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Abstract: Switched reluctance machines (SRMs) are potential candidates for use in the propulsion
systems of electric vehicles. However, they suffer from low power density and high torque ripple. In
this paper, a segmented rotor double-sided axial flux SRM (DSAFSRM) is chosen for detailed analysis.
A hybrid design algorithm is proposed to take the effects of iron non-linearity into account. The
proposed design procedure benefits from simplicity and high accuracy at the same time. A two-step
optimization procedure is presented which minimizes the torque ripple of the DSAFSRM without
jeopardizing its efficiency. The torque ripple is reduced from 120% to 35% after optimization. In the
two-step optimization procedure, both geometrical and switching related parameters are investigated.
Moreover, a double-sided radial flux SRM is designed and compared with the proposed DSAFSRM
in terms of torque ripple, average torque, efficiency and power density. The results indicate superior
performance of the optimized DSAFSRM, especially in terms of average torque, which is 26% higher
than the torque produced by the double-sided radial flux SRM.

Keywords: axial flux SRM; electric vehicle; hybrid design; magnetic equivalent circuit; segmented
rotor; torque ripple

1. Introduction

Switched reluctance machines (SRMs) have drawn the attention of researchers for their
potential use in the propulsion systems of electric vehicles (EVs). SRMs possess several
merits compared with other electric machines, especially permanent magnet synchronous
machines (PMSMs). A rare earth-free structure, wide power-speed range, simple structure
and high durability are among the advantages of SRMs [1,2]. Consequently, SRMs have
been designed to be used in a wide range of applications, namely, electric vehicles [3],
electric bikes [4], electric aircraft [5], and wind turbines [6]. However, low power density
and high torque ripple are serious drawbacks of this topology [7,8].

Excessive torque fluctuation can cause fatigue, mechanical failure, noise and vibration,
which suggests the importance of torque ripple reduction in SRMs [9]. In [10], circular
holes and a non-uniform air gap shape were employed to manipulate local saturation
in the rotor and then minimize the torque ripple. Since iron saturation depends on the
armature current, the optimization is only valid for a single working point rather than a
wide working range. An overlapped winding scheme and rotor pole misalignment were
proposed in [11], which considerably reduced the torque ripple. However, increased copper
consumption and deteriorated efficiency were noted as consequences. In general, torque
ripple suppression methods are categorized into two methods: geometry modifications and
excitation regulations. The former method uses the following techniques: skewed rotor pole,
pole offset, pole shifting, and rotor notch. These techniques have the following disadvantages:
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performance degradation [12,13], increased manufacturing complexity [14,15], and being
effective only in single working point [16,17]. Torque ripple reduction methods based
on excitation regulations such as step current excitation control, modified direct torque
control and hysteresis band-based torque sharing functions have been discussed in previous
studies. Compared with geometrical methods, these techniques represent more promising
improvements. However, they have some of the following drawbacks: increased switching
loss [18], torque sensor requirement [19], complicated control logic [20,21], and excessive
computational effort [22,23]. Therefore, an effective solution is proposed here which combines
the advantages of both methods without imposing complexity and performance degradation.

In order to increase the power density of SRMs, several methods have been proposed in
the literature, especially methods based on using PMs in SRM’s structure [24–26]. However,
this method may not justify replacement of PMSMs by SRMs since both topologies use
rare earth materials. Employing a double-sided arrangement for radial flux SRMs was
discussed in [27–29]. The solution is effective due to the increased air gap surface area
but has the disadvantages of complex mechanical structure, uneven distribution of power
between stators and a complicated cooling system. In order to overcome these problems
while maintaining high power density, segmented rotor double-sided axial flux SRMs
(DSAFSRM) could be considered as a suitable topology [30].

