management
system for marine diesel engines would be the performance prediction of the entire engine
and each component, supporting the development of modern ships systems [13].

Several researchers have studied the possibility of using thermal imaging to study
structures’ heat distribution to improve engine condition prediction and achieve a better
maintenance decision process [14–17]. While Bagavathiappan et al. provided a general
review of the state of the art [14], Justyna Molenda et al. studied the possible applica-
tion of thermal imaging in the case of marine diesel engine turbochargers; they used
an infrared camera with appropriate software to obtain the temperature distribution on
the surface of a turbocharger with different loads [15]. In contrast, Jan Monieta focused
on using a thermal image of the ship’s pistons for internal composition engines [16].
Mojeswara R. Duduku et al. developed an expert system on JAVA; this system uses dif-
ferent temperature values as the input for the condition monitoring of submarine sys-
tems while benefiting from expert systems’ cost-efficiency and quick data analysis advan-
tages [17].

Xiaojian Xu et al. presented a novel model to use a belief rule-based expert system
for marine diesel engines’ fault diagnosis. The results showed that using the belief rule-
based expert system outperformed the artificial neural network (ANN) model, support
vector machine (SVM) model, and the binary logistic regression model, regarding accuracy
and stability, and could effectively identify concurrent faults. The system was built to
detect abnormal wear, and it depends on the Dempster–Shafer theory to analyze uncertain
data [18]. Rule-based expert systems have also been used in the marine industry for
accident analysis, emission-reduction monitoring, and security assessment [18].

In another review paper, Abdenour Soualhi et al. focused on prognostic methods
to estimate the remaining useful life (RUL) among the PHM strategies for industrial
machines [19]. The paper included a comprehensive comparison among model-based, data-
driven, and hybrid approaches, indicating the specific relation between the application
and the suitable approach. Separately, some researchers have studied fault diagnoses
and condition-based maintenance (CBM), considering small and large data samples and
focusing on the future of data-driven methods in fault prediction systems [20–22].

A few papers have studied the improvement achieved in reliability when a machine’s
component is equipped with a prognostic and health management system [23–27]. Other
proposed methodologies support the implementation of PHM systems based on supervised
and unsupervised algorithms. Supervised algorithms use labeled data to train a model.
The data have input features (such as engine parameters) and corresponding labels (such
as a binary label indicating whether a fault occurred). The model learns to map inputs
to outputs based on these labeled data. Once trained, the model can predict the label for
new, unlabeled data. Unsupervised algorithms, on the other hand, do not use labeled data.
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Instead, they identify patterns and structures in the data without a specific outcome. These
algorithms are used for tasks such as clustering, where the algorithm groups data points
into similar clusters based on their features. These algorithms detect engines’ combustion
faults, wear faults, fuel injection faults, etc. [28–30]. Compare et al. elaborated a model
to evaluate the increase in machines’ component reliability affected by installing a PHM
system [23,25]. They demonstrated that evaluating the effects of applying PHM methods
to two or more components can be complex and depends on many factors, including the
specific machine being monitored, the accuracy of the PHM system, and the effectiveness
of the corrective actions.

Some researchers have focused on the elaboration of health indicators (HIs) for failure
diagnostics and prognostics [31–33]. Most suggested extraction techniques are component-
specific (gears, shafts, etc.) [31,32,34,35]. They use various signal processing techniques
to extract health indicators that could be used in the defect detection of different com-
ponents operating under different load conditions. One of the recent research activities
was achieved by Okoh et al., who focused on optimizing the methods used in the RUL
prediction of engine components condition based on the predictability, availability, and
reliability of similar machines in use. Their aim was to provide solutions and better decision
ability to extend component life and map degradation processes for manufacturers and
users [36]. Many recent studies have focused on RUL prediction technology, which has
been considered key in improving prognostic and health management systems [37–39].
RUL prediction results can optimize decision-making and save time and cost in repairing
and maintaining the machines’ performance [37,38].

By exploring scientific publications, we found a lot of good and high-quality papers
explaining the technical processes related to prognostic and health management systems
and some good review papers. In our paper, we focus on the perspective of the marine
engineering industry, how the engines’ technical processes have evolved in this industry
theoretically and in practice, and the possibility of achieving applicable high-quality man-
agement systems supporting the operation and maintenance decisions of marine diesel
engines. Mainly, we focus on the current challenges of developing an efficient and reliable
system, working on the main diesel engine system using subsystems data, and the mutual
effect of these subsystems on each other to improve engine performance, in addition to the
potential implementation of the recent technology and findings on remaining useful life
(RUL) prediction.

The paper is organized as follows: First, an illustration of prognostic and health
management processes and the state of the art in the marine industry for different technical
processes are presented in Section 2. Then, prognostic and health management methods
and limitations for marine diesel engines are explored in Section 3. After that, we explain
newly proposed directions for improving marine diesel engines’ performance and efficiency
in Section 4. The final part presents the paper’s conclusions in Section 5.

This study aims to outline the scope of prognostic and health management methods for
marine diesel engines in real-time conditions. A further aim is to propose new directions to
develop a decision support tool depending on experts’ knowledge to increase the reliability
and efficiency of marine diesel engines and to improve this tool and its output. This will
also provide valuable insights for future research and studies.

The paper’s main added value is to demonstrate the theoretical state, applications, and
different approaches in PHM methods for improving marine diesel engines’ performance
and efficiency. Furthermore, new possible research directions are proposed in order to
increase the reliability and efficiency of marine diesel engines.

2. Prognostic and Health Management System Classifications

In research on ships’ main engine damage, the reports and statistics published by the
Swedish Club (a well-established marine insurance company) found that losses resulting
from commercial ship failures made up 47% of all ship damage losses [40]. More partic-
ularly, 28% of mechanical malfunctions involved problems with marine diesel engines.
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According to the report, malfunctions in marine power systems can impact navigational
safety, which can result in dangerous consequences for the crew and machines on the
ship [40]. According to the same report, the most common and frequent causes of dam-
age in marine diesel engines for the 2005–2014 period were incorrect maintenance and
repairs [40]. As a result, the main goal of research into prognostic and health management
systems is to reach an optimal operation of the ships’ main engines.

Many researchers have offered different classifications for machines’ technical pro-
cesses. Generally, the technical processes can be divided into the following processes:
(1) condition monitoring, (2) fault diagnosis, (3) health prognosis, and (4) maintenance
decision-making.

The condition monitoring process refers to the ongoing monitoring and analysis
of various engine parameters (such as vibration, temperature, pressure, etc.) to detect
abnormal conditions or changes that may indicate the presence of a fault or degradation.

