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Abstract: This article presents a generalizable, low computational cost, simple, and fast gravity
compensation method for legged robots with a variable number of legs. It is based on the static
problem, which is a reduction in the dynamic model of the robot that takes advantage of the low
velocity of climbing robots. To solve it, we propose a method that computes the torque to be applied
by each actuator to compensate for the gravitational forces without using the Jacobian matrix for
the forces exerted by the end-effector and without using analytical methods for the gravitational
components of the model. We compare our method with the most popular method and conclude
that ours is twice as fast. Using the proposed gravity compensator, we present a torque-based
PD controller for the position of the leg modules, and a body velocity control without dynamic
compensation. In addition, we validate the method with both hardware and a simulated version of
the ROMERIN robot, a modular legged and climbing robot. Furthermore, we compare our controller
with the usual kinematic inverse controllers, demonstrating that the mean angular and linear error is
significantly reduced, as well as the power requirements of the actuators.

Keywords: modular robot; legged robot; climbing robot; kinematics; torque-based control; inverse
dynamic control; robotic organism; bio-inspired robot; static model; dynamic model

1. Introduction

Legged robots are a type of mobile robot that uses articulated limbs to provide lo-
comotion. They are more versatile than wheeled robots and can traverse many different
terrains, although these advantages require increased complexity and power consump-
tion [1,2]. Legged robots have significant advantages over wheeled robots for walking over
rough terrain and climbing complex infrastructures. For this reason, interest in this type
of locomotion has increased in recent years, and, as a result, impressive results have been
achieved through advances in control techniques and the improvement on direct drive ac-
tuators. The state-of-the-art focus is mainly on biped, quadruped, and hexapod robots, but
some researchers continue to pay attention to other robotic morphologies. Thanks to their
advantages, legged robots can be used for various applications ranging from inspection,
construction, delivery, search and rescue, to underwater exploration [3].

Multilegged animals have served as an inspiration for the mechanical structures
of legged robots. Knowledge of bionics is employed in research on legged robots of
all sizes, while the mechanical structures of heavy duty ones must meet significantly
higher demands [4]. The correct design of the mechanical structure affects its performance,
including mobility, energy efficiency, and control algorithms. The common problem of low
energy efficiency is often encountered in this type of robotic locomotion due to sub-par leg
actuators [5]. This poor design is exacerbated with climbing robots, and may be due to the
difficulty of estimating the torque required by actuators based on simple calculations and
without taking into account the hyperstatic complexities of this type of robot.
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The control of multi-body robotic systems can be performed by two types of con-
trollers: those based on inverse kinematics (“inverse kinematics controllers”, IKC) and
those based on inverse dynamics (”inverse dynamics controllers”, IDC) [6]. The first type
generates velocity commands for the joints, while the second one produces torque com-
mands. Although IKCs are still used in robotics [7,8], IDCs are recommended more for
controlling legged robots [9–11], especially climbing ones. Legged and climbing robots are
hyperstatic systems during operation, and small manufacturing and state estimation errors
make controllers work against each other when using position and velocity commands
only, regardless of the force they are applying.

There are two main methods for robot dynamics analysis: the Newton–Euler equa-
tion method and the Lagrange equation method [12]. Establishing a dynamic model of
the system using the Lagrange equation is considered better for the multi-DOF system
in [12]. However, in this article, we demonstrate the advantages of using the Newton–Euler
equations for a multi-limbed system where dynamic components can be neglected, such
as climbing robots that use static gaits. The results of this study conclude with the static
model, which indicates the torque that actuators have to apply to compensate for the action
of gravity.

This article describes an efficient torque-based control algorithm for climbing robots
with a variable number of legs. To do so, we introduce in first place the kinematic model
of the ROMERIN robot [13] (Figure 1), a modular legged climbing robot for inspection
and maintenance of large infrastructure, in which its components are coordinated and
controlled by means of the MoCLORA architecture [14]. The robot is based on modular
legs that have the ability to share energy in such a way that if the battery of one module
stops working for any reason, the rest of the modules can share their energy, increasing the
robustness of the robot [15].

Figure 1. The Romerin robot fixed to the ceiling of the test bench thanks to its active suction cups.

We describe a torque-based control of multi-limbed hyperstatic systems. Most climbing
legged robots have the peculiarity that they are hyperstatic structures when there is a
physical adhesion between the gripping system and the surroundings. This fact makes it
difficult and risky to control them exclusively with IKCs.

The main points and features of this article are summarized as follows:

1. Wrist actuators become passive whenever the adhesion system is attached to any
surface. Thus, the complexity of the kinematic chain is reduced and, consequently, so
is the complexity of the static model computation, which is implemented in a robot
with a non-defined number of legs.
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2. A low-weight computational method for computing the static model of a multi-limbed
system is presented and, consequently, a gravity compensator is obtained.

3. Our static model solver method is compared with the most used one, which is based
on the Lagrange equation method and the use of the robot Jacobian. The system is
validated in both simulation and hardware experiments.