Several topologies of segmented rotor DSAFSRMs have been discussed, which may
be categorized in three configurations, as in Figure 1. Double-rotor single-stator AFSRM
topology is depicted in Figure 1a. In this topology, the stator is sandwiched between two
rotor disks and the rotor is composed of separate iron segments fixed by a non-magnetic
holder. The double-rotor single-stator AFSRM has the advantage of low copper loss and
high efficiency due to small winding overhang [31,32]. However, heat dissipation from the
stator is difficult due to the small contact area between the stator and the surrounding air.
A configuration of a DSAFSRM with two stators and one rotor is depicted in Figure 1b.
In this topology, two stators are located on two ends of the motor and a segmented rotor
is placed in the middle [33,34]. In contrast to the previous topology, this topology offers
good thermal behavior due to large contact area between the stators and the surroundings.
Another DSAFSRM topology called the Pancake structure is depicted in Figure 1c. As
can be seen, the stator and rotor have a segmented structure which yields a lightweight
structure [35,36]. The Pancake topology produces a high power density, but its mechanical
integrity and reliability are questionable.

Standard design formulations for DSAFSRMs were presented in [37,38]. However,
the design procedures did not take the effect of leakage flux and magnetic non-linearity
into account. In [39], a design process based on a 3-D finite element method (FEM) was
presented which showed a high level of accuracy but required intensive computational time.
A coupled analytical-numerical design procedure for an AFSRM was discussed in [40]. The
machine’s design equations were derived and coupled to the 3-D FEM to take the effect
of fringing flux and iron saturation into account. Nevertheless, the proposed algorithm
suffered from high computational time and low robustness. In [41], a design algorithm for
AFSRMs was proposed where classical equations and the magnetic equivalent circuit (MEC)
method were combined. In the design procedure, the effects of fringing and leakage flux
were considered by the MEC method. However, non-linearity of the magnetic materials
was not taken into account, which reduced accuracy of the method.

The contributions of this paper are as follows: (1) a proposed hybrid design algorithm
based on a non-linear MEC model and classical formulations of the DSAFSRM; (2) a two-step
torque ripple minimization solution based on optimization of switching and geometrical
parameters; and (3) a comparative study of double-sided SRMs with axial and radial flux
configurations. In Section 2, the hybrid design procedure and its non-linear algorithm are
presented. In Section 3, the performance of the designed DSAFSRM is addressed, and the two-
step torque ripple suppression method is discussed in Section 4. In Section 5, the optimized
machine is compared with a double-sided radial flux SRM under the same constraints to
evaluate their performance and the effectiveness of the proposed methods.
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Figure 1. Configurations of segment rotor double-sided axial flux SRMs. (a) Single-stator and
double-rotor topology. (b) Double-stator and single-rotor topology. (c) Pancake topology.

2. Hybrid Design Procedure for the DSAFSRM

In this section, a hybrid design procedure for the DSAFSRM shown in Figure 1b is
proposed. The design algorithm employs DSAFSRM’s analytical equations along with
non-linear MEC to take the effects of iron non-linearity and leakage flux into account. In
this regard, the proposed algorithm simultaneously benefits from low computational effort
and a high level of accuracy.

2.1. DSAFSRM’s Design Equations

The flux linkage equation of the motor can be written as in (1) [42]:

Vdc − Rphi(t) = ∂λph/∂t (1)

where Vdc is the dc link voltage, and Rph and λph are the wire resistance and flux linkage
per phase, respectively. It should be noted that (1) applies to the period of time when the
rotor moves from the unaligned to aligned position and i(t) reaches to its peak value (I),
which is assumed constant. By neglecting the phase resistance, it can be re-written as in
(2) [42]:

Vdc = ∂λph/∂t =
(Lsat

a − Lu)

T
I (2)

where Lsat
a and Lu are saturated aligned and unaligned phase inductances, respectively. T

is the period of time when the rotor moves from the unaligned to aligned position and can
be calculated as in (3).

T = βs
/

ωm (3)

where ωm is the rotor angular velocity and βs is the stator pole shoe angle. The variable KL
is defined as the ratio of unaligned inductance to saturated aligned inductance as in (4).

