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Abstract: This work presents a real mechatronic system consisting of coupled inertia oscillators
affected by relatively high-frequency structural vibrations. The system’s basic mathematical descrip-
tion is also provided. To simulate real structural vibrations, a vibration exciter in the form of an
imbalanced rotor is incorporated into the model. The dynamic behavior of the contacting solid bodies
is significantly influenced by the rotating imbalanced mass, which is in frictional contact with the
body. The vertical acceleration component resulting from the rotational motion of the imbalance
leads to a faster breakage of the sliding contact between the block and the belt, causing a shorter
duration of the contact pair in the stick phase. Additionally, the softly coupled pendulum solid body
can be utilized to effectively detect weak vibration modes of the self-excited friction oscillator that
would otherwise be challenging to observe.

Keywords: self-excited vibrations; creep–slip friction; structural vibrations; chain of oscillators

1. Introduction

The ongoing technological progress determines the need for a continuous increase in
the speed of dynamical processes as well as the precision and durability of mechanical parts
used for this purpose. The operation of each machine is closely related to the occurrence of
the often unfavorable phenomena of mechanical structural and also self-excited vibrations
caused by some kinds of friction. Thanks to the tests allowing for the identification of
vibrations occurring in individual elements forming the frictional pairs, it is possible
to effectively suppress the accompanying side effects, like, for instance, minimizing the
dynamical system’s structural response or even reconstruction of the designed model. It is
especially important because it not only allows to increase the performance of machines
but also eliminates possible inaccuracies in their operation.

In machine design, it is common to perform a structural vibration analysis of specific
areas of the machine. Structural vibrations can be defined as the dynamic motion of a
structure caused by an external force or parametric excitation. In the case of unbalanced
rotors, the vibration is caused by the imbalance of the rotor, resulting in a periodic external
force acting on the structure. This force can cause the dynamic motion of the structure,
which can result in additional loads on the system and potential damage or failure if not
properly accounted for in the design and operation of the system.

Dynamic problems caused by dry and viscous friction or a rotating imbalance can
occur in various systems, including driving and braking systems, stabilizing platforms,
turbines, pumps, and others. Regardless of the type of vibration, the common factor is that
the structure responds with repetitive dynamic behavior that affects its physical properties,
accuracy of positioning, durability of bearings, and other factors.

Therefore, understanding and accounting for these dynamical effects is crucial in
designing and operating machines that rely on rotating systems. Proper design and
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operation can help prevent failures and reduce downtime, leading to increased productivity
and safety.

To prevent negative impacts, engineers use techniques such as damping, stiffening,
and isolation to control and mitigate structural vibrations. These techniques involve
mathematical modeling and time–frequency analysis, modifying the structure’s design,
materials, or support systems to reduce the amplitude and frequency of vibrations or to
isolate the structure from the external disturbance.

1.1. Rotating Engines

Rotating engines often induce structural vibrations in the attached or mounted struc-
tures. These vibrations are primarily caused by unbalanced forces generated by components
such as rotors, crankshafts, pistons, connecting rods, or clutches.

The magnitude and frequency of these vibrations depend on various factors, including
the rotation speed, mass and geometry of the engine components, as well as the stiffness and
damping characteristics of the overall structure. At certain speeds, the natural frequency of
the structure may coincide with the frequency of engine-generated vibrations, resulting in
resonance and vibration amplification.

The effects of engine-induced vibrations can range from minor annoyances, such
as rattling or shaking, to severe structural damage and failure. In extreme cases, these
vibrations can lead to the fatigue, cracking, or failure of critical components such as engine
mounts, brackets, or support structures.

To mitigate the effects of engine-induced vibrations, engineers employ techniques
such as dynamic balancing, engine isolation, and vibration damping. Dynamic balanc-
ing involves balancing the rotating engine components to minimize unbalanced forces.
Engine isolation focuses on mounting the engine on flexible mounts that absorb and
dampen vibrations. Vibration damping involves the use of materials or devices, such as rub-
ber mounts, viscoelastic materials, or tuned mass dampers, to absorb or
dissipate vibrations.

The mechanism behind structural vibrations caused by rotating engines lies in the
unbalanced forces generated by the rotating components. As the engine rotates, bearings,
rotors, and connecting parts produce unbalanced forces with a net force in a specific
direction. These unbalanced forces subject the engine mounts and the mounted or attached
structure to dynamic loads, resulting in vibrations.

Overall, the mechanism of engine-induced vibrations involves a complex interaction
between the rotating engine components, engine mounts, and the mounted or attached
structure. The effective design and control of these components are crucial for preventing
excessive vibrations and ensuring the safe and reliable operation of both the structure and
the engine.

Holkup investigates the influence of pulley eccentricity on the vibration behavior of a
belt drive system in [1]. The study employs a mathematical model to predict the amplitude
and frequency of the system’s vibration response.

Lakes and Sternberg examine stick–slip oscillations in a belt–pulley system with an
unbalanced rotor in [2]. They develop a mathematical model to predict the vibration
response and investigate the effects of various parameters on the system’s behavior.

Sharma and Laware investigate the dynamic behavior of a belt–pulley system with
an unbalanced rotor and dry friction in [3]. Vakilzadeh and Duffar study the nonlinear
dynamic behavior of a similar system in [4]. Both studies develop mathematical models to
predict the vibration response and explore the effects of various parameters.

Zhu presents an analytical model to investigate the effect of friction on the vibration
response of a flexible rotor with an imbalance in [5]. The study examines the relationship
between the rotor imbalance response and friction coefficients at the contact surfaces.