The fault diagnosis process identifies the specific cause of a fault or abnormal condition.
Fault diagnosis can be performed through various techniques, such as vibration analysis,
oil analysis, and thermography, which are used to determine the specific component or
system causing the problem.

Health prognosis is the process of predicting the remaining useful life of an engine
or component. This process can be carried out by analyzing historical data, performing
simulations and modeling, and incorporating information from the condition monitoring
and fault diagnosis processes.

The maintenance decision-making process determines the best course of action to ad-
dress a detected fault or abnormal condition. This process can include repairing or replacing
components, scheduling maintenance or overhauls, or monitoring the engine’s condition.

Together, these four concepts form a comprehensive system for managing the health
and performance of marine diesel engines. This system monitors the engine conditions
in real time, identifies and diagnoses faults, predicts the remaining useful life, and makes
better maintenance decisions. In addition, this system can also help optimize engine
performance and reduce the risk of unplanned downtime.

2.1. Prognostic and Health Management Methods for Marine Diesel Engines
2.1.1. Condition Monitoring Process

The state of the art in condition monitoring technical processes for marine diesel
engines includes using various sensor technologies, such as vibration sensors, oil analysis
sensors, and thermal imaging cameras, to continuously monitor the engine’s condition.
Data from these sensors are analyzed using advanced algorithms and machine-learning
techniques to detect early signs of engine wear or failure. These outputs allow for scheduled
proactive maintenance and repairs, reducing the likelihood of unexpected downtime and
costly repairs. Additionally, many condition monitoring systems now include remote
monitoring capabilities, allowing for real-time monitoring and the analysis of engine
performance from a remote location.

Several condition monitoring systems are widely used in marine diesel engines; some
of the most popular systems include:

1. Vibration analysis systems: These systems use vibration sensors to monitor the en-
gine’s condition; the collected data are analyzed using advanced algorithms to detect
early signs of wear or failure. VibroSens by VibroSystM, the Vibration Monitoring
System by SKF, Inc., and the Emerson AMS Machinery Manager are examples of
vibration analysis systems [41]. While all three systems focus on vibration analysis for
condition monitoring, their specific features, analysis capabilities, and user interfaces
vary. The selection of an adequate system depends on the specific requirements,
preferences, and needs of the users or organizations. These vibration analysis sys-
tems are complex systems that employ vibration sensors strategically placed on the
engine to collect vibration data. The three examples employ advanced algorithms
specifically designed for vibration analysis. These algorithms utilize signal processing
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techniques, such as fast Fourier transform (FFT). By applying FFT to the time-domain
vibration data, the system can extract the spectral components representing different
vibration frequencies presented in the signal. This spectral analysis aids in identifying
specific frequency patterns associated with machinery faults or anomalies. In addi-
tion, vibration systems may integrate machine learning algorithms, such as support
vector machines (SVMs) or neural networks to classify vibration patterns and detect
anomalies. By utilizing these advanced algorithms, the vibration analysis systems
can effectively analyze the collected vibration data in real time and identify specific
vibration frequencies associated with various types of machinery faults, such as un-
balance, bearing wear, or shaft misalignment. These algorithms can also compare the
current vibration data with predefined thresholds or baseline models to determine
the severity of the detected issues.

2. Oil analysis systems: These systems use sensors to analyze the oil used in the engine,
which can provide information about the conditions and components. The oil is ana-
lyzed for contaminants, wear particles, and other engine wear or failure indicators [42].
Examples of oil analysis systems include the Ferrous Wear Meter by Parker Kittiwake
and the Spectro Scientific FluidScan Q1000 by Spectro Scientific, Inc. The Ferrous Wear
Meter incorporates a sensor that measures the concentration of ferrous particles in the
oil. This measurement helps identify the level of wear and tear occurring within the
engine components. By detecting the presence of ferrous wear particles, the system
can assess the condition of crucial engine parts, such as bearings, gears, and cylinders.
Similarly, the Spectro Scientific FluidScan Q1000 uses a dedicated sensor to analyze
the oil’s chemical composition. The sensor employs infrared spectroscopy to detect
contaminants, degradation by-products, and other oil-related indicators. This analysis
provides insights into the oil’s degradation level, contaminants (such as water, fuel, or
coolant), and potential engine wear or failure indicators. These specialized sensors,
integrated within the oil analysis systems, enable the identification and quantification
of various parameters relating to the oil, allowing for effective monitoring of the
engine’s condition and the early detection of potential issues.

3. Thermal imaging systems: These systems use thermal cameras to monitor the engine’s
temperature. They can provide information about specific damages and an early indi-
cation of potential problems, such as overheating [14,15]. The thermal imaging system
by FLIR and MarineTherm by Raymarine are examples of thermal imaging systems.
These systems are designed to detect and monitor the engine’s temperature using
infrared technology. When an engine operates within normal temperature ranges,
the thermal imaging system captures uniform temperature distributions across its
components. However, when overheating occurs, certain areas or components may
exhibit higher temperatures than the expected range. By comparing the temperatures
obtained from the thermal imaging system with established temperature thresholds
or reference values, operators can identify abnormal temperature patterns, which
indicate potential overheating issues. The thermal imaging system enables the vi-
sualization of temperature variations, highlighting hotspots or areas with excessive
heat emission. These hotspots can signify various problems within the engine, such
as malfunctioning cooling systems, inadequate lubrication, faulty components, or
restricted airflow. The early detection of overheating using thermal imaging systems
allows for timely intervention and preventive measures to eliminate further damage.

4. Combination systems: Some companies offer a combination of the above-mentioned
systems, which can give a complete view of the engine’s health and performance [43].
Examples of combination systems include CMMS by Wartsila, MarineSense by Rolls-
Royce, and ICAS, used and developed by the American Navy. The contents of
these combination systems typically include vibration analysis, oil analysis, thermal
imaging, and potentially other relevant monitoring techniques. By collecting data
gained from different sources, combination systems enable a more comprehensive
evaluation of the engine’s overall health and performance. For instance, these systems
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can incorporate vibration analysis capabilities to monitor and analyze vibration data,
helping to detect early signs of wear or faults in the engine components. Furthermore,
these systems may also have oil analysis features to analyze the condition of the
oil, detect contaminants, and evaluate engine wear indicators. In addition, thermal
imaging technology is commonly incorporated into combination systems, allowing
for real-time temperature monitoring and identifying potential overheating issues
or abnormal temperature patterns within the engine. By merging these different
monitoring and analysis techniques, combination systems provide a holistic and
multi-dimensional view of the engine’s health, enabling operators to make informed
decisions regarding maintenance, performance optimization, and fault prevention.