KL =
Lu

Lsat
a

(4)
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Then, by applying (3) and (4) into (2), the voltage equation can be written as fol-
lows [42]:

V = Lsat
a I

ωm

βs
(1 − KL) (5)

At the aligned position, the flux linkage equation can be written as in (6).

Lsat
a I = Nph ϕph = NphBpole Apole (6)

where Nph is the coil turn per phase, and Bpole and Apole are the average magnetic flux density
and area, respectively, of one stator pole. The stator pole area (Apole) can be calculated as in (7).

Apole =
βs

8
(D2

o − D2
i ) =

βsD2
o

8
(1 − K2

s ) (7)

Do and Di are the outer and inner diameters, respectively, of the stator disk, and Ks is
the ratio of the inner diameter to the outer diameter. Thus, (6) can be re-written as in (8).

Lsat
a I =

NphβsBpole

8
D2

o(1 − K2
s ) (8)

The electrical loading and output power of the double-stator AFSRM are written as (9)
and (10), respectively.

Am =
2Nph I

π(Do + Di)/2
=

4Nph I
πDo(1 + Ks)

(9)

Po = ηKdVdc I (10)

where η is the efficiency, and Kd is the ratio of the actual duty cycle of the phase current to
its maximum allowable duty cycle, which is calculated as in (11).

Kd =
2Nrα

360
(11)

Nr is the number of rotor poles, and α is the actual conduction angle in each stroke.
Finally, the combination of (5), (8), (9) and (10) yields the output power of the double-stator
single-rotor AFSRM.

Po =
π2ηKd(1 − KL)

960
Bpole AmnmD3

o(1 − K2
s )(1 + Ks) (12)

It should be noted that nm is the mechanical speed of the rotor in rpm. The above
equation can be rearranged to calculate the outer diameter of the DSAFSRM:

Do = 3

√
960Po

π2ηKd(1 − KL)Bpole Amnm(1 − K2
s )(1 + Ks)

, (13)

As the above formulation indicates, calculation of the outer diameter requires the
values of input parameters (output power, speed, magnetic and electrical loadings) and
initializing the remaining parameters. This leads to an iterative algorithm which will be
discussed later. Using the previously discussed electrical loading calculated in Equation (9),
the number of winding turns per phase is calculated:

Nph =
πDo(1 + Ks)Am

8I
(14)
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The wire diameter is calculated based on the assumed value for current density (δ)
and the stator rms current (Irms):

dw =

√
4Sw

π
=

√
4Irms

πδ
(15)

Next, the stator slot area is calculated:

Sslot =
mNphSw

NsFf
(16)

where m, Sw and Ff are the number of phases, wire cross-sectional area and slot fill factor,
respectively. By choosing rectangular stator slots, the slot opening (Wso) and slot height
(dsh) can be determined by the following formulations.

Wso = (
2π

Ns
− βs)(Do + Di)/4, dsh =

Sslot
Wso

(17)

The conductor length per phase, phase resistance and copper loss can be then calcu-
lated using (18)–(20), respectively [43].

Lwire ≈ Nph[1.1(Do − Di) +
π

Ns
(Do + Di)] (18)

Rph(θ) = Lwirerw[1 + α(θ − 20)] (19)

Pcu = mRph(θ) I2
rms (20)

where rw, α and θ are the conductor resistance per meter at 20 ◦C, resistance coefficient, and
working temperature, respectively.

The accuracy of the above-mentioned design procedure is highly influenced by the
ratio of unaligned inductance to saturated aligned inductance (KL in (4)). This signifies
the need for a complementary approach to increase the accuracy of the design procedure
without imposing considerable complexity and computational effort. To do so, a non-linear
MEC is developed in the next section and then combined with the classical equations,
leading to a hybrid design procedure.

2.2. Non-Linear MEC

Since the factor KL is very sensitive to iron saturation level and the machine’s detailed
geometry, it is not possible to calculate it using classical formulations. In this section, a non-
linear MEC is developed to calculate the value of KL, leading to a more accurate analytical
design procedure. The MEC is only established at unaligned and aligned positions of the
rotor since the value of KL is solely dependent on these two positions.