In [6], the authors investigate the nonlinear dynamics of a belt-drive system with an
unbalanced rotor. They develop a mathematical model to predict the vibration response and
explore the effects of various parameters, including bifurcations in the system’s response.
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The stick–slip oscillations of a belt–pulley system under harmonic excitation are
analyzed in [7]. The study develops a model that considers nonlinear stick–slip contact
forces between the belt and pulley, as well as the nonlinear elasticity of the belt. Results
indicate that imbalance-induced stick–slip vibrations are significantly affected by excitation
frequency, amplitude, phase, and belt–pulley parameters.

Another relevant paper by Duffar et al. [8] presents a numerical model for analyzing
the stick–slip vibrations of a belt–pulley system with an unbalanced rotor, accounting for
nonlinear contact forces and belt elasticity. The study reveals that the vibration amplitude
and frequency increase with the imbalance angular velocity, and the contact forces exhibit
a complex hysteresis loop.

Lastly, Kim et al. investigate stick–slip vibrations caused by rotor imbalance in a
belt-drive system in [9]. Their numerical model considers nonlinear stick–slip contact
forces and belt elasticity. Results demonstrate that imbalance-induced stick–slip vibrations
are significantly affected by belt–pulley parameters and excitation frequency.

A further paper by Zhu [10] extends the analysis to a belt–pulley system with multiple
pulleys and belts, which closely resembles practical systems. Results reveal that imbalance-
induced stick–slip vibrations can propagate to other belts and pulleys, with the vibration
characteristics influenced by inter-belt and inter-pulley interactions.

Overall, the aforementioned studies prove the actuality of the research presented in this
work and provide valuable insights into understanding and modeling structural vibrations
caused by unbalanced rotors on moving bodies with friction, thereby taking into account
the practical implications for the design and operation of various mechanical systems.

1.2. Contact Forces

The impact of structural vibrations on frictional contact in self-excited vibrations is
significant. When a structure undergoes self-excited vibrations, its interaction with the
frictional contact forms a coupled system that can lead to instability and unpredictable
behavior. The frictional forces at the contact interface can either amplify or dampen the
structural vibrations, resulting in a complex interaction that depends on various factors,
such as the contact conditions, material properties, and system dynamics.

Self-excited vibrations can cause stick–slip or chatter, characterized by large amplitude
oscillations, noise, wear, and damage to the system. The frictional forces at the contact
interface can create a positive feedback loop, amplifying the structural vibrations and
exacerbating stick–slip or chatter. Conversely, frictional contact can also have a damping
effect on structural vibrations, reducing their amplitude and increasing system stability.

Numerous studies, including those of Holnicki-Szulc et al. [11] and Litak et al. [12],
have investigated the influence of structural vibrations on frictional contact in self-excited
vibrations. These works emphasize the importance of considering the coupled dynamics
of the structure and the frictional contact in the design and analysis of systems subject to
self-excited vibrations.

During vibration, a structure experiences dynamic deformation, and the frictional
contact with its surroundings can significantly affect this deformation. The frictional forces
at the contact interface act as external forces on the structure, either amplifying or damping
the structural vibration based on the contact nature.

In cases of self-excited vibrations, the improper maintenance of frictional contact, such
as between a rotating shaft and a bearing, can result in lateral vibrations. The contact
intermittently breaks and re-establishes, causing stick–slip or chatter. As the contact breaks
and re-establishes, impulses are generated, amplifying the lateral vibration and leading
to more severe stick–slip or chatter. This phenomenon causes considerable damage and
reduces the system’s lifespan.

However, frictional contact can also exhibit a damping effect on structural vibrations.
The frictional forces at the contact interface function as internal damping forces, dissipating
vibration energy and reducing its amplitude. This damping effect enhances system stability
and prevents self-excited vibrations.
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Consequently, the influence of frictional contact on structural vibrations is a complex
phenomenon that relies on factors such as contact conditions, material properties, and
system dynamics, including natural frequencies and damping ratios.

1.3. Self-Excited Vibrations with Friction

The examination of how rotating engines’ structural vibrations influence self-excited vi-
brations with friction is a specific area that has not been thoroughly explored. Over the past
few years, there has been some research conducted in this domain. Studies such as [13–15]
have focused on investigating the effects of friction on rotor systems in the presence of
engine-induced structural vibrations. These works delve into the mechanisms behind
friction-induced vibrations, explore the factors that influence the onset and amplitude of
these vibrations, and predict self-excited stick–slip whirling oscillations in rotor/stator
rubbing systems. Various techniques have been explored, including altering the material
properties of components, introducing damping, and modifying system designs to prevent
resonance. Additionally, the significance of the dynamical coupling between energy sources
and structural responses in real engineering problems is emphasized in [16].

The above literature review, closely related to the researched topic, identified three
fundamental phenomena that have an impact on the experiments conducted in the labora-
tory setup described further in this work. The gap between the current work and the cited
literature is filled throughout the entire paper.

One of the theoretical contributions, as demonstrated in the study by Sah et al. [17],
investigates the effect of vertical high-frequency parametric excitation on self-excited
motion in a delayed Van der Pol oscillator. The findings suggest that the combination
of vertical parametric excitation and delay can effectively dampen self-excited vibra-
tions. Furthermore, Thomsen [18] provides original theoretical insights into the influ-
ence of high-frequency external excitation on friction-induced self-excited oscillations.
Another notable investigation, presented in [19], explores the nonlinear dynamics of a dry
friction oscillator subjected to combined harmonic and random excitations acting solely in
the vertical direction.

However, none of these cited papers address the influence of structural vibrations
on real frictional contact, where the contact force undergoes variations in the normal
direction. This particular phenomenon remains unexplored in experimental setups and
poses significant challenges in terms of modeling elastic frictional contact. As a result, the
mathematical models developed to account for this physical phenomenon primarily rely
on approximate approaches.