It is worth noting that the condition monitoring system used may vary depending
on the application, the company, and the marine diesel engine model. For example, Vi-
broSystM is a well-established company in condition monitoring, and its VibroSens system
is considered one of the industry standards for marine diesel engine condition monitoring.
Many marine operators use it, including commercial shipping companies, naval fleets,
and offshore oil and gas operators. The VibroSens system comprises vibration sensors,
signal conditioners, and a central monitoring unit. The sensors are typically installed on the
monitored machinery and collect real-time vibration data. The data are then processed and
analyzed by the central monitoring unit using advanced algorithms, which can detect any
anomalies in the vibration patterns of the machinery. These advanced algorithms include
signal processing techniques, such as filtering, Fourier analysis (including fast Fourier
transform), wavelet analysis, time-frequency analysis, and envelope analysis. In addition, it
is possible to utilize machine learning algorithms for condition monitoring, such as support
vector machines (SVM), neural networks, and random forest. The condition monitoring
system is also equipped with various diagnostic tools, such as time waveforms, spectra,
and phase analyses, which help to pinpoint the source of any detected problems. Table 1
demonstrates the most commonly used condition monitoring systems for marine diesel
engines and the analysis algorithms used for each kind of condition monitoring system
with current commercial software products.

Table 1. Condition monitoring systems for marine diesel engines.

Condition Monitoring System Applied Analyses and Algorithms Commercial Software Products

Vibration analysis systems

Time-frequency analysis;
envelope analysis;

order analysis;
spectrum analysis;

machine learning algorithms (neural networks,
decision trees, clustering algorithms).

VibroSens by VibroSystM, Inc.;
Vibration Monitoring System

by SKF, Inc.;
Emerson AMS Machinery Manager.

Oil analysis systems

Particle counting;
viscosity analysis;

spectroscopy;
ferrography;

trend analysis;
machine learning algorithms

(neural networks, decision trees, clustering
algorithms).

Oil analysis System by Parker
Kittiwake, Inc.;

Spectro Scientific FluidScan Q1000
by Spectro Scientific, Inc.

Thermal imaging systems

Temperature measurement;
thermal mapping;

temperature Trending;
image processing;

machine learning algorithms
(neural networks, decision trees, clustering

algorithms).

Thermal Imaging System by
FLIR, Inc.;

MarineTherm by Raymarine, Inc.

Combination systems
These systems use a combination of sensors, such as

vibration sensors, oil analysis sensors, thermal
imaging cameras, and other sensors.

CMMS by Wartsila;
MarineSense by Rolls-Royce;

ABB Ability Marine Advisory System;
ICAS, used and developed

by the American Navy.
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2.1.2. Fault Diagnosis Process

The state of the art in fault diagnosis techniques for marine diesel engines includes
traditional methods, such as visual inspections and vibration analysis, and advanced tech-
niques, such as statistical and machine learning algorithms, signal processing, and sensor
data fusion. These techniques can detect and diagnose various mechanical, electrical, and
combustion-related faults. Some of the latest research in this area has focused on using data
from various sensors, such as vibration, temperature, and pressure sensors, to improve the
accuracy and efficiency of fault diagnosis [44,45]. Additionally, condition-based monitoring
and predictive maintenance techniques have become increasingly common in marine diesel
engine fault diagnosis [46].

It can be noted that condition monitoring systems’ outputs of abnormal conditions can
be used as input for the fault diagnosis process. The two processes are connected to provide
a comprehensive view of the engine’s health and performance and to help diagnose and fix
faults quickly and accurately.

Currently, there are several fault diagnosis systems used on marine diesel
engines, including:

1. Vibration analysis: This system uses sensors to measure the engine’s vibration and
compares it to normal vibration patterns to detect abnormalities that could indicate a
fault. One example of a vibration analysis system is the VibroSense Meter, which uses
accelerometers to measure the engine’s vibration and compares it to normal vibration
patterns to detect abnormalities that could indicate a fault, such as misalignment,
imbalance, or bearing wear [41].

2. Oil analysis: This system analyzes the oil used in the engine to detect contamination
or other issues that could indicate a fault. One example of an oil analysis system is
the ferrograph, which analyzes the oil used in the engine to detect contamination or
other issues, such as metal particles and wear, which could indicate a fault [42].

3. Thermography: This system uses infrared cameras to detect changes in temperature
on the engine that could indicate a fault. An example of a thermography system is
the FLIR thermal imaging camera, which uses infrared cameras to detect changes in
temperature on the engine that could indicate a fault, such as overheating, coolant
leakage, or insulation defects. The most important advantage of these systems is that
it does not need any prior preparation to start the process [14–17].

4. Acoustic analysis: This system uses microphones to detect abnormal sounds from the
engine that could indicate a fault [47]. An example of an acoustic analysis system is
SoundEye, which uses microphones to detect abnormal sounds from the engine, such
as knocking valve noise, which could indicate a fault, such as abnormal combustion,
damaged bearings, or other mechanical issues.

5. Condition monitoring systems: These systems are advanced and integrate various
sensors and algorithms to monitor the engine’s health and performance in real time.
One example of a condition monitoring system is the ABB Ability OCTOPUS Marine
Advisory System. This advanced system integrates various sensors and algorithms
to monitor the engine’s health and performance in real time, allowing for the early
detection of potential issues and proactive maintenance. Regarding its features and
capabilities, the ABB Ability Marine Advisory System is the most comprehensive and
advanced compared to other fault diagnosis systems. It includes multiple diagnosis
methods, provides a comprehensive view of the engine’s health and performance, and
includes features such as remote monitoring [48]. Other examples include the CoCoS
Engine Diagnostic System of MAN [49] and DICARE of Caterpillar [50]. Both systems
use data such as the engine speed, temperature, pressure, and fuel delivery rates to
identify any potential issues with the fuel injectors, pumps, sensors, and other engine
components. The Wärtsilä Integrated System for Energy Management (WISE) [51]
is an energy management system that provides real-time monitoring and control
of a ship’s energy systems. It monitors fuel consumption, engine efficiency, and
emissions and recommends optimized energy usage and reduced operating costs. The
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Kongsberg Integrated Monitoring System (K-IMS) is an integrated monitoring system
that provides real-time data and analysis for ship operators. It monitors various ship
systems, including engines, generators, propulsion, and navigation, and provides
alerts and notifications when anomalies or potential issues are detected [8].