2.2.1. Permeance Network

The permeance network of the DSAFSRM at the aligned and unaligned positions is
depicted in Figure 2. In order to take the effect of iron saturation into account, non-linear
permeances are adopted for the iron parts placed on the main flux path highlighted in
red. Owing to machine’s symmetry, the permeance networks at the aligned and unaligned
positions are reduced to circuits, as shown in Figure 2b,d, respectively.

The permeance networks shown in Figure 2b,d can be solved based on the following
formulation [44]:

[G]× [V] = [φ] (21)

where G, V and Φ are the permeance, node potential and flux matrix whose expanded
forms are given in Appendix A.
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The magnetic potential (Vi, i = 1, 2, 3, . . . ) at all nodes is determined by solving the
network. Then, the flux generated by the active phase can be calculated as in (22).

ϕa = Gt1(V1 + Nc Ia) (22)

When the magnetic fluxes associated with the aligned and unaligned positions are
determined, KL is simply calculated as in (23).

KL =
ϕ

unaligned
a

ϕ
aligned
a

(23)
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red). (a) Full model at aligned position. (b) Reduced model at aligned position. (c) Full model at
unaligned position. (d) Reduced model at unaligned position.

2.2.2. Air Gap Permeances

Precise calculation of air gap permeances is the key to developing an accurate MEC.
In this regard, the permeances between the rotor and stator at aligned and unaligned
positions are investigated here. To do so, it is seen in Figure 3a that there are three types of
flux tubes between the rotor and stator at the aligned position. The first flux tube (FT0) is
associated with the front surfaces of rotor and stator whose corresponding permeance can
be calculated as in (24).

GFT0 = 0.5µ0(Do − Di)

Wst∫
0

dx0

Lg
=

µ0Wst(Do − Di)

2Lg
(24)
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Flux tube FT1 is associated with the rotor’s front surface and stator’s side surface. This
flux tube consists of a straight line and a curved line, which for simplicity, is assumed to be
a circular curve. The permeance associated with this flux tube is calculated as in (25).

GFT1 = 0.5µ0(Do − Di)

(Wrt−Wst)/2∫
0

dx1

Lg + 0.5πx1
=

µ0(Do − Di)

π
Ln[1 + π(Wrt − Wst)/4Lg] (25)
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With regard to the aligned position, the third flux tube (FT2) is related to the side surfaces
of the stator and rotor. As can be seen from Figure 3a, FT2 is composed of two curved paths
and one straight path whose corresponding permeances are calculated as in (26).

GFT2 = 0.5µ0(Do − Di)

Trt∫
0

dx2

Lg + π[(Wrt − Wst)/4 + x2]
=

µ0(Do − Di)

2π
Ln[1 +

4πTrt

4Lg + π(Wrt − Wst)
] (26)

Consequently, the air gap permeance between the rotor and stator poles at the aligned
position is calculated by the following equation:

Galigned
g1,1 = GFT0 + 2GFT1 + 2GFT2 (27)

As can be seen in Figure 3b, two types of flux tubes are considered between the rotor
and stator at the unaligned position. FT3 and FT4 are comprised of two straight lines and a
circular curve which relate a side surface to a front surface. The corresponding permeances
of FT3 and FT4 are written as in (28) and (29).

GFT3 = 0.5µ0(Do − Di)

(Wrt−Wst)/2∫
0

dx3

Lg + 0.5[(Wrs − Wst) + πx3]
=

µ0(Do − Di)

π
Ln[1 +

Wrt − Wst

4Lg + 2(Wrs − Wst)
] (28)

GFT4 = 0.5µ0(Do − Di)

min(Trt ,Wst)∫
0

dx4

Lg + 0.5[(Wrs − Wst) + πx4]
=

µ0(Do − Di)

π
Ln[1 +

min(Trt, Wst)

4Lg + 2(Wrs − Wst)
] (29)

After obtaining the permeance values corresponding to FT3 and FT4, the air gap per-
meance between the rotor and stator poles at the unaligned position is calculated as in (30).