4. The results of the IKCs and the proposed torque-based control are compared using
the same robot. The remarkable advantages of torque-based control are highlighted.

The article is organized as follows. In Section 2, we discuss the state-of-the-art legged
and climbing robot and the types of controllers. The ROMERIN robot and its kinematic
description are briefly presented in Section 3. In Section 4, we present a discussion of torque-
based control for hyperstatic articulated systems, as well as the premises of the estimation
of reaction forces. This section also includes a comparison between the most widely
used approach and the one proposed in this article. In Section 5, the control techniques
implemented under torque-based control are detailed, together with the position estimation
of the robot. We end the article with results and conclusions in Sections 6 and 7, respectively.

2. State of the Art

Legged robots can be classified according to their purpose (walking or climbing), leg
kinematics, or number of legs. A common classification for leg kinematics distinguishes
between articulated legs (with and without wheels), orthogonal legs, pantograph legs, or
telescopic legs [4,16].

Articulated legs possess high maneuverability and flexibility compared to the other
types of legs and are the most common leg structure found in the literature. Among the
robots that use articulated legs, we find walking quadrupeds such as Spot [17], ANY-
mal [18], or StarlETH [19]. Nowadays these robots show great maneuverability and have
advanced dynamic control thanks to sophisticated IDCs. Walking hexapods with articu-
lated legs are very common. Some examples are LAURON [20], whose last version of the
series (LAURON V) shows applicability over rough and hazardous terrains, RIMHO II [21],
which includes sensors to detect and locate antipersonnel landmines, or OSCAR [22], which
shows robustness against loss of legs. All these robots use IKCs to manage the position
of the robot, and show no evidence of implementing torque-based controllers. It is also
possible to find climbing quadrupeds with articulated legs, such as MRWALLSPECT-II [23],
LEMUR [24], Magneto [25], or RVC [26], and climbing hexapods such as ROMHEX [27].
However, no evidence about torque-based controllers is found in the literature of these
robots. Other articulated legged robots do not have a defined number of legs, such as the
case of the walking robot Nimble Limbs [28], which uses an IKC, or the robot proposed in
this article.

Robots that use orthogonal legs facilitate compensating the effect of gravity without
large energy costs, but are less flexible than other leg types. Few recent studies on this
type of leg structure are in the state of the art. As an example, in [29] the authors present
a hexapod walking robot specifically designed for humanitarian demining applications,
showing great energy efficiency and low power consumption. Regarding climbing robots
using this leg configuration, one of the most relevant studies for quadrupeds is ROBO-
CLIMBER [30], which is a bulky quadruped climbing-and-walking machine capable of
carrying heavy-duty drilling equipment for landslide consolidation and monitoring works.
Ambler [31] and the wall climbing robot REST [32] are examples of cartesian coordinate
hexapod robots. Torque-based controllers are not found in the description of these robots.
In fact, this type of robot is not as dependent on static and dynamic calculation as robots
with articulated legs, since they compensate the effect of gravity mainly thanks to their
peculiar structure.

Pantograph legs have the advantage of decoupling horizontal and vertical motions.
The legs are usually lighter due to the parallel mechanism they use, which allows the
actuators to be located in the body. An example of a quadruped walking robot with this
type of leg configuration is Oncilla [33], a bio-inspired low-weighted robot that shows agile
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and versatile locomotion, such as trotting on level ground, climbing and descending slopes,
and turning. The adaptive suspension vehicle (ASV) [34] and MECANT I [35] are examples
of hexapods that use pantograph legs controlled by IKCs. ASV, the largest hexapod in
the world, was designed to carry cargo for industrial and military applications on rough,
mountainous, icy, or muddy terrain. A relevant example of pantograph legs in climbing
robots is SCALER [7], a quadrupedal robot that, in its climbing configuration, has 6DOF
per leg. It demonstrates climbing walls, overhangs, ceilings, and trotting on the ground.

Telescopic legs, which have a compact structure, are primarily intended for bipeds [36,37],
although there are other types of robots with this type of structure, such as quadrupeds [38] or
hexapods [39].

Model-based control methods, such as IDCs, can be used to enable the fast, dexterous,
and compliant motion of robots without sacrificing control accuracy. However, imple-
menting such techniques on floating-base robots is not trivial because of underactuation,
dynamically changing constraints from the environment, and potentially closed-loop kine-
matics. Most legged robots that use IDCs focus on floating-base systems by obtaining the
Lagrange equations. In [40], the authors show how to analytically compute the inverse
dynamics torques for model-based control of sufficiently constrained floating base rigid
body systems, such as humanoid robots with one or two feet in contact with the envi-
ronment. Similarly, in [41] the authors present an inverse dynamics controller for legged
robots that use torque redundancy to create an optimal distribution of contact constraints.
In [12], the authors present the dynamic model of a 5DOF wall-climbing robot, which
can be considered an open-loop chain, since it has only two grippers and alternates
their adhesion.