2. Modeling the Physical System
2.1. Components of the Machine

The mechatronic system under study is depicted in Figure 1. It consists of mainly
three interconnected subsystems: a driving unit—DC motor with a driver (on the left); a
belt–pulley system of energy transmission; and a chain of oscillating bodies simulating a
mechanism of intensification of breaking force as established in [20].

The oscillating chain of bodies includes a single non-symmetric pendulum (a solid
angle body (D) with an equal side length in Figure 2a), which serves as a mechanism for
intensifying friction forces in the contact of the block (C) with the base (B). This kind of
coupling is popular in braking systems and is used to enhance the friction force.

The motor is connected to the belt pulley through a toothed belt, transmitting the
driving torque. The angular velocity of the pulley is used to determine the velocity of the
conveyor belt, which acts as the excitation for the oscillating mass.

The system is designed to explore the complex interactions among the subsystems
and investigate the impact of the friction force intensification mechanism on the overall
behavior of the system.
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Figure 1. A real chain of oscillators with friction and soft elastic beams.

In summary, the investigated mechatronic system comprises three main subsystems:
a DC motor with a transmission system, a subsystem of oscillating bodies with a friction
force intensification mechanism and a relatively high rotational velocity operating DC
motor generating structural vibrations of the self-excited oscillator with friction.

The considered system of mechanical oscillators investigated on the laboratory exper-
imental test stand shown in Figure 1 can be modeled using the physical representation
shown in Figure 2.

D

B

C
A

c.g.

(a) chain of oscillators (b) pendulum

Figure 2. Physical model of the chain of oscillators J . . . mu . . . m (a), see Figure 1. A—imbalanced
rotor mounted on C; B—horizontally moving soft base; C—stiff beam in a contact at R1 and R2 with
the base B; D—stiff non-symmetric pendulum body of mass moment of inertia J and mass ma (b);
elasticity constants: k1, k2, and k3; viscous damping coefficients of spring couplings: c1 and c2.

Taking into consideration the three coupled inertia shown in the configuration, i.e., the
imbalanced rotor (A), the frictional oscillator (C), and the pendulum body (D), we begin
the dynamical analysis from the derivation of the mass moment of inertia of the pendulum
rotating about its center of gravity (read c.g.).

2.2. The Mass Moment of Inertia of the Pendulum

Looking at the geometric figure—the angle bar in Figure 2b—we introduce a local
coordinate system attached to O at (0, 0), divide its areas on S1 = ab and S2 = b(a− b)
and also define vectors P1 = [(a− b)/2, 0] and P2 = [0, (a− b)/2] to its centers of grav-
ity, respectively.

The center of gravity of the angle bar is determined with respect to the axis of rotation
crossing point O and perpendicular to the axis y1, assuming that it is symmetrical with
respect to the axis crossing c.g. and point O, see dotted line in Figure 2b. According
to a known formula, the distance l being the diagonal of the square, see Figure 2a, to
the c.g. reads Pcg = [PX

cg, PY
cg] = (S1 · P1 + S2 · P2)/(S1 + S2), and finally l =

√
2PX

cg =

a(b− a)/(
√

2(b− 2a)), where at symmetry, PX
cg = PY

cg.
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When determining the mass moment of inertia J of the pendulum body, the Steiner
theorem is used twice. The angle bar’s uniformly distributed mass ma is divided into
two parts, as shown in Figure 2b, where at b = 0.01 and a = 0.087, the smaller part
is ≈ 0.47ma and the larger one ≈ 0.53ma. The mass moment of inertia of the larger
rectangle S1, assuming the distance (a− b)/2 between the c.g. of this part and the point
O, is equal to J1 = 0.53ma[(a2 + b2)/12 + ((a− b)/2)2]. The mass moment of inertia of
the smaller rectangle S2, assuming the distance (a− b)/2 + b/2 between the c.g. of this
part and the point O, is equal to J2 = 0.47ma[((a − b)2 + b2)/12 + ((a − b)/2 + b/2)2].
Summing both parts, the moment of inertia of the angle bar with respect to point O follows
Js ≈ ma(b2/4 + a2/3− ab/3). After the second application of the Steiner theorem, we find
the mass moment of inertia of the pendulum body with respect to its c.g., J = mal2 + Js. The
actual real value may be slightly different from the theoretical one, as the small mounting
holes and spring bolts are omitted.

2.3. The Imbalanced Rotor on the Sliding Block

The subject of dynamics of a nonlinear oscillator inducing vibrations of a moving
structure can be called a “rotor in motion”, and it is also a subject being developed in the
context of the occurrence of imperfect energy sources.

Various phenomena occurring in systems consisting of coupled rotating elements are
observed, where their imbalance plays a significant role in the formation of vibration in
the structure. In works [16,21], such a system is considered, where the imbalanced rotor’s
function is delivered by a direct-current induction motor, mounted in the center of the
sliding body.

The imbalanced rotor (A) on the beam (C) being in a sliding contact with the base
(B), as shown in Figure 2a and further in Figure 3a, is assumed as the non-ideal source of
energy pumped to the considered structure.

(a) rotor with an imbalance

B

C

A

(b) the model

Figure 3. The sliding body (3) vibrating on the moving base (6) subjected to structural vibration
induced by rotating imbalances (5) of the engines (2) with elastic reactions from belt springs (1 and 4).
The base (6) moves, precisely controlled with the use of a stepper motor, while the displacement of
the oscillator is measured with the use of a laser proximity switch (not visible on the right-hand side).

The rotor with imbalance mass ms with a lumped mass model of the imbalance of
mass mu, as shown in Figure 3b, could be treated as a source of cyclic excitation of structure
of the mechanical system.