2.1.3. Health Prognosis Process

The health prognosis of marine diesel engines typically involves using advanced
sensors, machine learning, and data analysis to predict and prevent issues before they
occur [52]. The following figure demonstrates the three stages of health prognosis [5].
Figure 1 shows the statistical time-domain equations that can be used to calculate the health
indicators’ values.
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The three stages of machine health are closely related. If the unhealthy stage is detected
early, it is often possible to take corrective actions to restore the machine to the normal
stage and avoid critical failure. Regular monitoring and maintenance can help detect and
address faults before they become critical. Therefore, the machine health prognosis process
aims to keep the machine operating in the normal stage as long as possible and extend its
remaining useful life [53].

1. Construction of Health Indicator (HI)

The health indicator (HI) is a scalar value that represents the health state of a mechan-
ical component or machine. Health indicators are defined by selecting relevant features
to monitor the system’s health [32]. The selection of features is based on the physical
condition of the mechanical component, its failure modes, and the available sensors [5].
Health indicators are typically constructed using time-domain, frequency-domain, and
time–frequency-domain features. The time-domain method is commonly used when the
health indicators are based on analyzing the amplitude and behavior of signals in the time
domain. In this approach, statistical measures and characteristics of the time waveform are
utilized to derive relevant features for assessing the health state of mechanical components
or machines. The frequency-domain method is employed when the health indicators rely
on analyzing the spectral content of signals. The frequency components of the signals
are examined by converting the time-domain signals into the frequency-domain using
techniques such as Fourier transform. Frequency-domain features are derived from the
amplitude and phase information at different frequency bins or bands. The time–frequency-
domain method combines the advantages of both time-domain and frequency-domain
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analyses by capturing the time-varying spectral characteristics of signals. This approach
suits situations where the health indicators must capture transient or evolving phenomena
over time. These features provide insights into dynamic changes and variations in the
health condition of mechanical components or machines.

In summary, the choice of the time-domain, frequency-domain, or time–frequency-
domain method depends on the nature of the signals, the required information about the
health state, and the specific characteristics of the mechanical components or machines
being monitored. Each domain offers distinct information and analytical capabilities,
allowing for a comprehensive evaluation of the system’s health condition. Table 2 presents
the techniques used for HI calculations with related equations [31,32].

In general, constructing a suitable health indicator requires the following steps [34,35].

1. Selection of features: The first step in constructing a health indicator is to select
relevant features to monitor the system’s health. Examples of features that can be
used include vibration measurements, temperature measurements, oil analysis, and
acoustic measurements.

2. Feature extraction: Once the selected features are extracted from the sensor data, this
step involves processing the sensor data to extract relevant information that can be
used to construct the HI. Signal processing techniques may include filtering, Fourier
transforms, and wavelet transforms.

3. Identify the most relevant features: After the features are extracted, the next step
is to select the most relevant features to construct the HI. This step involves using
methods such as principal component analysis, mutual information analysis, and
correlation-based feature selection to select the most informative features.

The HI can be used to classify the health state of a component or system into different
health stages, which can be used to predict when maintenance is needed and to schedule it
proactively [53]. By exploring the literature [32–34], we noticed that the selection process
for any method or technique to be applied to any component or subsystem depends on the
type of data obtained: time-domain, frequency-domain, or time–frequency domain.

It can be observed that the time-domain health indicators are a set of metrics used
to evaluate the condition and performance of machines over time. These indicators are
obtained from analyzing signals generated by the machines during their operation. By
monitoring and analyzing these signals, engineers and technicians can identify patterns
that can help predict potential failures or other problems [31]. Furthermore, the frequency-
domain health indicators are based on the frequency-domain analysis of vibration signals,
which involves decomposing the signals into their constituent frequency components
and analyzing the amplitudes and phases of these components [31,33]. Moreover, the
time-frequency domain health indicators involve decomposing the vibration signal into
its constituent time-frequency components and analyzing their energy and distribution
over time. Time-frequency domain health indicators are useful for identifying specific
time-frequency patterns associated with machine components and detecting any changes
in the spectral signature that may indicate potential faults [31,33].

2. Health Stage (HS) Division

The health stage (HS) is the classification of a health condition of a machine component
or system based on the value of the health indicator [32]. The health stages are defined by
dividing the range of possible values of the HI into several intervals, each representing
a different health condition. The division of the range of possible values of the HI into
intervals is based on the condition of the system, the failure modes of the system, and
the available sensors. The main idea behind this division is to divide the HI values into
different intervals, each representing a different health state.
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Table 2. Health indicator calculation techniques [32–34,54].

HI
Construction

Method
Techniques Calculation Methods Nomenclature

Time domain

Descriptive statistics

CF = max|x|
RMS

Peak of a distribution,
which is important for

understanding the overall shape
of the distribution and the central

tendency of the data;
peak to peak: The difference
between the maximum and
minimum values of the time

domain.

CF: crest factor;
RMS: root mean square;
x: time domain;
xi: i-th point from the time domain with length N;
KU: kurtosis is the measure of the “tailedness” of the
probability distribution of a real-valued random variable;
σ: standard deviation;
µ: time sample mean;
SK: skewness is the measure of the asymmetry of the
probability distribution of a real-valued random variable about
its mean;
NA4: normalized autocorrelation; furthermore, the “4” refers to
the fourth statistical moment of the residual signal;
N: number of points in the time domain;
ri: i-th point in the time domain of the residual signal;
rij: i-th point in the j-th time domain of the residual signal;
M: number of current time signals;
r: The mean of the residual signal;
FM4: fourth-order figure of merit;
D: mean of the difference signal;
di: i-th signal;
Kf(f): spectral kurtosis;
Kx(f): SK of a given signal;
p(f): noise-to-signal ratio;
E(t): envelope of the BP signal;
BP(t): band-passed filtered signal;
H[BP(t)]: Hilbert transform of BP signal;
x(t) is the signal, h(t) is the window function, Xt(ω) is the STFT,
and Psp(t,ω) is the calculated spectrogram of the given signal as
a function of time;
hi: Hilbert marginal spectrum;
ai: amplitude;
fi: instantaneous frequency.

High-order statistics

RMS =
√

1
N ∑N

i=1(xi)
2

Delta RMS: the difference between
two consecutive RMS values.