3. ROMERIN Modular Climbing Robot
3.1. Brief Description of the ROMERIN Leg Module

In this article, we work directly with the ROMERIN robot (Figure 1), whose legs
modules are presented in [15]. These modules have been slightly modified, so that the leg
modules used in this article are made up of DYNAMIXEL servomotors grouped into three
groups, shoulder (2-DOF), elbow (1-DOF), and wrist (3-DOF). The servomotor models
are, in this case, MX-64T (@1), XH540-W270-T (@2 − @3), and XL430-W250-T (@4 − @6). The
axes of the last three joints (wrist) are arranged concurrently, with the last two axes in a
differential configuration. As a result of that, similarly to what happens in most industrial
robots, the last three axes intersect at the same point (called the wrist point) in such a way
that whenever the gripping system is grabbed to a surface, the wrist point stays static.

Each module has its own battery and has the ability to share energy with other
modules in case of battery failure. The control of the servomotors is carried out by an
ESP32 microcontroller (MCU), located on an electronic board, according to the commands
given by a central computer where coordination of the legs is performed [14]. The MCU is
also able to control the end-effector tool, a suction cup with a turbine that allows a vacuum
to be generated. This tool has a pressure and temperature sensor as well as three laser
distance transducers that are used to facilitate the alignment of the suction cup with a
surface. With feedback from the pressure sensor, it is immediately possible to determine
the gripping force achieved by the suction cup, whose design, efficiency, and performance
are described in more detail in [42]. The weight and length of the entire module is 1.94 kg
and 0.86 m, respectively.

A set of leg modules makes up a modular legged-and-climbing robot able to walk
and climb on different materials and in different orientations. In the next subsection,
an analysis of the kinematic model of each leg, as well as its simplification for future
sections, is included, in order to obtain a torque-based control for the modular legged and
climbing robot.



Machines 2023, 11, 757 5 of 21

3.2. Kinematic Model of ROMERIN

In general, a modular robot of # identical modules is assumed, where module
8 ∈ [1, ..., #] has � joints and  links indicated as 9 ∈ [1, ..., �] and : ∈ [1, ..., ]. The
mass of the link : of the module 8 is denoted as <8: , while <8 is the total weight of the
module 8, and ! its maximum length. A common situation is one in which all the modules
of the robot are correctly adhered to the environment by means of a grip system, such as
suction cups or magnets, having a free ball joint located in the WP (wrist point) that allows
the free orientation of the end effector against the surface of the environment. The body
is rigid and therefore has constant dimensions and a mass of <�, while the angles of the
joints are denoted as @8 9 . The mass of the entire ROMERIN robot is denoted as ". The
reference systems (Figure 2) are located at the origin of the body Σ� (located in the center
of mass, COM, by own decision), in the first joint of each module Σ8 , in the WP Σ8F , at the
contact points Σ8( , and in the COM of each link Σ8: , of each module Σ8,26 and of the whole
robot Σ26. Due to the interaction of the robot with the environment and the detachment
of the wrist actuator, reaction forces ®�8 , appear at the wrist point Σ8F . The homogeneous
transformation matrix between the reference systems Σ� and Σ8 is denoted as �)8 . The
transformation from Σ� to Σ8 9 is denoted as �)8 9 . Lastly, Σ� represents the reference frame
of the camera, where the embedded IMU is located.

Figure 2. ROMERIN robot relevant frames (quadruped version).

The kinematic model of each module is shown in Figure 3, whose main dimensions
and masses are denoted in Table 1. The Denavit–Hartenberg (DH) parameters that define
the kinematic model are indicated in Table 2.
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Figure 3. ROMERIN module kinematics.

Table 1. Kinematic model dimensions and links masses.

Name Value (m) Name Value (kg)

!1 0.068 <81 0.212

!2 0.22045 <82 0.360

!3 0.01492 <83 0.535

!4 0.27991 <84 0.205

!5 0.02245 <85 0.120

!6 0.087 <86 0.292

! 0.65536 " 1.724

Table 2. DH parameters of the ROMERIN leg module.

Joint ) d a "

1 @1 0 !1
c
2

2 @2 − U 0 !2
cos(U) c

3 @3 − c
2 − U 0 !5

c
2

4 @4 −!3 0 c
2

5 @5 0 0 c
2

6 @6 − c
2 !6 0 0

To reduce the problems of hyperstaticity, to simplify the kinematic chain, and to be
able to compute the reaction forces in the WP, the wrist is disabled when the suction cup
is attached to a surface; that is, the last three joints are detached from the power, keeping
the feedback from them. To reduce computation complexity, the system can be reduced as
shown in Figure 4, with the premises:

U = 0C0=( !3

!2
) = 0.09561 (1)

!2 =

√
!2

2 + !
2
3 = 0.22095 (2)

V = 0C0=( !5

!4
) = 0.08004 (3)

!3 =

√
!2

4 + !
2
5 = 0.28081 (4)
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Figure 4. ROMERIN module kinematic simplified. TCP point corresponds to the wrist point in
this case.