2.4. Varying High-Frequency Forcing from a Driving System

This section investigates the influence of varying excitation on the dynamics of a
2-degree-of-freedom (2-DoF) mechanical system. Two mathematical models are considered:
one with feedback between the oscillating mass and the driving system and another
without feedback. The dynamical analysis of these models is performed, and the resulting
bifurcation diagrams are presented.

The mathematical model is of the motor’s electromagnetic torque driving the moving
belt—a base is represented by a first-order ordinary differential equation with respect to the
rotor’s angular velocity ω. It includes the constant part of the loading torque Tl , the total
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gear friction torque bω from the belt–pulley gear, and the torque exerted on the belt–pulley
system by the conveyed mass rbpF(1)

t . The friction force F(1)
t is localized in a the contact

surface between the block and the moving base at a constant normal force, which in this
case depends on their relative velocity of displacement Vrel = ẋ1 − vb. The model is at
constant normal force N exerted by the free block on the moving base given by Equation (1):

J
dω

dt
+ rbpF(1)

t + bω + Tl = Te , for F(1)
t (Vrel) =

{
F(1)

st Vrel = 0

sgn(Vrel)F(1)
dn Vrel 6= 0 ,

(1)

where F(1)
st = µ0N(1) and F(1)

dn = µ(Vrel)N(1), see Equation (9), represent the static and
dynamic friction torques, respectively, N(1) = (m + ms)g, and rbp is the radius of the belt
and pulley.

The derivation and final model of the electromagnetic torque Te used in this study are
presented in detail in [22].

2.5. Controlled High-Frequency Forcing from an Unbalanced Rotor

To gain a comprehensive understanding of the system at hand and facilitate an initial
analysis of its predicted real behavior and dynamic response, it is necessary to derive
mathematical models for all dynamical subsystems that make significant contributions.
A preliminary mathematical description of the system is mostly sufficient for accurately
determining its dynamical properties and parameters.

Consider a mechanical system consisting of a block with mass m mounted on a soft
base, which is driven by a unit described in Section 2.4. The system shown in Figure 3
also includes an unbalanced rotor of mass ms (2) and inertia Ju created by an eccentric
disk rotating at angular velocity ωun. The distance from the center of mass of the disk
to the rotation axis is denoted as run. The block of total mass M = m + ms experiences
frictional contact with the moving base, while its motion is constrained by two flexible
beams (1, 4) with linear bending stiffness k1 and k2. These beams are attached at their
other ends to the stationary structure of the test stand. Additionally, the base material
exhibits some elasticity kb perpendicular to the surface, influencing the dynamic behavior
of the tested block, here called the self-excited friction oscillator. The displacement of
the oscillator in the horizontal and vertical directions is denoted by variables xu and
yu, respectively.

In order to provide a more detailed description of the system, we derive its mathemat-
ical model to analyze its behavior. The mechanical system under consideration consists of a
block on a base with a total mass of M. A DC motor with a mass ms is mounted on the block,
and an unbalanced mass mu is localized at an eccentric disk rotating at a distance run from
the center of mass at a given angular velocity ωun or even a function ωun(t) can be used
to describe its time dependency with regard to a controlled modulation of the rotational
velocity of the rotor with the unbalancing mass. The block, referred to as the self-excited
friction oscillator, is in frictional contact with the moving base and is constrained by elastic
forces from two flexible beams with linear stiffness in the bending direction, denoted as k1
and k2, attached to the stationary structure of the laboratory test stand.

We assume that the soft material of the base exhibits a certain elasticity, denoted
as k̄b, components of which act in the direction parallel (kbx) and perpendicular (kby) to
its surface, which affects the dynamic behavior of the block. The displacement of the
oscillator in the horizontal direction is represented by the variable x1 and in the vertical
direction by the variable yu. The deformations of the spring beams, caused by stretching
and compression, only have a horizontal component relative to the chord, neglecting
deformations in other directions.

In the extended model friction model that incorporates changes of normal force in
the frictional contact between the block and the moving base, the friction force is also
influenced by the additional force k3y2(t) (see Figure 2), c2 = 0 for simplification, generated
by the rotating arm of the spring pendulum, which is elastically connected to the block,
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and also the acceleration of total mass M in the vertical direction yu—perpendicular
to the horizontal x1 direction. The second component of acceleration in the direction
perpendicular to the frictional contact comes from the mechanism of imbalance that is
introduced by the unbalanced rotors attached to the block (see Figure 3). Considering
the chosen directions of the two-dimensional coordinate system, this acceleration has the
opposite direction to the gravitational acceleration g. Thus, the general formula for the
friction force can be expressed as

F(2)
t (Vrel) =

{
F(2)

st Vrel = 0

sgn(Vrel)F(2)
dn Vrel 6= 0 ,

(2)

where F(2)
st = µ0N(2) and F(2)

dn = µ(Vrel)N(2) at N(2) = M(g− ÿ(t)) + k3y2(t), compared
with Equation (1) that does not govern the dynamical changes of normal force at the
frictional contact.

The centrifugal force ~Fun(t) generated by the unbalanced rotor attached to the block
and causing high-frequency vibrations in its structure can be expressed as the product of
the mass mu of the rotating unbalance, the distance run between the rotor’s axis of rotation
and its center of mass, and the third variable—the square of the angular velocity ωun of the
rotor attached to the block, i.e.,

|Fun(t)| = murunω2
un(t) . (3)

Assuming that the stretching and compression of the spring beams occur only in the
horizontal direction relative to the chord, their deformations in other directions are negligi-
bly small. The general mathematical model of the described problem can be represented by
the following equations of motion:

~Fu = M~̈ru = −k̄b~ru + ~Fun , (4)

which can be expanded to

Fux = Mẍu = Fx −
{

kbxxu Vrel = 0

sgn(Vrel)F(2)
dn Vrel 6= 0 ,

(5a)

Fuy = Mÿu = Fy − kbyyu . (5b)

Here, mu represents the mass of the unbalanced rotor, and the following parameters:
kbx—stiffness of the base in the xu direction while the block is in the stick or creep phase; and
kby—stiffness of the base in the yu direction. If Vrel 6= 0, then in Equation (5a), the term kbxxu

is replaced by the sliding friction force Ft. The force ~Fun(t) = (Fx(t), Fy(t)), components
of which act in the xu and yu directions of the local coordinate system, correspond to the
centrifugal force generated by the rotating unbalanced rotor, specifically the eccentric disk
acting on the rotating rotor.