KU =
∑N

i=1(xi−µ)4

(N−1)σ4

SK =
∑N

i=1(xi−µ)3

(N−1)σ3

Frequency
domain

Residual
signal

NA4 =
N×∑N

i=1

(
ri−
−
r
)4

{
1
M ∑N

j=1 ∑N
i=1

(
rij−

−
rj

)2
}2

Difference signal FM4 =
N∑N

i=1(di−D)4

[∑N
i=1(di−D)2]

2

Spectral
kurtosis K f ( f ) = KX ( f )

[1+p( f )]2

Envelop analysis E(t) =
√
(BP(t))2 + H[BP(t)]2

Time–frequency
domain

Short-time Fourier
transform (STFT)

Psp(t,ω) = |Xt(ω)|2

=
∣∣∣ 1√

2π

∫
e−jωτ x(τ)h(τ − 1)dτ

∣∣∣2
Hilbert–Huang

transform (HHT) hi(t) =
∫

ai
2( fi , t)dt

There are several methods for dividing the range of possible HI values into intervals,
including [55,56]:

1. Expert knowledge: This method defines the intervals based on the system’s condition
and failure modes.

2. Statistical methods: This method involves using statistical methods, such as clus-
tering or principal component analysis to divide the range of possible HI values
into intervals.

3. Data-driven methods: This method involves using machine learning algorithms, such
as decision trees, random forests, and neural networks to divide the range of possible
HI values into intervals.

Once the range of possible HI values has been divided into intervals, each interval
represents a different health condition. The health stage can predict when maintenance is
needed, and it can be scheduled proactively.

3. Remaining Useful Life (RUL) Prediction

Remaining useful life (RUL) is a concept used in the field of prognostics and health
management (PHM) to quantify the expected time until a machine or component will no
longer function as expected based on its current condition and operating environment.
The RUL is typically defined as the time interval between the current time and the point
of functional degradation or failure [3]. There are several approaches to predicting the
remaining useful life of a component or system, including [37]:
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1. Statistical-based RUL prediction: This approach uses statistical models to estimate the
remaining useful life of a mechanical component. These statistical models are based
on the historical data of the component and can be used to estimate the remaining
useful life even if the mechanical component has not failed yet.

2. Physics-based RUL prediction: This approach uses the physical laws that describe
the mechanical component’s operation to estimate the remaining useful life. These
physical laws are based on the system’s condition, the failure modes, and the avail-
able sensors.

3. Data-driven RUL prediction: This approach uses machine learning algorithms to
estimate the remaining useful life of a component. These models are based on the
historical data of the component, and they can be used to estimate the remaining
useful life of a component, even if the component has not failed yet.

It is worth mentioning that reliability theory and remaining useful life prediction
are related concepts in the field of prognostics and health management and are used to
predict the machine’s performance over time. Reliability theory provides a framework for
quantifying the probability of failure or success over time based on a statistical analysis
of historical data and models of the underlying failure mechanisms. Reliability analysis
is typically used to estimate the probability of failure at a specific point in time or over a
given time interval [57].

Remaining useful life prediction, on the other hand, is concerned with estimating the
expected time until the machine or the mechanical component will no longer achieve its in-
tended function based on its current condition and operating environment. RUL prediction
is typically based on the analysis of sensor data, historical data, and other information and
the behavior over time, and aims to provide accurate and timely information to support
maintenance and decision-making processes. RUL prediction starts with calculating the
health indicators values and then mapping the change with these values over time. After
that, the division stage starts, and each condition is defined as being in a healthy, unhealthy,
or failure mode. The last stage contains reading these plots and making decisions about the
current condition [58].

In summary, reliability theory studies how systems and components perform over
time and aims to predict the probability of failure. Remaining useful life prediction is a
specific application of reliability theory that aims to predict the remaining time until failure.

According to the literature, out of the datasets used for RUL prediction, only 24.14%
(28 papers) concerned operational datasets (real conditions data). The datasets were
retrieved from different sources, including NASA (36.02%) and the PRONOSTIA Platform
(24.13%). Only (0.86%) were about the marine diesel engine data (operational data) used
to estimate the RUL values of its components, and the rest varied among experimental
datasets, simulations, and testing platforms [58].

It is worth noting that the real cost of using remaining useful life prediction in terms
of computational needs, the time-consuming effort, or even the model development time
(study and programming) for old or new engines may be the main reason for the low
application of RUL techniques on marine diesel engines. This was one of our concerns at
the end of our study.

According to the literature, the challenges involving RUL prediction are as follows [58,59]:

1. Data extraction: This refers to the difficulty of obtaining high-quality data that accu-
rately represent the operating conditions and health status. It can be challenging to
collect enough data from different sources and ensure that they are reliable, complete,
and representative of the entire operational range.

2. Similar conditions for training and testing: To accurately predict the RUL, it is impor-
tant to have training and testing datasets that are similar in terms of the operating
conditions and degradation patterns. This can be challenging in practical applications,
where operating conditions vary widely, and the degradation mechanisms may differ
among different components.
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3. Data pre-processing and uncertainty: Data pre-processing involves transforming
the raw data into a suitable format for analysis. This can be time-consuming and
requires domain expertise. Additionally, there may be uncertainty in the data due to
measurement errors, missing values, or other factors, which can affect the accuracy of
the RUL prediction.

4. Health indicator construction complexity: Choosing and constructing appropriate
health indicators that accurately represent the degradation condition can be challeng-
ing. This involves selecting and combining various features, defining appropriate
thresholds, and accounting for the effects of different operating conditions.

5. Multiple operating conditions: In practical applications, machines may operate under
a wide range of conditions, affecting their degradation patterns and RUL. Considering
the multiple operating conditions can be challenging, as it requires large amounts of
data and complex modeling techniques for each operation mode.

6. Feature selection: Choosing appropriate features to represent the health condition can
be challenging, especially when dealing with big data. Feature selection techniques
are used to identify the most relevant features for RUL prediction.

7. Dealing with chronological order and temporal correlation: Health-monitoring data
are typically collected over time, and there may be temporal correlations among
different features. Considering these correlations and the chronological order of the
data is important for accurate RUL prediction.

8. Failure data availability: In some cases, failure data may be limited or unavailable,
making it challenging to predict the RUL accurately. This can be handled using acceler-
ated testing techniques or by incorporating expert knowledge into the RUL prediction.

9. Prediction interpretability, uncertainty, and accuracy: RUL prediction can be com-
plex, and it can be challenging to interpret the outputs and assess their accuracy.
Additionally, there may be uncertainty affecting the predictions.

2.1.4. Maintenance Decision-Making Process

The maintenance decisions for marine diesel engines while operating are typically
made by the ship’s crew based on several factors, which are the following [60–63]:

1. Condition of the engine: The crew monitors the health and performance of the
engine using condition monitoring systems and other sensors and makes maintenance
decisions based on the engine’s condition. These systems can include scheduling
regular maintenance or performing repairs and replacements as needed.