In this case, the feedback position of the motors should be transformed, as well as
the commanded position for each motor. That is, the second joint receives an increment
of U, while the third joint receives an increment of U + V (positive or negative according to
the direction).

For the simplified case, the forward kinematic model of each leg is computed as
indicated in Equation (5), whose differential is obtained in Equation (6).

©­«
GF

HF

IF

ª®¬ = ©­«
!1 · 21 + !2 · 21 · 22 + !3 · 21 · 23−2
!1 · B1 + !2 · B1 · 22 + !3 · B1 · 23−2

!2 · B2 − !3 · B3−2

ª®¬ (5)

©­«
¤GF
¤HF
¤IF

ª®¬ = ©­«
−B1 · (!1 + !2 · 22 + !3 · 23−2) −!2 · 21 · B2 + !3 · 21 · B3−2 −!3 · 21 · B3−2
21 · (!1 + !2 · 22 + !3 · 23−2) −!2 · B1 · B2 + !3 · B1 · B3−2 −!3 · B1 · B3−2

0 !2 · 22 + !3 · 23−2 −!3 · 23−2

ª®¬︸                                                                                                     ︷︷                                                                                                     ︸
� (@)

·©­«
¤@1
¤@2
¤@3

ª®¬ (6)

In this case, inverse kinematics is obtained by:

@1 = 0C0=2(HF , GF ) (7)

@3 = arccos
©­­«
(
GF
21
− !1

)2
+ I2

F − !2
2 − !2

3

2 · !2 · !3
ª®®¬ (8)

@2 = 0C0=2
(
IF ,

(
GF

21
− !1

))
+ 0C0=2(!3 · B2, !2 + !3 · 22) (9)

Although the calculation of @3 should be considered in two ways, positive and negative,
only positive values are considered to avoid that the elbow goes under the body.

4. Torque-Based Control of Hyper-Static Multi-Limbed Systems

As denoted previously, control of multi-body robotic systems can be controlled by two
types of controller, IKCs and IDCs. Our control system makes use of both, trying to take
advantage of each approach. This responds to two different situations for the leg:

• When the leg is attached to the environment, the interaction between both is reflected
in the appearance of reaction forces. In this case, the module should be controlled by
an IDC to avoid an overload of the actuators due to the closing of the kinematic chain.

• When the leg is detached and free, no reaction forces appear in the leg, and therefore
it can be controlled with an IKC or by means of an IDC.

One of the problems studied for multi-legged robots is how to determine the best
sequence to lift and place the feet [43]. Non-climbing multi-legged robot locomotion can
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be classified into dynamic locomotion (running and hopping), and static locomotion as
walking, where the body is constantly stable. For them, the vertical projection of the center
of gravity of the robot has to be within the supporting polygon that links the positions of
all supporting feet.

For bio-inspired climbing robots, the dynamic gait is a faster and more difficult style,
similar to other non-climbing legged robots. Several models describe dynamic gait to
improve robot speed. The spring-mass model consisting of a massless spring attached
to a point mass describe the interdependency of mechanical parameters that characterize
the running and jumping of humans as a function of speed [44]. Robots with dynamic
gaits, such as [45] or [46], have been proven to be feasible with a pendulum mechanism
or springs. Furthermore, the adhesion system has to work practically instantaneously to
guarantee the dynamic gait. They also face the problem that their applications are so far
limited to climbing on a plane.

For a system such as the one proposed in this article, dynamic gait is discarded because of
the attaching/detaching process of the suction cup, and because of safety reasons (related as
well to the adhesion system). In fact, for the first of the situations proposed at the beginning
of this section, each module of the robot has very low speed and acceleration. Thus, the
inertial and centrifugal components of the dynamic model can be neglected with respect to the
gravitational component. This problem simplification concludes in the static model of the system
(Equation (11)), where only the forces and torques produced by the action of gravity and the
reaction forces appear. The result of the equation is related to the torques that each joint has to
apply to compensate for body weight.

g = " (@) · ���
0
¥@ +� (@, ¤@) · ���

0
¤@ + 6(@) + � (@)) · �4GC (10)

g = 6(@) + � (@)) · �4GC (11)

This robot has # · � controllable DOFs, of which # · 3 are forced to be passive when the
leg module is attached (wrist), while only six DOFs related to body position and orientation
can be controlled (R3 SO(3)). The system is hyperstatic when, while the gripper system
is attached to the environment, there are more DOFs to act than DOFs to control. As
this difference increases, the system becomes more complex and more inaccuracies are
penalized in the estimation of the torques to be applied. The passivity of the wrist is made
by deactivating the power of the actuators, and it reduces hyperstaticity and allows for
computing the force distribution problem (FDP). Many legged robots use force/torque
sensors to skip FDP and reduce software complexity, while increasing platform costs [7].

4.1. Force Distribution Problem (FDP)

The force distribution problem is one of the challenges for legged robots. According to
the characteristics of multi-chain systems of legged robots, it is explicitly remarked that the
chains located in the support phase are tightly attached to each other [4]. This fact has been
highlighted in this dissertation as the hyperstatic problem.