It is important to note that during the rotation of the unbalanced rotor, the force Fy
acts cyclically in an upward direction, attempting to detach or press the block from or to
the base, as well as the force Fx acting towards the left or right side. This action increases or
decreases the horizontal force acting on the block in frictional contact with the base. In the
first case, it reduces the normal contact force between the block and the belt, while in the
second case, the Fx force cyclically increases or decreases the inertia of the block, causing
the acceleration or deceleration of the block’s motion on the moving base when the relative
velocity ~Vrel is non-zero. When ~Vrel = 0, it interacts with the block in the stick or even creep
phase, accelerating or decelerating the transition from stick or creep to the sliding phase.

Considering the two-dimensional nature of the problem and the orientation of the
Cartesian coordinate system, the t-dependent function of centrifugal force ~Fun can be
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decomposed into two mutually perpendicular components parallel to the xu and yu axes,
delivering the components used in Equation (5a,5b), respectively:

Fx(t) = |Fun(t)| · cos(θ(t)), Fy(t) = |Fun(t)| · sin(θ(t)) . (6)

According to the adopted law of friction, the coefficient of friction µ depends on
the relative velocity present in the contact zone of both bodies and is described later by
function (9).

2.6. Modeling the Pendulum-Block Coupling of Friction Force Intensification

The differential equations of motion of the two-degree-of-freedom mechanical system
under consideration are derived by incorporating generalized non-conservative forces into
Euler–Lagrange equations of the corresponding conservative system. A schematic diagram
of the model is shown in Figure 1b. The main (horizontal) block is driven longitudinally by
the moving belt by friction forces. The load transfer between the main block of mass m and
the angular body is provided by the spring k2 and damper c1, while the normal load from
the rotating angular body on the main block is transferred by the vertical spring k3 and
damper c2. The moment of inertia of the angular body with respect to its center of rotation
O is J, and its mass is ma. The main block oscillator is also connected to the fixed support
by the spring of stiffness k1.

By utilizing the methodology and the model developed and identified
in [20,23,24], and adding the mass of the unbalanced rotor ms and the external relatively
high-frequency forcing components of ~Fu (see Equations (4) and (5a,5b)) to the right-hand
sides of the appropriate equations describing motion in the two general coordinates x1 and
y1, we obtain the following set of second-order differential equations:

(m + ms)ẍ1 + c1ż1 + (k1 + k2)x1 + k2y1 + k3
x1

r

(
y1 +

x2
1

2r

)
= −F + Fux, (7a)

J
r2 ÿ1 + c1ż1 + c2ẏ1 + k2z1 + k3

(
y1 +

x2
1

2r

)
+ Mgλr = −

Q
r

, (7b)

λr =

√
2

2
l
r

(
1 +

y1

r
−

y2
1

2r2 −
y3

1
6r3

)
(7c)

where λr is a non-dimensional factor of the eccentrically rotating angle body and the friction
force F, which depends on variations of the vertical load. The expression for F is given by

F = µ(Vrel)

[
(m + ms)g + magλr − k3

(
y1 +

x2
1

2r

)
− c2ẏ1 + Fuy

]
. (8)

As the DC machine rotor is attached to the construction, the third dynamical
Equation (5a,5b) states a coupled supplement model of which the additional forces Fux and
Fuy (see friction model (8)) have to be taken into consideration for the dynamical analysis.

The friction law, which represents the dependence of the friction coefficient on the
relative velocity at the contact surface, Vrel = ẋ1 − vb, is given by

µ(Vrel) =
µ0

1 + γ|Vrel|

(
1 +

β

cosh αVrel

)
tanh αVrel, (9)

where µ0 is a constant parameter controlling the amplitude of the spike in the friction
coefficient. Assuming that the range of relative velocities is narrow enough, the parameter
γ is responsible for the decay of the friction force as the modulus of the relative velocity
increases. The parameter α controls the sharpness of the curve near zero, and finally,
β controls the magnitude of spikes near zero, i.e., the rate of the original drop of the friction
coefficient just after the main mass leaves the creeping area.
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3. The Numerical Estimation of Influence of High-Frequency Forcing

To numerically illustrate the described effect, we show a bifurcation diagram. One
selects the experimentally estimated model parameters given in Table 1 (as identified
in [20,23,24]). For this parameter set, the corresponding linearized conservative system has
eigenfrequencies of ω1 = 9.87007 Hz and ω2 = 14.1971 Hz. In contrast to the reference [23],
no low-order internal resonances are assumed in this case.

Table 1. Model parameters of the numerical experiments.

Parameter Value Unit

J 2.4423× 10−4 kg·m2

mu 0.14 kg
m 0.1 kg
Q 0.0605 N·m
k1 367.0 N/m
k2 76.0 N/m
k3 69.0 N/m
c1 0.0156 N·s/m
c2 0 N·s/m
µ0 0.5 –
α 200.0 –
β 0.7 –
γ 3.0 –

r1 = r2 = r 0.078 m

The listed parameter values are close to those obtained from the measurements for
the experimental setup depicted in Figure 1a. However, some important parameters are
challenging to precisely identify due to geometric and physical factors. Friction-induced
dynamics, for example, is highly sensitive to the parameters of friction laws and the shapes
of corresponding curves. Additionally, the real block interacting with the moving belt is a
three-dimensional body, leading to a non-uniform distribution of normal pressure on the
belt’s bottom surface. Furthermore, the exact control of the belt speed to match a target
constant value is difficult, but it is achieved by applying a very precise stepper motor with
an integrated current control driver of the machine. The primary objective of this study is
to focusing on the major transitional effects in decelerating sliding, rather than striving for
a perfect quantitative match of the dynamic states.