2. Risk of failure: The crew assesses the risk of failure for each component and makes
maintenance decisions based on the level of risk. This step can also include scheduling
regular maintenance or performing repairs and replacements as needed.

3. Maintenance schedule: The crew follows a maintenance schedule based on the manu-
facturer’s recommendations and industry standards. This schedule includes regular
maintenance activities such as oil changes, filter replacements, and inspections.

4. Real-time alerts: The crew receives real-time alerts from the monitoring system about
the engine’s performance and any possible issues. The crew can immediately prevent
failure or scheduled maintenance activities based on these alerts.

5. Proactive maintenance recommendations: The crew receives proactive maintenance
recommendations from the monitoring system, which can help to improve the reliabil-
ity and efficiency of marine diesel engines and reduce the risk of unplanned downtime.

6. Cost and benefits of maintenance: The crew considers the costs and benefits of
different maintenance options and selects the most cost-effective solution that will
keep the engine running safely and efficiently.

The maintenance decision-making process of marine diesel engines can be improved
in several ways:

• Using advanced monitoring systems such as condition monitoring systems, predictive
maintenance systems, and prognostic systems will enable the crew to make more
efficient maintenance decisions [64,65];
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• Implementing data-driven methods to analyze large amounts of data from the mon-
itoring systems to identify patterns and trends that can be used to predict when
maintenance is needed;

• Incorporating expert engineers and technicians to make more efficient maintenance
decisions based on the condition of the system, the failure modes, and the available
sensors;

• Implementing a risk-based maintenance strategy to assess the risk of failure for each
component and schedule maintenance based on the level of risk [66];

• Automating the maintenance process to reduce human error and improve the efficiency
of the maintenance process [67];

• Incorporating remote monitoring to receive real-time alerts and proactive mainte-
nance recommendations and monitor the engine performance and maintenance sched-
ules [68].

3. Prognostic and Health Management Methods and Limitations for Marine
Diesel Engines

Several methods can be used to make predictions and diagnoses in marine diesel
engine prognostic and health management, including model-based, knowledge-based, and
data-driven methods [69]. Model-based methods rely on mathematical models based on
physical and engineering principles, while knowledge-based methods use expert knowl-
edge and experience. On the other hand, data-driven methods use large amounts of data to
make predictions and diagnoses. Each method has its advantages and limitations, and the
method selected depends on the specific requirements and constraints of the application,
such as the availability of data and the complexity of the system being modeled. Ultimately,
the most effective approach may involve combining these methods. Figure 2 summarizes
the currently used method for building a technical process for marine diesel engines.
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3.1. Model-Based Methods

Using a model-based method for building a health management system for marine
diesel engines is advantageous. It allows for a more accurate and efficient diagnosis of
engine problems. This is due to the use of mathematical models to represent the behavior
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of the engine and its components. These models can be used to simulate and predict the
engine’s performance under different conditions. This method can help improve the overall
understanding of the engine and its behavior, identify potential problems before they occur,
and reduce downtime for maintenance.

Many researchers built model-based systems to predict the performance of marine
diesel engines. Kökkülünk et al. [70] used a model that reflected the effects of parameter
changes on fuel consumption rate; some of these parameters are injection pressure and
time, scavenging pressure, and temperature, in addition to using the baseline migration
method to obtain the degradation curve. This curve can be used to identify and monitor
engine performance and make informed decisions about maintenance and repair. However,
the accuracy and reliability of the degradation curve depend on the quality of the data
collected and the methodology used to create the baseline model.

Other authors suggested a performance simulation model based on a zero-dimensional
mixing controlled combustion model. The model can predict performance characteristics
using various injection rules [71]. Monieta presents an example of a thermal model for the
temperature dependence of the injector body function on the relative load of the combustion
engine. The thermal model could predict potential fire risks in maritime systems caused by
temperature growth and catastrophic breakdowns in controlled areas [17].

One of the limitations of using model-based methods is that it requires a significant
amount of data and expertise to develop and validate it. Their accuracy depends on the
quality of the data used to train it and the assumptions made about the system. In addition,
it can be challenging to develop models that can accurately represent the complex dynamics
of marine diesel engines, especially if the data availability is limited or the system is poorly
understood. This issue can lead to model inaccuracies, affecting their ability to detect
problems. Another limitation is that a model-based approach may not detect certain types
of problems not represented in the model, such as unexpected failures or rare weather-
related conditions, because models are based on assumptions about the system. If these
assumptions are not achieved, the model may be unable to detect the problem.

In summary, a model-based approach to building a health management system for
marine diesel engines can provide a more accurate and efficient diagnosis of engine prob-
lems. Still, a significant amount of data and expertise are required to develop and validate
the models; they also have some limitations, which have been observed in previous studies
where models have been developed for a particular type of diesel engine. The models must
be calibrated using a particular diesel engine’s scale specification. Therefore, generalizing
the approach to various diesel engines is challenging.

3.2. Knowledge-Based Methods (Expert Systems)

One advantage of using a knowledge-based method for building a health manage-
ment system for marine diesel engines is that it can provide a more intuitive and easy-
to-understand diagnosis of engine problems. This is because a knowledge-based method
relies on a database of pre-existing knowledge about the engine and its components. This
database can be used to diagnose problems based on symptoms and past experiences [15,18].
This method can help reduce the time and resources needed for maintenance and improve
the overall understanding of the engine and its behavior. These systems use various
decision-making techniques, including rule-based reasoning, fuzzy logic, case-based rea-
soning, and machine learning. The rule-based technique is one of the most widely used
techniques for building expert systems. It is designed to solve problems by applying a set
of rules and knowledge representations in the form of “if–then” statements. Even though
traditional rule-based expert systems lack flexibility (once an expert system is built, it
cannot learn from real operating data or adjust to meet changing environments), limited
knowledge acquisition is considered to be the challenge of rule-based expert systems [18].

There are six common types of expert systems: rule-based, case-based, framework,
fuzzy logic, neural network, and genetic algorithm [72]. Rule-based expert systems use a
set of rules to draw inferences and provide advice, while case-based expert systems use
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past cases to solve new problems. The framework-based expert system uses a structured
framework to organize knowledge and problem-solving strategies. Fuzzy expert systems
deal with imprecise and uncertain information. Neural network systems simulate reasoning,
and genetic algorithm systems use a genetic algorithm to find optimal solutions [72,73].