Generally, during the stance phase, the reaction forces that appear in the robot have to
meet physical constraints to be valid:

1. For a walking legged robot located in the z-plane (opposite to the gravity vector), the
normal contact forces of the support feet are positive:

�8,I ≥ 0 (12)

This means that if the legged robot is walking on a slope (moving on x-direction),
positive tangential forces are strictly required during the stance phase:

�8,G ≥ 0 (13)

On the other hand, for climbing legged robots, the normal contact forces of the support
can be as negative as desired, as long as it is ensured that the torque of the actuators
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does not exceed the permissible limits (point 4), and the suction cup is not at risk of
detaching from the surface.

2. The total normal force of the stance phase is equal to the force produced by the weight
of the legged robot. That is, the sum of the reaction forces compensates the gravitation
component, and the sum of the momentum is zero:

Σ ®�8 +" · ®6 = 0 (14)∑
®"8 = 0 (15)

When force/torque sensors are used on the feet, it is possible to observe that the
values differ slightly due to motion, assumptions, and inaccuracies. When estimating
forces by solving the FDP, the values may differ slightly due to set thresholds for the
convergence of numerical methods. Similarly, for climbing robots, there should also
be a moment equilibrium.

3. For legged robots, the support feet must not slip:√
�2
8,G + �2

8,H ≤ `�8,I (16)

where �8,G and �8,H are the foot forces of leg 8 of the support phase in the G and H

directions, respectively, and ` is considered the relevant friction coefficient of the
ground. For climbing robots, the normal force must be lower than a limit value, which
is generally denoted as the grip force �B2 :

�8,I < �B2 (17)

4. Finally, the torques in each actuator have to be lower than their torque limits:

−38,<0G ≤ J)8 · 8F8 ≤ 38,<0G (18)

where 38,<0G ∈ R�×1 is the maximum articulated torque vector of the leg 8; J)8 ∈ R�×3

is the Jacobian of the leg 8; and 8F8 is the reaction forces related to Σ8 .

The solution of FDP for legged robots is a complex mathematical programming
problem [4]. The main solving methodologies are as follows:

• Linear-Programming (LP) Method. It is known as the most common programming
algorithm for optimizing FDP [47], but many flaws have been detected during its
implementation, such as computational cost or discontinuity.

• Compact-Dual Linear-Programming (CDLP) Method. It results in a smaller size
problem compared to the LP method by using compact-dual linear programming, but
it is unable to completely overcome discontinuity issues [48].

• Quadratic-Programming (QP) Method. This method presents the advantage that its
computing time does not depend on the initial hypotheses. In addition, it is able to
solve the discontinuity problem [49,50].

• Analytical Method. This method is implemented mainly for walking robots. It consists
of balancing the forces of the support feet in order to prevent legs from slipping.

In this article, we implement the alternative presented in [51], where the problem
of a hyperstatic system is attacked. The reaction forces are referred to the gravity center.
Thus, first of all, one must calculate the gravity center of the robotic robot. A model-based
computation can be applied since the position of each joint is well known thanks to the
embedded encoders, as well as the mass and the dimensions of the links and body.

To do so, each leg calculates its own gravity center with respect to its own reference
frame. A crucial part is that the mass of the gripping system is ignored when the suction
cup is attached to a surface because it could be considered part of the environment. For
the following equations, 8Σ8,26 represents the position of the gravity center of the leg 8
referred to the reference frame �. Then, for each non-supporting leg (swing phase), the
kinematic model presented in Table 2 and Figure 3 is used, and the gravity center of the leg
8 is calculated as:
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8Σ8,26 =
1
<8
·
 ∑
:=1

(
8G8: ·<8:

)
(19)

On the other hand, for each supporting leg (stance phase), the gravity center of leg 8 is
computed (with / =  − 3) as:

8Σ8,26 =
1

<81 +<82 +<83
·
/∑
:=1

(
8G8: ·<8:

)
(20)

For both cases, supporting and non-supporting legs, the position of the leg gravity
center is transformed to Σ� as:

�Σ8,26 =
�%8 · 8Σ8,26 (21)

where �%8 denotes the position transform from Σ� to Σ8 , and therefore, the gravity center
of the whole system (referred to Σ�) is given by:

�Σ26 =
1
" ′

#∑
8=1

[
<′8 · �Σ8,26

]
(22)

where " ′ represents the robot mass that is considered for the computation of the reaction
forces, <′

8
= <8 for non-supporting legs, and <′

8
= <81 +<82 +<83 for supporting legs. Being

#B and #=, the number of supporting and non-supporting legs, respectively, the value of
" ′ is given by:

" ′ = <� + #B · (<81 +<82 +<83) + #= ·<8 (23)

The position of the wrist points (where the reaction force appears) and the total center
of mass of the robot are required to compute the reaction forces with the implemented
estimator. To do so, Equation (24) denotes the transformation between the center of gravity
and the Wrist Point (WP) pose as:

26)F =
�)26

−1 · �)8 · 8)F (24)

where 8)F can be obtained with the forward kinematics given by Equation (5), and �)26 is
given by Equation (23). For simplicity, Σ26 is located with the same orientation as Σ�.