The mathematical model presented in the previous section was tested in two versions:
a simplified version that assumes a constant rotational speed of the belt pulley and excludes
the equations describing the dynamics of the stepper motor and transmission system, and
a full model that considers feedback effects on the system’s dynamics.

To assess the differences between the simplified and full models, their responses to
variations in the parameter k1 were analyzed. The parameter was varied from 83 to 88 [N/m]
in increments of 0.001, and simulations were performed for a duration of 40 [s]. Registration
of the data series for the plot was initiated after 15 [s] to eliminate transitional dynamics.

The two overlapping bifurcation diagrams depicted in Figure 4 illustrate the displace-
ment of the mass block m during subsequent stick to slip transitions, with a Poincaré map’s
point appearing when the acceleration of the body crosses 0 from above. Both models
exhibit the same types and order of changes in dynamics, differing mainly in the values of
the bifurcation parameter for each type of change.
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Figure 4. Bifurcation diagrams of both models in the same coordinate system (red color—numerical
velocity of the base changes dynamically due to coupling with the dynamics on the base;
blue—numerical velocity of the base is constant).

The full model, considering the varying rotational velocity of the engine and higher
driving frequencies, exhibits period doubling at lower control parameter values compared
to the simplified model. Moreover, the regions of chaotic behavior are wider in the full
model. These findings indicate that the inclusion of feedback effects in the full model leads
to a more complex and diverse dynamic behavior of the system.

In summary, these results provide valuable insights into the behavior of the investi-
gated mechatronic system under varying excitation conditions and highlight the signif-
icance of incorporating feedback effects in the mathematical model for a more accurate
representation of the system’s dynamics.

Significantly, both models exhibit distinct thresholds of k1 = 84.55 (red) and k1 = 85.7
(blue), at which the regions of chaotic behavior come to an end, respectively. This im-
plies a transition in the dynamical nature as the bifurcation parameter k1 increases, when
comparing the simplified and more complex models.

The resulting bifurcation diagrams highlight the distinctions between the simplified
and full models, providing valuable insights into the system’s behavior under higher
engine-induced frequencies.

In conclusion, the numerical investigation confirms an intriguing observation. The
subsequent section will delve into the response of the real system under higher vibrations,
further enhancing our understanding of its behavior under different conditions and its
practical implications.

4. Experimental Investigations and Time–Frequency Analysis of Structural Vibrations

Initially, measurements were taken without excitation in the system, while maintaining
the installed excitation subsystem to ensure consistent mass. The moving base speed was
varied by adjusting the frequency input to the stepper motor. Four frequencies of the control
signal applied to the stepper motor’s controller were selected for analysis: 1000, 3000, and
10,000 [steps/s] with a micro-step of 0.72/8 [deg]. The laser sensors of the displacements
of the linearly moving block and the pendulum’s arm operate at 2000 [readings/s], with
linearity 12 [µm] and repeatability 0.8 [µm].

4.1. Controlling the Angular High Frequency of Excitation of the Moving Mass

The developed vibration excitation system represents a novel approach for inducing
additional forcing to control the shape of self-excited or creep–slip vibrations. It involves
a rotating disk with an off-center hole, causing a displacement of the center of gravity.
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The disk is mounted on the shafts of two small, synchronized DC motors positioned
opposite each other. The system utilizes MT68 DC motors, capable of reaching a maximum
speed of 12,100 [rpm] (at no load), generating a torque of 0.21× 10−3 [N·m] and a power
output of 0.2 [W].

4.2. Time Histories in Monitoring of the Influence of the High-Frequency Structural Vibrations on
the Stick–Slip Dynamical Response of the Self-Excited Block Oscillator

This section focuses on utilizing time histories to examine the effects of high-frequency
structural vibrations on the stick–slip dynamics of a self-excited block oscillator.
The oscillator is coupled in a chain with a pendulum, and the coupling is characterized by
soft characteristics.

The observed phenomenon depicted in Figure 5 (black line) exhibits a periodically
repeating sawtooth curve with an average amplitude of 1.223 [mm]. This behavior occurs
when the slow base motion is applied without exciting the moving structure, represented
by a solid body with mass M. This aligns with the theory of motion characteristics in
frictional contact, where energy accumulates in the springs until the applied force reaches
the threshold required for motion initiation. Once this force threshold is surpassed, the cart
transitions from a state of rest to sliding, resulting in a descending slope of the curve that
occurs at shorter time intervals. At this point, there should be an abrupt return of the object
to its initial equilibrium position due to the accumulated energy.

9.8

10.8

11.8

12.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Figure 5. Real stick–slip trajectories of motion of the oscillator not subject to high-frequency external
forcing at various base velocities: v(red)

b = 3v(black)
b and v(blue)

b = 10v(black)
b .

However, elastic objects also store energy, causing the block to pass through this
position during the slip stage and deflect the object in the opposite direction, as indicated
by variations in the minimum values of the function.

At three times the belt speed, Figure 5 (red line) exhibits a significant increase in the
average displacement amplitude, reaching 1.684 [mm] in this case. The change in base
speed also affects the frequency of block “jumps”, as higher relative speed induces the
same stresses in the elastic elements in a shorter time. Amplitude fluctuations intensify, as
seen from the comparison of the first second of measurements with the decreased average
displacement in the second half. Interestingly, the distinction in duration between the
stick and slip movements becomes less apparent, and the rising and falling slopes exhibit
similar duration.