Gunaligned
g1,1 = GFT3 + GFT4 (30)

The permeance between two stator poles, which is represented by Gss in Figure 2b, is
calculated as in (31).

Gss =
0.5µ0Wst(Do − Di)

2Lg + Trt
(31)
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The stator slots are categorized as slots with and without current-carrying conductors.
In this regard, Gsc and Gs, which are air gap permeances associated with the current-
carrying and non-current-carrying slots, respectively, are calculated as follows.

Gsc =
µ0Tst(Do − Di)

4Wss
, Gs = 2Gsc (32)

2.2.3. Non-Linear Hybrid Algorithm

Accurate calculation of KL requires taking the iron saturation effect into account. In
this regard, permeances positioned on the main flux path (highlighted in red in Figure 2)
are considered to be non-linear. They are subjected to a considerable amount of magnetic
saturation, especially at the aligned position. It should be mentioned that the stator teeth
without a magneto motive force (MMF) source are not subjected to saturation. There-
fore, their corresponding permeances are considered linear (i.e., Gt2, Gt3). The equations
associated with the iron part permeances are given in (33).

Gt1 =
µt1Wst(Do − Di)

2Tst + Tsy
, Gy1 =

µy1Tsy(Do − Di)

2(Wst + Wss)
, (33)

where µt1 and µy1 are the permeabilities of the aligned stator tooth and its adjacent yoke,
respectively.

The proposed algorithm of the hybrid method is presented in Figure 4 in which steps
associated with the classical and MEC methods are depicted in distinct colors. In the
beginning, the DSAFSRM’s ratings and main specifications such as power, speed, pole
number, etc., are imported. Next, KL and efficiency (η) are initialized, which is followed
by obtaining the machine’s dimensions and electrical parameters using the classical for-
mulations (10)–(20). At this stage, the algorithm moves to the MEC section by developing
DSAFSRM’s permeance network. Next, the permeances associated with air gap and linear
iron parts are calculated. In order to determine the permeability of the saturated parts, a
function is fitted on the B-H curve of the iron. Then, B and H values are calculated using
an iterative algorithm. Thus, the non-linear permeances are calculated and the permeance
network is solved using (21, Appendix A). Next, KL is calculated and compared with its
initial value. If the assumed values for KL and η match their initial values, the algorithm
finishes; otherwise, it returns to the step in which the two parameters are initialized.
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3. Electromagnetic Performance Analysis

In this section, the electromagnetic performance of the designed DSAFSRM is dis-
cussed. The DSAFSRM is designed with a rated power of 100 kW at 3000 rpm, and further
specifications are listed in Table 1. The detailed analysis and optimization steps are per-
formed using finite element analysis (FEA). In the FEA environment, 2-D geometry is used
instead of 3-D, which has the advantages of reduced mesh elements, tolerable processing
time and an acceptable level of accuracy. Additionally, only 1/6th of the full model is used
rather than the whole model, resulting in a considerably reduced number of mesh elements,
as shown in Figure 5.

Table 1. Main specifications of the designed DSAFSRM.

Parameter Symbol Value

Output power (kW) Po 100
Nominal speed (rpm) nm 3000
DC link voltage (V) Vdc 440

Outer diameter (mm) Do 370
Inner diameter (mm) Di 148
Active length (mm) Lm 111

Number of stator poles Ns 18
Number of rotor poles Nr 12

Air gap length per side (mm) Lg 0.5
Number of turns per coil Nc 5
Stator slot opening (mm) Wss 20

Stator slot depth (mm) Tst 28
Stator yoke thickness Tsy 18

Rotor length Trt 18
Slot fill factor Ff 50
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Figure 5. 2-D structure of the designed DSAFSRM in the FEA environment.