Once the position of the WPs and the direction of the gravity vector are known thanks
to an integrated IMU in the body, the reaction forces can be computed as presented in [51].
As an example, in Figure 5 two examples of the reaction forces that appear in the WPs
when the robot is in a static central position are illustrated.

(a)

Figure 5. Cont.
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(b)

Figure 5. Reaction forces that appear in the robot in different situations. Central reference frame
refers to Σ� , whereas the red spheres are located in the WPs. (a) Robot located in the ground,
(b) robot attached to the wall of a bridge.

4.2. Classical Method

In the world of static forces the transpose of the robot Jacobian relates the forces
exerted by the end-effector to the forces exerted by each joint. Thus, according to the
classical method, Equation (25) indicates how to calculate the torques required whenever
an external force is applied to the end effector.

g4GC = � (@)) · �4GC (25)

Regarding the gravitational component, it can be obtained by means of analytical
ways: Euler–Lagrange [52], recursive Lagrange [53], recursive Newton–Euler [54], Kane’s
equations [55], the D’Alembert principle [56], and some alternate algorithms that are based
on velocity constraint matrices [57] or a divide-and-conquer approach [58].

4.3. Implemented Method

In order to solve Equation (11), we propose a method to compute the torque that each
actuator has to apply to compensate gravitation forces without the use of the Jacobian
matrix for the forces exerted by the end-effector and without the use of other analytical
calculations for the gravitational components.

In this method, the Newton–Euler method is used. Basically, the Newton–Euler
equations describe the combined translations and rotational dynamics of a rigid body.
They are used as the basis for more complicated "multi-body" formulations (screw the-
ory) that describe the dynamics of systems of rigid bodies connected by joints and other
constraints. Multi-body problems can be solved by a variety of numerical algorithms [59];
however, for our specific case, we have formulated Algorithm 1. It is presented from a
modular point of view, where each module computes the torques required to compensate
gravitational forces.
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Algorithm 1 Gravity torque compensator of module 8
Outputs: g[�]

1: for 9 ∈ Σ8 9 do
2: for : ∈ Σ8: do
3: if 9 > 8 then
4: Skip ⊲ Only child links
5: ®A ← 38BC0=24+42C>A (Σ8 9 ,Σ8: )
6: ®� ← <: · 6
7: ®) ← ®A × ®� ⊲ Weight torques
8: ®)C>C0; = ®)C>C0; − ®)
9:

10: ®A ← 38BC0=24+42C>A (Σ8 9 ,Σ8F )
11: ®) ← ®A × ®�8 ⊲ Torques related to the external forces applied at WP
12: ®)C>C0; = ®)C>C0; − ®)
13:
14: g[8] = ®D@ · ®)C>C0; ⊲ Project to 9 joint axis

The torques required to compensate the gravity forces are calculated for each joint.
Equation (26) calculates the momentum produced on an object based on the amount of
force applied, ®� to the object at a distance, ®A, from the pivot point from where the force is
applied to the pivot point of the object. In the formula, ®D@ represents the unitary vector that
projects the moment on the joint axis.

®g = ®D@ ·
(
®A × ®�

)
(26)

In a similar way to the resolution of bending moment diagrams, a hyperstatic system
can be approached by analyzing the forces that appear on it at certain points of interest (in
this case, at the joints of the robot). By making a section at each of the joints, an analysis of
the forces remaining on one of the sides is performed. The simplest way is to apply the
forces appearing in the module itself, i.e., the weights of the links farthest from the body
and the reaction force appearing in the given module.

4.4. Comparison of Methods

The methods presented in Sections 4.2 and 4.3, respectively, give the same results
under the same conditions. The first method has been widely used for legged robots, and
it is one of the unique methods found in the literature. A great example is [60], where
the authors use the Jacobian transpose to compute the torques required by external forces,
which are computed thanks to the combination of the QP method with the reduction in the
problem size proposed in [61] to solve the FDP.

Table 3 indicates the computation time for each method for one leg (including the
standard deviation) and for a modular robot of four and six legs. Although the growth of the
computation time is linear for both cases, it is possible to observe that as the number of legs
increases, the computation time for the first method increases considerably. It is particularly
important for a multi-legged system where the logic runs on a single computer and where
the control rate and computational cost are critical. This importance increases for systems
such as ROMERIN, where the number of legs can be considerably increased to adapt to
specific real-time applications. In addition, it is especially important in sampling-based
algorithms for motion planning, where the computation is performed many times.
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Table 3. Comparison of computational time (C2) of presented methods.

Method -(tc)(us) 2(tc)(us) -(tc)(us) 4 Legs -(tc)(us) 6 Legs

Classical method 145 165 580 870

Proposed method 77 95 308 462

As denoted in the table, the average computational cost of the proposed method is half
that of the classical method. This is due to the use of the Jacobian matrix, which increases
the computation requirements. To point out the importance of reducing computational
time, in the case of using a sampling-based algorithm for motion planning in an hexapod
robot, the proposed method in this article saves 0.41 s of computation with 1000 samples.