One of the limitations of using a knowledge-based method is that it relies on the
accuracy and completeness of the knowledge database. If it is not up-to-date or lacks
information about a particular problem, the system may be unable to diagnose it accurately.
In addition, knowledge-based methods may not be able to detect new or unexpected
problems, as these types of problems may not be represented in the database, which can
affect the accuracy of the diagnosis. In addition, maintaining and updating the knowledge
database can be time-consuming and resource-intensive, as new information about the
engine and its components needs to be constantly added to the database [73].

In summary, a knowledge-based method for building a health management system
for marine diesel engines can provide a more intuitive and easy-to-understand diagnosis
of engine problems, with both quantitative and qualitative information.

3.3. Data-Driven Methods

A data-driven method to build a health management system for marine diesel engines
uses engines’ data to predict and diagnose their health. The data can be used to train
machine learning algorithms, such as decision trees, artificial neural networks, or support
vector machines, to predict the engine’s performance, identify patterns and correlations
in the data, and diagnose problems [20–22]. With enough data, data-driven methods can
make highly accurate predictions and diagnoses and use the data to identify patterns and
correlations, leading to improved predictions about the engine’s future performance [74].

One limitation is that data-driven methods require large amounts of data to be effec-
tive. Obtaining sufficient data may be challenging, especially if they need to be collected
from various sources. In addition, the data quality can greatly affect the accuracy of the
predictions and diagnoses. If the data are uncertain, it can lead to incorrect predictions
and diagnoses.

In conclusion, there are several advantages to using data-driven methods for building
a health management system for marine diesel engines. These include high accuracy
and improved predictions. However, there are also several limitations to consider. These
include the need for large amounts of data, as well as the quality and accuracy of the
data. Additionally, the complexity of the models used in data-driven methods can be a
limiting factor. Finally, there is also the risk of overfitting, which can result in models that
perform well on training data but fail to generalize to new data. Careful consideration
and management of these limitations are important to ensure that a data-driven method
is effective and efficient for a particular application, such as predictive maintenance, fault
detection and diagnosis, and performance optimization.

3.4. Hybrid Methods

Hybrid methods combining model-based, knowledge-based, and data-driven methods
are often used to build a technical system for better accuracy and robustness [5,19]. For
example, the system can use a model-based approach to identify potential problems, a
knowledge-based approach to apply domain expertise and provide solutions, and a data-
driven approach to continuously improve the diagnosis performance through learning
from historic data. It depends on the specific problem, the data availability, and the goals
of the technical system.

Table 3 summarizes the advantages and limitations of the previous three main types of
methods—model-based methods, knowledge-based methods, and data-driven methods—
and hybrid methods.
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Table 3. The advantages and limitations of the PHM methods.

Methods Advantages Limitations

Model-based methods
Improved accuracy;
increased efficiency;

improved understanding.

Complexity in mathematical modeling and simulation;
model limitations, such as not representing

all relevant conditions;
data quality and accuracy affect building

and validating the models;
implementation challenges when integrating
them with existing software and applications

in real-time conditions.

Knowledge-based
methods

Intuitive diagnosis;
expert knowledge;

reduced downtime.

Reliance on a knowledge database;
lack of flexibility;

limited ability to detect new or unexpected problems;
modifying and developing the knowledge database.

Data-driven methods

High accuracy;
improved predictions;
increased efficiency;
increased ability to

customization.

Big data availability;
data quality; data quality and accuracy affect

building and validating the models;
model complexity to represent all the conditions

and process all collected data;
overfitting.

Hybrid methods

Combines the strengths of
different methods, leading
to improved accuracy and

robustness;
flexible and adaptable to
different scenarios, as the
choice of method can be

customized to the specific
problem, data availability, and
aim of the technical process.

More complex than individual methods, as it requires the integration
and coordination of different methods;

require significant resources, including expertise, time, and data, to
build and maintain the system.

Despite their advantages, PHM methods have other limitations, especially for marine
diesel engines. Marine diesel engine prognostic and health management system limitations
currently include the following [3,5,13,19,32]:

1. Lack of standardization: There is a lack of standardization in the data collected and
the methods used for analysis, which makes it difficult to compare the performance of
different software and applications [75]. For example, different marine diesel engine
manufacturers may use different sensor configurations and data formats, making it
difficult for a prognostic system developed for one engine to be applied to another
without significant modification.

2. Limited sensor availability: Many marine diesel engines do not have sensors installed
to collect data on key performance indicators, which limits the ability of prognostic
systems to predict and diagnose engine failures accurately. For example, an older
marine diesel engine may not have sensors to measure the key performance indicators,
such as the cylinder or oil pressure. Without these data, a prognostic system could
not accurately predict and diagnose engine failures.

3. Difficult handling the non-linear and non-stationary systems: Marine diesel engines
are complex systems that exhibit non-linear and non-stationary behavior, making
it difficult to predict and diagnose failures accurately. For example, marine diesel
engines can be affected by various external factors, such as the sea state and load
changes, which can cause the engine behavior to change and become non-linear
or non-stationary.

4. Data quality and pre-processing: The quality of the data and pre-processing can affect
the performance of prognostic systems; if the data are not accurate and complete,
it can lead to inaccurate or unreliable predictions and diagnoses. Similarly, if the
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data are not cleaned and pre-processed properly, it can lead to unreliable predictions
and diagnoses.

5. Cost-benefit analysis: Prognostic systems may be costly to implement and maintain,
and the benefits may not always outweigh the costs, particularly for older or less
critical engines. For example, it may not be cost-effective to implement a prognostic
system on an older or less critical engine that is nearing the end of its service life.

6. Frequently changing the environmental parameters: Environmental parameters, such
as the temperature, air pressure, and humidity, directly affect the engine operation
and the combustion process. The frequently changing temperature can lead to varia-
tions in the fuel ignition timing, combustion efficiency, and emission levels. Similarly,
changes in the air pressure and humidity affect the air–fuel mixture, which influ-
ences the engine performance and combustion dynamics. Monitoring and analyzing
these parameters makes it possible to detect deviations from optimal conditions and
identify potential faults or performance issues. Furthermore, the fuel used in marine
diesel engines, particularly heavy oil, is more crucial to prepare and use. The fuel
properties, such as the viscosity, sulfur content, and impurities, can impact fuel com-
bustion, combustion stability, and the formation of deposits or fouling in the engine
components. These factors can contribute to decreased engine efficiency, increased
emissions, and potential wear or failure of critical engine parts. Considering the fuel
characteristics in fault diagnosis allows for a comprehensive evaluation of engine
health and helps identify fuel-related issues. Accurate fault diagnosis for marine
diesel engines plays a vital role in achieving optimal results; it is crucial to integrate
the monitoring and analysis of the environmental parameters and fuel characteristics.
By including the temperature, air pressure, humidity, and fuel property data in the
diagnostic algorithms or expert systems, it becomes possible to correlate variations in
these parameters with observed faults or anomalies. This link will help in identifying
potential causes, distinguishing between normal tolerances and abnormal conditions,
and improving the overall accuracy of fault diagnosis.