A vector plot of the magnetic flux density distribution in the AFSRM is depicted
in Figure 6 at the unaligned and aligned positions. A nominal peak current of 320 A is
injected into phase A, and it can be observed that the flux density at the aligned position is
approximately 1.8 T in the stator pole and roughly 1.3 T in the stator yoke. The flux linkage
profile of the designed AFSRM is extracted at different rotor positions and presented in
Figure 7. It can be seen that at the unaligned position (0◦) the flux linkage has the minimum
value of 0.08 Wb due to experiencing the largest air gap reluctance on the main flux path. In
contrast, the flux linkage profile at the aligned position (15◦) reaches 0.3 Wb and becomes
saturated by saturation of the stator poles (Figure 6b).

The instantaneous electromagnetic torque produced by phase A is presented in
Figure 7 for different rotor positions at 320 A current. It can be seen that the static torque
starts from zero at the unaligned position (0◦) and reaches its maximum value. When
the rotor pole reaches perfect alignment with the stator pole (15◦), the reluctance of the
main flux path reaches a minimum and the electromagnetic torque becomes zero. With
further movement of the rotor, the reluctance increases and a negative torque is produced
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to keep the rotor in alignment with the stator (keeping the reluctance at a minimum
value). Thus, in order to produce positive torque, the maximum conduction period in
each conduction period should not exceed 180◦/Nr. In the case of the 18/12 DSAFSRM,
the conduction period should not exceed 15◦. However, due to the machine’s large
inductance, the current would not immediately fall to zero after reaching the aligned
position, which results in negative torque production. Consequently, the phase switches
should be turned off at some point before reaching the aligned position. In this regard,
it is convenient to take the conduction angle as 360◦/mNr, where m is the number of
phases. Thus, the conduction angle would be 10◦ in the DSAFSRM under study.
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Figure 6. Vector plot of the magnetic flux density distribution in the DSAFSRM at the rated current.
(a) Unaligned position. (b) Aligned position.
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Figure 7. Flux linkage and static torque versus rotor position of the DSAFSRM.

4. Torque Ripple Minimization

In this section, torque ripple minimization of the DSAFSRM under study is addressed.
High levels of torque ripple are an intrinsic drawback of SRMs and this poses serious
challenges to their application, especially in EV powertrains. A high level of torque ripple
results in excessive noise and vibration, causes damage to ball bearings and the shaft, and
reduces the reliability of the powertrain. In this regard, two torque ripple minimization
approaches relying on conventional and proposed methods are discussed here.

4.1. Conventional Pole Coverage Optimization

In SRMs, the torque ripple level is sensitive to the stator and rotor pole coverage.
Therefore, sensitivity analysis can be performed to find the optimum values for these two
parameters. Here, Bs and Br are the stator pole and rotor pole coverage, respectively, which
are defined as the ratio of the pole shoe to their corresponding pole pitch. In this regard, the
results of the sensitivity analysis are presented in Figure 8. As can be seen, the DSAFSRM’s
torque ripple is influenced by these two parameters fluctuating between 115% and 130%.
How ever, this range of torque ripple cannot be tolerated in many applications, including
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in EV powertrains. Consequently, alternative methods should be adopted to effectively
reduce the torque ripple of the DSAFSRM.
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4.2. Proposed Two-Step Optimization

To develop an effective solution for torque ripple minimization, a two-step sensitivity
analysis is suggested in this paper. In the proposed method, the switching parameters and
pole coverage are optimized in separate layers.