Additionally, the implementation of the proposed method can be very simple by using
packages tf or tf2 from ROS and ROS2, respectively. These tools could help the developer
create a torque-based control in a simple and fast way, even without developing a detailed
kinematic model.

5. Impedance Control of Leg Modules

There are two main alternatives to control the position of the robot while sending
torque commands [62]. The first case is the proportional control plus velocity feedback,
whereas the second case is the PD control. Both cases represent closed-loop controllers,
where the proportional and derivative constants help the modules push the body of
the robot.

The proportional control plus velocity feedback with gravity compensation is the
simplest closed-loop controller that may be used to control robot manipulators. The
conceptual application of this control strategy is common in angular position control of
DC motors. In this application, the controller is also known as a proportional control with
tachometric feedback. The equation of proportional control plus velocity feedback is given
by Equation (27), where  ? and  3 ∈ R=×= are symmetric positive definite matrices that
refer to the position gain and the velocity gain (or derivative), respectively, and g6 refers to
Equation (11).

g = g6 +  ? · (@3 − @) −  3 · ¤@ (27)

On the other hand, the proportional Derivative (PD) control with gravity compensation
is an immediate extension of proportional control plus velocity feedback. As its name
suggests, the control law is not only composed of a proportional term of the position error
as in the case of proportional control, but also of another term which is proportional to the
derivative of the position, i.e., to its velocity error:

g = g6 +  ? · (@3 − @) +  3 · ( ¤@3 − ¤@) (28)

Proportional control plus velocity feedback may be understood as a PD control where
the desired velocity is zero to guarantee stability and reduce rude movements.

Figure 6 shows the control diagram that is integrated in each module, which can be
denoted as an impedance control. A body position is commanded ΣA4 5

�
and compared

with the estimated body position Σ̂�. The transformation �Σ−1
8F

is applied to obtain the
desired joint position @ via �)8 and the inverse kinematics. A PD controller is applied
to obtain the torque based on the joint position error. On the other hand, based on the
position estimation and the gravity compensator proposed in this section, another torque
component is generated. The sum of both torques is applied to the joints.
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Figure 6. Control scheme of a module.

5.1. State Estimator

Body position estimation is implemented from [63]. It takes the robot and IMU
odometry as input and fuses them with an Extended Kalman Filter (EKF). Later, it uses
points clouds from the mounted RGBd camera to perform a graph-SLAM approach. Body
position odometry is obtained through the FK of the supporting legs. Because the initial
state of the robot is known, the body position is straightforwardly computed as:

Σ̂�8 =
�Σ8 · 8Σ8(,C=0 · 8Σ−1

8(,C=: ·
�Σ−1

8 (29)

where Σ̂�8 is the estimation of the position of the body frame by the module 8, �Σ8 the
transformation from the body frame to the first joint frame of the module 8, 8Σ8(,C=0 its FK
in the initial state, and 8Σ8(,C=: its FK at time : . Since there is the same number of valid
solutions as legs, currently the robot odometry is implemented as the average of them as:

Σ̂� =
1
#

#∑
8=1

Σ̂�8 (30)

On the other hand, the mean robot orientation odometry can be computed as:

& = [01@1, 02@2, ..., 0# @# ] (31)

where 08 is the weight of the 8Cℎ quaternion (@8) averaged, included as a column vector.
In this case, given the modularity of the robot, 08 is evenly distributed. Q is therefore a
4 × # matrix.

The normalized eigenvector corresponding to the largest eigenvalue of &&) is the
weighted average. Since &&) is self-adjointed and at least positive, semi-definite, fast, and
robust methods of solving that eigen problem are available. Furthermore, this is scalable.
Computing the matrix–matrix product is the only step that grows with the number of
elements that are averaged.

5.2. Body Trajectory Tracking Control

Following the objective of biomimetics, in this section we describe the body trajectory
tracking control without dynamic compensation used in the ROMERIN robot. In the
animal world, the body position is usually not controlled directly. On the contrary, animals
“establish” their body velocity, and the legs are those that accompany the movement.

Unlike path-following, which focuses on following a predefined path without time
constraints, trajectory tracking does not guarantee that the path is faithfully followed.
Instead, it involves time as a constraint by correcting the position error. Thus, for the
ROMERIN robot, a body velocity control without dynamic compensation is described as:

¤G = ¤G3 +  � · G̃ (32)
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where  � denotes the constant that attempts to correct the position error.

6. Experiments

ROMERIN capabilities and performance were evaluated and demonstrated in discrete
and continuous environments and ground tests listed in Table 4. ROMERIN can climb
vertical walls while walking on the ground and the ceiling (Video available at https:
//youtu.be/nTHPNJAwBs4, accessed on 18 July 2023).

Table 4. List of experiments and objectives.