In Figure 6, at the highest selected frequency, irregular block motion is observed,
deviating from the observed trend of increasing vibrations. The observed amplitudes are
even smaller than those at a frequency of 1000 [Hz]. Since the vertical spring was removed
for this study, there is no downward force during testing. Consequently, the irregularities
result from momentary interruptions in the contact between the block and the belt, which
are significantly amplified at higher belt speeds. The maximum recorded amplitude during
the measurement was 0.66 [mm], while the minimum amplitude (occurring between 1.68
and 1.8 [s]) was 0.094 [mm].
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9.8

10.8

11.8

12.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

(a)

11.0

11.2

11.4

11.6

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

(b)

Figure 6. Real stick–slip trajectories of motion of the oscillator subject to high-frequency external
forcing with high unbalancing (a) with zoomed black trajectory (b) at ω = 400 [rad/s] and various
base velocities: v(red)

b = 3v(black)
b and v(blue)

b = 10v(black)
b .

4.3. Spectrograms in Monitoring of the Influence of Structural Vibrations

In the previous subsection, we demonstrated the recording and time-series measure-
ment of high-frequency vibrations caused by high-amplitude vibrations of the exciters (the
engine 2 in Figure 3). However, detecting vibrations in a coupled oscillator system when the
overall vibrations are very small presents a challenge. To overcome this, we utilize a tested
oscillator system with a pendulum, having a soft elastic characteristic as the detector. Our
objective is to capture time trajectories that contain a hidden high-frequency component
for further analysis. We aim to demonstrate that the presence of an excited oscillator with
friction, oscillating in a frictional contact, modifies the amplitude range of vibrations (with
a slight expected reduction in this dynamic parameter) and decreases the dwell times at the
attachment point. Our analysis employs spectrograms, frequency-response spectra, and
amplitude spectra in decibels.

Table 2 provides the configuration parameters for the subsequent experiments con-
ducted on the research setup.

Table 2. Configuration parameters of the experiments (a case of small amplitude unbalancing vibration).

Figure No. Oscillator Type High Frequency
Forcing

Motor Control
(Square Wave Freq.)

Figure 7 J no

constantFigure 8 J yes
Figure 9 m no

Figure 10 m yes

Figure 11 J no
decreasing

linear sweep
Figure 12 J yes
Figure 13 m no
Figure 14 m yes

J—the angle body pendulum with friction; m—the self-excited oscillator with friction.

5. Discussion

Figure 7 presents the first spectrogram of pendulum oscillations with attached springs
k2 and k3 in the absence of high-frequency excitation (case 1).
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(a)

(b)

(c)

(d)

Figure 7. Time history, spectrogram, and magnitude plot of a coupled soft spring characteristic
pendulum in the high (a,b) and low (c,d) frequency spectra. The base linear velocity is maintained at
a constant of 7.2 [degrees/s], while the structure remains unaffected by high-frequency vibrations.

In the wide frequency band of oscillations shown in Figure 7a, several distinct high-
frequency components of the pendulum oscillations are observed, which are read from
the amplitude graph in [dB] in Figure 7b. These frequencies are approximately 850, 600,
and 300 [Hz], as well as the extended ones within the lowest band width of 0–50 [Hz].
The detailed distribution of multiple coexisting frequencies in this range is shown in
Figure 7c, where the values are located more precisely in Figure 7d at 8, 6, and 4 [Hz].
The dominant frequencies of oscillations are marked by streaks with colors approaching red,
indicating that the fundamental and most prominently visible frequency of the pendulum
oscillations is around 4 [Hz], accompanied by a series of other frequencies resulting from
the vibrations of the entire structure and the energy flow from the drive through the friction
oscillator on the belt to the pendulum.

Figure 8 shows the second spectrogram of oscillations of the same pendulum but with
activated high-frequency excitation at a constant value (case 2).
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(a)

(b)

(c)

(d)

Figure 8. Time history, spectrogram, and magnitude plot of a coupled soft spring characteristic
pendulum in the high (a,b) and low (c,d) frequency spectra. The base linear velocity is maintained at
a constant of 7.2 [degrees/s]. The structure experiences high-frequency vibrations.

It is clearly visible that the entire spectrogram has higher intensity, indicating larger
amplitudes of oscillations at the frequencies mentioned in the previous case. Two new
but weakly visible frequencies close to 100 and 200 [Hz] have appeared (see spectrogram
Figure 8a), which are not present in Figure 7a. The second value corresponds to the
excitation frequency originating from the imbalance mounted on the block. It should be
noted that the high-frequency excitation source is not attached to the pendulum but to
the block vibrating on the belt. However, the vibrations are transferred to the pendulum,
which, through its elastic (soft) connection with the block, becomes a mechanical vibration
detector. Moreover, the streaks corresponding to the pendulum oscillations at frequencies
near 14 and 16 [Hz] show more contrast.

Figure 9 presents the third spectrogram of self-excited vibrations with friction between
the block and the belt, with attached flat springs k1 and k2, in the absence of high-frequency
excitation (case 3).
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(a)

(b)

(c)

(d)

Figure 9. Time history, spectrogram, and magnitude plot of the self-excited block oscillator in the
high (a,b) and low (c,d) frequency spectra. The base linear velocity is maintained at a constant of
7.2 [degrees/s], while the block remains unaffected by high-frequency vibrations.