In the first layer, the advanced switching angle and extended switching period are
analyzed as two important variables. After finding the optimum value for these two
parameters, a sensitivity analysis is again carried out to find optimum values for the stator
and rotor pole coverage. In this regard, two switching parameters are taken as optimization
variables. The first variable “a” is defined as the advanced firing angle. This parameter
determines how soon the phase switches should be turned on before the rotor reaches the
unaligned position. The second variable “b” is defined as the extended switching period.
Since in the DSAFSRM, each conduction period is 10◦, “b” has a value greater than 10◦.
The result of the first layer optimization is presented in Figure 9. It can be seen that varying
these two parameters has a considerable effect on the torque ripple. The torque ripple can
be reduced to minimum value of 42% by selecting a = 2◦ and b = 13◦.
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In the second layer of the optimization process, different stator and rotor pole coverage
(Bs and Br) are evaluated when a and b are fixed at their optimum values. In this regard, the
torque ripple versus Bs and Br is shown in Figure 10. It can be seen that the torque ripple
is very sensitive to variations in Bs and Br, fluctuating between 35% and 75%. Selecting
(Bs,Br) = (0.525,0.5) and/or (Bs,Br) = (0.5,0.525) would yield the minimum torque ripple
(35%). Examining the DSAFSRM’s efficiency versus Bs and Br in Figure 11 can determine
the most suitable combination. It can be seen that the efficiency is greatly affected by the
rotor pole coverage (Br) rather than Bs. It is also understood that the relationship between
efficiency and Br is inverse linear, where higher Br results in lower efficiency. Consequently,
(Bs,Br) = (0.525,0.5) would be a better choice since it yields the minimum torque ripple at a
higher efficiency value.
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5. Comparative Analysis

In the previous sections, the design, modelling and optimization of the DSAFSRM have
been discussed. In order to have better insight into performance of the optimized DSAFSRM,
a comparative study is also conducted. In this regard, an 18/12 double-sided radial flux SRM
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is designed with the same speed, diameter, length and current density as the DSAFSRM. The
radial flux SRM has a double-stator arrangement and a segmented rotor configuration in the
middle. In practice, rotor segments are fixed using a non-magnetic material to guarantee
integrity of the rotor without increasing flux leakage between the segments.

The flux density distribution in the radial flux SRM in the aligned and unaligned
positions is depicted in Figure 12. It can be seen that at the aligned position, the flux density
in the yoke region is around 1.3 T where no saturation occurs. However, close examination
of the stator pole region reveals that the flux density in the outer and inner stator poles
reaches up to 1.8 T and 1.95 T, respectively. The uneven distribution of flux density in
the stator poles is due to the smaller dimensions of the inner stator with respect to the
outer one, which is not avoidable in this topology. Consequently, the inner stator poles
become more saturated than the outer stator poles, resulting in non-efficient use of the
machine’s material and volume. The opposite pattern is observed in the DSAFSRM, where
flux density distribution in the stators is identical (Figure 6). Therefore, both stators become
saturated at the same time, resulting in a more efficient use of material and volume.
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Figure 12. Magnetic flux density distribution in the double-sided radial flux topology at rated current.
(a) Aligned position. (b) Unaligned position.

In order to gain better insight into the different performance of the two topologies, flux
linkage versus armature current is extracted and depicted in Figure 13. It can be seen that
the area trapped between the aligned and unaligned curves of the DSAFSRM is larger than
the area corresponding to the double-sided radial flux SRM. Since this area is proportional
to the converted energy in one cycle, the DSAFSRM has a potentially higher power rating
than its radial flux counterpart. Next, a full load torque profile of the DSAFSRM is extracted
before and after optimization and compared with the double-sided radial flux SRM in
Figure 14. It is seen that the average torque of the DSAFSRM and radial flux SRM are
approximately 318 N m and 253 N m, respectively. It is noteworthy that the average torque
of the DSAFSRM remains roughly unchanged after the optimization process. Furthermore,
the torque ripple of the non-optimized DSAFSRM and radial flux SRM are roughly 120%
and 92%, respectively. It can also be seen that the torque ripple of the DSAFSRM falls
dramatically to approximately 35% after the optimization process.