Experiment Video
Start Environment Objective

Torque-based con-
trol (Section 6.1) 0:10 Suction cups over

different planes

Verify FDP and impedance
control with physical plat-
form

Gravity compensa-
tion (Section 6.2) 0:36

Ground, different
planes, wall, and
ceiling

Verify gravity compensation
and impedance control

ROMERIN gait
(Section 6.3) 1:40 Ground, wall, and

ceiling
Verify impedance control
with gait

6.1. Torque-Based Control Experiment

ROMERIN was operated using a predefined manual circular trajectory to verify the
combination of the FDP solver and impedance control. IMU data are given by the embedded
RealSense D435i IMU and transformed to Σ� as:

©­«
�6G
�6H
�6I

ª®¬ = �'� ·
©­«
�6G
�6H
�6I

ª®¬ (33)

where �'� denotes the rotation matrix from Σ� to Σ� . Figure 7 shows the behavior of a PD
control with gravity compensation, where the constants that are given experimentally are:

 ? =
©­«
40
60
25

ª®¬ ;  3 =
©­«

8
10
5

ª®¬ ;  � =

©­­­­­­­«

0.1
0.1
0.1

0.15
0.15
0.15

ª®®®®®®®¬
(34)

and the maximum allowed torque has been set to 65% of the actuator stall torque to
avoid overloads. The position and the resultant torques are shown in Figure 8, while the
cartesian position of the same leg Σ8( related to Σ8 is illustrated in Figure 9. As observed,
the leg follows the received commands, where the maximum error is found in the ’Z’ axis,
which corresponds to the gravity component. The mean body position error has been
reduced from 0.2 ± 0.05 rad and 6.0 ± 1.5 cm of the ROMERIN IKC [14], to 0.1 ± 0.02 rad
and 3.0 ± 0.6 cm with the proposed torque-based controller of this article.

https://youtu.be/nTHPNJAwBs4
https://youtu.be/nTHPNJAwBs4
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Figure 7. Impedance control experiments by using a predefined manual circular trajectory.

Figure 8. Position and torques of q1−q3.

Figure 9. Cartesian position of one of the modules.

6.2. Gravity Compensation

The same predefined manual circular trajectory to verify the combination of FDP
solver and impedance control has been tested in different situations, such as on the ground,
wall, and ceiling. In this case, the PD component has been removed from time to time,
keeping gravity compensation only. To verify the performance of gravity compensation,
the ROMERIN digital twin [14], which can be configured to only accept torque commands,
has been used. In this way, thanks to its reliability, it is possible to verify the experiments
from a theoretical point of view. It has been demonstrated that when the PD component is
removed, the robot stays still in different situations. Figure 10 shows the example where
the robot is in the ceiling. As observed, the joints follow the commands faithfully and
remain constant when the PD component is removed (blue boxes), keeping the gravity
compensation only. For this experiment, constant values of Equation (34) are set.
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Figure 10. Position and torques of q1−q3 for a constant predefined manual circular trajectory with
the robot in the ceiling. Blue boxes indicates when the PD component is removed.

6.3. ROMERIN Gait

ROMERIN gait has been tested in the ground, inclined walls, vertical walls, and
ceilings. As an example, Figure 11 shows screenshots of the behavior of a quadruped
configuration over an inclined wall of 45◦. Similarly, Figure 12 shows the behavior of the
ROMERIN hexapod configuration on a vertical wall.

Figure 11. ROMERIN (quadruped version) gait over an inclined wall (45◦). Pictures 1–12 show
catches of the trajectory.



Machines 2023, 11, 757 18 of 21

Figure 12. ROMERIN (hexapod version) gait over a vertical wall (90◦). Pictures 1–16 show catches of
the trajectory.

7. Conclusions

In this article, the Newton–Euler formulation was used to develop a novel, platform-
generic, low-weight, fast-implemented, and agile method of gravity compensation. By
describing the combined translations and rotational dynamics of a rigid body, the basis for
more complicated “multibody” formulations that describe the dynamics of systems of rigid
bodies connected by joints and other constraints has been presented. To do so, we have
presented the algorithm over the ROMERIN robot, which is a modular legged-and-climbing
robot with an undefined morphology.

We first introduced the detachment of the adhesion system when performing the static
computation of forces, reducing the complexity of the kinematic chain. In addition, we
made use of a reliable reaction force estimator and tested it under multiple scenarios. The
estimator takes advantage of the passivity of the wrist actuators to balance the momentums
at the wrist points. In order to solve the static problem, which is a reduction in the dynamic
model of the robot, we introduced the ROMERIN legs’ kinematics, which are required to
compute the center of gravity of the entire robot, the gravity compensation by classical
methods, and the estimation of the robot state. Consequently, we presented the low-
weight computational method to compute the static model of a multi-limbed system, and
we compared the method with the classical one, validating it with both hardware and
simulated robots.

Comparing the results by using IKCs and the proposed torque-based controller with
the same robot, it is possible to conclude that the mean angular and linear error is reduced
considerably, as well as the power requirements of the actuators, which is a critical part in
articulated multi-limbed robots.
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