4. New Research Directions for the Prognostic and Health Management of Marine
Diesel Engines
4.1. Development of a New Hybrid Expert System for Marine Diesel Engines

Hybrid expert systems combine two or more different types of expert systems [76].
Expert systems have proven to be valuable tools in engineering, as they can provide ac-
curate and efficient solutions to complex problems related to design, manufacturing, and
maintenance processes. By benefiting from the advantages of three types of expert systems,
namely rule-based, framework, and fuzzy logic, and relying on human expertise, experi-
ments, previous observations, and sampled data, we can develop a unique expert system.
This system has the potential to improve the reliability and efficiency of marine diesel
engines’ operation and maintenance. The expert system consists of multiple concurrently
activated subsystems, which work together to provide a comprehensive and accurate
diagnosis of engine problems. By using this system, we can quickly and efficiently identify
issues and provide solutions, thereby reducing downtime and maintenance costs.

There are no available research studies in which the rule-based inference methodology
has been applied to ship engine performance monitoring to support improving efficiency,
maintenance decision-making, and fault diagnosis. Unlike traditional “if–then” rules,
each output attribute of a rule is linked with a certainty degree; this certainty degree is
calculated depending on normalizing the years of expertise with a range [0–1] (different
from traditional certainty factor calculations). Experts can use their subjective knowledge to
build an initial rule-based dataset. In order to accurately reflect the non-linear relationship
between the inputs and outputs, the model’s parameters can be optimized using numerical
data and testing the benefits of using changeable range-based inputs instead of specific
values to improve the system’s flexibility.
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After that, it is possible to expand and optimize the knowledge base, analyzing the
effects of the engine load and speed on the diagnostic parameters and studying the change
in the optimal combination of the engine’s operating parameters based on previous results.

4.2. Application of Remaining Useful Life Prediction to Marine Diesel Engines

The main challenge for marine diesel engines’ RUL prediction is the complexity of
the system and work environment, in addition to the diversity of the operating conditions.
The process of RUL prediction, accompanied by a few challenges, could be generalized
as follows:

1. Data extraction involves extracting basic data from the marine diesel engine and
pre-processing the data to ensure they are in a suitable format for further analysis.
This can involve filtering, normalization, and other techniques [74].

2. Feature extraction and classification: Once the data have been extracted and pre-
processed, the next step is to extract relevant features and classify them into dif-
ferent categories. This process may also include constructing a health indicator,
which combines multi-dimensional features extracted from the time, frequency, and
time–frequency domains into only one health indicator through dimension reduction
approaches [77,78].

3. RUL evaluation: The final step in RUL prediction is evaluating and estimating the
remaining useful life of the engine based on the extracted features and health indica-
tors [78].

Despite the success of RUL prediction in other industries, such as machinery, electron-
ics, vehicles, and aviation, there are limitations to applying RUL prediction to marine diesel
engines. These limitations include the variability of ship performance due to differences in
manufacturing. In addition to the need for appropriate construction and division methods,
another limitation is the reluctance of ship owners to invest in RUL prediction software
development due to high costs [79,80]. However, with the advancements in sensor technol-
ogy, the collection of degradation signals will become more abundant, making data-driven
and fusion RUL prediction methods a good possibility for development in the future.

4.3. Development of a New Advanced Software Concept That Integrates the Traditional Expert
Systems and Simulation Software Applications

The ongoing development of existing expert systems for marine diesel engines has
benefited greatly from advancements in the field of information technology. With the
increasing availability of powerful computing hardware and sophisticated software tools,
the process of upgrading expert systems has become much more streamlined and efficient.

One way to develop expert systems for marine diesel engines is through the use of
advanced modeling and simulation software. One example of this software is GT-SUITE
software, which is a system-level simulation tool for engine and powertrain develop-
ment [81]. This software allows for the creation of detailed models of the engine and its
components, which can be used to simulate and analyze various scenarios and conditions.
Using such software, engineers can test different strategies and identify potential problems
in a virtual environment before implementing changes in the real system. This can save time
and resources and improve the accuracy of the expert system development process. These
tools allow developers to create accurate representations of the engine and its components,
which can be used to test and refine the performance of the expert system.

In addition, the development of new data processing and machine learning algorithms
has made extracting meaningful insights from large datasets easier, which is critical for the
successful development of expert systems. By analyzing data from various sensors and
sources, developers can identify patterns that can be used to improve the accuracy and
reliability of the expert system.

Finally, developing user-friendly applications and interfaces has made it easier for
operators and technicians to interact with the expert system and interpret its outputs. By
presenting information in a clear and concise style, these applications can help improve
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decision-making and increase the effectiveness of the expert system in maintaining and
managing marine diesel engines.

5. Conclusions

Prognostic and health management (PHM) methods are used to improve the perfor-
mance and reliability of complex and critical systems. This paper outlines the scope of
PHM methods for marine diesel engines in real-time conditions.

The study demonstrated the theoretical state, applications, and different approaches
of PHM methods for improving marine diesel engines’ performance and efficiency. We
proposed new possible research directions that harmonize with marine diesel engines’
operation and characteristics. We described PHM methods for marine diesel engines and
provided valuable insights for future research and studies.

The main added value of our research is that three possible new directions were
elaborated to develop a decision support tool based on experts’ knowledge to increase
the reliability and efficiency of marine diesel engines, which is a complex task requiring
a comprehensive understanding of marine diesel engines and current applications and
developments in prognostic and health management.

A research gap was found in this research field, i.e., new advanced prognostic and
health management methods have to be implemented for marine diesel engines. These new
advanced methods will improve the operation and maintenance of marine diesel engines.
The first possible new research direction is the development of a new hybrid expert system
that combines three types of expert systems to provide a comprehensive and accurate
diagnosis of engine conditions, which can reduce downtime and maintenance costs. The
second possible new research direction is the application of remaining useful life (RUL)
prediction on marine diesel engines, which involves data extraction, feature extraction and
classification, and RUL evaluation to estimate the remaining useful life of the engine. The
third possible new research direction is the integration of multiple software packages in
expert systems’ development for marine diesel engines, which involves using advanced
modeling and simulation software, data processing and machine learning algorithms, and
user-friendly applications and interfaces to improve decision-making and increase the
effectiveness of the expert system.
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