The main specifications of the DSAFSRM (before and after optimization) and the
double-sided radial flux SRM are listed in Table 2. It can be seen that speed, current
density, volume and air gap length of all three machines are equal. It is clear that the
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optimized DSAFSRM has the highest power rating of 100 kW, while the power rating of the
radial flux SRM is only 79.5 kW. There may be two important explanations for this issue:
(1) The air gap surface area of the DSAFSRM in which the energy conversion takes place
is larger than its radial flux counterpart. The DSAFSRM benefits from two identical air
gap surfaces, while the radial flux SRM has two uneven air gap surfaces which provide
a smaller area for energy conversion. (2) Due to non-identical stators of the radial flux
SRM, the magnetic reluctance of the main flux path is chiefly determined by the smaller
stator. Consequently, the volume and mass utilization in the radial flux SRM is less efficient
than in the DSAFSRM, leading to a lower power rating in the same space. According to
Table 2, the efficiency of the DSAFSRM increases by 0.2% after optimization. At the same
time, owing to the proposed optimization process, the torque fluctuation of the DSAFSRM
has dropped by 85%. Among the three machines, the optimized DSAFSRM represents the
highest power density (8.38 N m/cm3), while the double-sided radial flux SRM has the
lowest power density (6.66 N m/cm3).
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Figure 13. Flux linkage versus armature current of the DSAFSRM and radial flux SRM at aligned and
unaligned position.
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Figure 14. Full-load torque profile of the radial flux SRM and the proposed DSAFSRM before and
after optimization.
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Table 2. Main parameters of the DSAFSRMs and the double-sided radial flux SRM.

Parameter Optimized
DSAFSRM

Non-Optimized
DSAFSRM

Double-Sided
Radial Flux SRM

Rated speed (rpm) 3000
Outer diameter (mm) 370
Active length (mm) 111
Current density (A/mm2) 8
Air gap length (mm) 0.5
Output power (kW) 100 99.7 79.5
Copper loss (kW) 2.4 2.3 2.1
Core loss (kW) 1.5 1.8 1.7
Efficiency (%) 96.2 96 95.4
Power density (W/cm3) 8.38 8.35 6.66
Torque ripple (%) 35 120 92

6. Conclusions

In this study, a detailed design, analysis and optimization of a high power density rotor
segmented DSAFSRM were performed. A hybrid design algorithm based on non-linear MEC
and classical formulations was proposed, showing simplicity and acceptable accuracy at the
same time. In order to minimize the unacceptably high torque ripple of the DSAFSRM, a
two-step optimization procedure was introduced, which reduced the torque ripple from 120%
to 35% while increasing the efficiency by up to 96.2%. Moreover, a double-sided radial flux
SRM was designed and compared with the optimized and initial DSAFSRM. The results
showed that the optimized DSAFSRM offered roughly 26% and 0.8% higher output power
and efficiency, respectively, than the double-sided radial flux SRM. In addition, the DSAFSRM
possessed a significantly superior torque profile with respect to its radial flux counterpart,
with 57% less torque ripple and 65 N m higher average torque.
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Appendix A

The expanded form of (21) is as follows.



Gt1 + 2Gy1 −2Gy1 0 0 0 0

−2Gy1 2(Gy1 + Gy2 + Gt2) −2Gy2 0 −2Gt2 0

0 −2Gy2 4Gy3 + 2Gy2 + 2Gt3 −4Gy3 0 −2Gt3

0 0 −4Gy3 4Gy3 + 2Gs + Gm 0 −2Gs

0 −2Gt2 0 0 2(Gs + Gsc + Gt2) −2Gs

0 0 −2Gt3 −2Gs −2Gs 4Gs + 2Gt3


.



V1

V2

V3

V4

V5

V6


=



−Nc IaGt1

0

0

0

0

0


(A1)

where Gm has different values in the aligned and non-aligned positions as in (A2) and (A3),
respectively.

Gm =
2Gry1Galigned

g1,1

2Gry1 + Galigned
g1,1

(A2)
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Gm =
4Gry1Gunaligned

g1,1

2Gry1 + Gunaligned
g1,1

+ 2Gss (A3)
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