The motion of stick–slip is clearly visible in Figure 9a and is characterized by dominant
frequencies around 10, 8, and 4 [Hz] (see spectrogram Figure 9c), where 4 [Hz] corresponds
to the fundamental frequency of block vibrations on the belt, which, obviously, is shared
with the previously mentioned frequency of the pendulum attached to the block. In contrast
to the pendulum response, the spectrogram in Figure 9a does not exhibit any significant
features in the high-frequency range, which may be due to a stiffer contact between the
block and the moving belt, the dominant role of self-excited vibrations at lower frequencies,
or the laser vibration sensor’s inability to detect such weak vibration components of
the block.

Figure 10 shows the fourth spectrogram of the same block vibrations but with activated
high-frequency excitation at a constant value (case 4).
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(a)

(b)

(c)

(d)

Figure 10. Time history, spectrogram, and magnitude plot of the self-excited block oscillator
in the high (a,b) and low (c,d) frequency spectra. The base linear velocity remains constant at
7.2 [degrees/s], while the block undergoes high-frequency vibration.

It is clearly visible that the entire spectrogram has slightly higher intensity but less
clarity compared to the soft-spring-connected pendulum case. The most important ob-
servation comes from the analysis of the spectrogram Figure 10c, where the streaks that
were more distinct before the activation of this excitation become blurred. This indicates
that apart from the dominant frequency of block vibrations close to 4 [Hz], there are no
other frequencies of similar prominence. This is an interesting observation that shows
that the periods of pure stick–slip vibrations are becoming shorter. The interruption of the
previously regularly occurring vibrations of this type can be seen in the time trajectory in
the range of 2.8–4 [s].

Figures 11 and 12 show the responses of the pendulum without and with activated
high-frequency excitation but with a linearly decreasing velocity of the base motion (cases
5 and 6).
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(a)

(b)

(c)

(d)

Figure 11. Time history, spectrogram, and magnitude plots illustrating the response of the pen-
dulum dynamics to a sweep step wave driving the stepper motor. The base velocity decreases
linearly from 7.2 [degrees/s] to 0 within 20 [s], while high-frequency forcing is not activated.
The spectra are split into high ((a,b), up to 1000 [Hz]) and low ((c,d), up to 50 [Hz]) frequency ranges.

(a)

Figure 12. Cont.
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(b)

(c)

(d)

Figure 12. Time history, spectrogram, and magnitude plots illustrating the response of the pendulum
dynamics to a sweep step wave driving the stepper motor. The base velocity decreases linearly
from 7.2 [degrees/s] to 0 within 20 [s], accompanied by the activation of high-frequency forcing.
The spectra are split into high ((a,b), up to 1000 [Hz]) and low ((c,d), up to 50 [Hz]) frequency ranges.

Similar to the first and second cases, the spectrograms differ in intensity, which
increases towards warmer colors in the second case. In Figure 11c, within the time interval
of 0–13 [s], the first frequency of pendulum oscillations between 11–12 [Hz] is visible,
which slowly decreases and blurs before disappearing. At the same time, within the range
of approximately 9–18 [Hz], a coexisting frequency of around 18± 0.5 [Hz] is observed.
Only this frequency remains visible in Figure 12c (when excitation is activated), while the
lower frequency becomes blurred.

Figures 13 and 14 show the responses of the block in self-excited motion with fric-
tion without and with activated high-frequency excitation, respectively, with a linearly
decreasing velocity of the base motion (cases 7 and 8).

Once again, the blurring of the spectrograms is observed, and the frequency response
in spectrogram Figure 13c exhibits several stepwise decreasing vibration frequencies (from
12 to 10 to 4 [Hz]), despite the linearly and steadily decreasing base velocity. However, the
responses in Figure 14 still clearly show the dominant and stepwise occurring frequencies
of block motion, despite the presence of high-frequency excitation.

Finally, the most significant observation is that the range of vibration amplitudes
on the time trajectory in Figure 13a is much larger and more constant than in Figure 14a.
Due to the excitation applied to the structure from the motor on the block, the friction
with stick–slip becomes less distinct and frequently interrupted. The faster breaking of
the sliding contact between the block and the belt, manifested by the shorter duration of
this contact pair in the stick phase, is the result of the vertical acceleration component ÿu
originating from the rotational motion of the imbalance.
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(a)

(b)

(c)

(d)

Figure 13. Time history, spectrogram, and magnitude plots illustrating the response of the self-excited
block oscillator’s dynamics to a sweep step wave driving the stepper motor. The base velocity de-
creases linearly from 7.2 [degrees/s] to 0 within 20 [s ], while high-frequency forcing is not activated.
The spectra are split into high ((a,b), up to 1000 [Hz]) and low ((c,d), up to 50 [Hz]) frequency ranges.

(a)

Figure 14. Cont.
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(b)

(c)

(d)

Figure 14. Time history, spectrogram, and magnitude plots illustrating the response of the self-excited
block oscillator’s dynamics to a sweep step wave driving the stepper motor. The base velocity
decreases linearly from 7.2 [degrees/s] to 0 within 20 [s], accompanied by the activation of high-
frequency forcing. The spectra are split into high ((a,b), up to 1000 [Hz]) and low ((c,d), up to 50 [Hz
]) frequency ranges.

It is difficult to explain the obtained experimental results, especially when deal-
ing with a physically sensitive phenomenon like contact friction between solid bodies.
The presented research results are another step and the outcome of an in-depth analysis
of the observed frictional phenomena. As a result of the attempt to better identify the
friction model and factors influencing its accuracy, it was noticed that the vibrations of the
structure described and shown in this article have a significant impact on the sensitive and
irregular states of consecutive transitional states of stick or creep (some kinds of adhesion)
and sliding. For this purpose (compared to the previous design), the connection of the drive
system was modified in this study by introducing a connector (a soft connector in black
below the timing belt in Figure 1), and the entire experimental setup was placed on gray
polystyrene boards to reduce vibrations. However, the inclinometer detected vibrations of
the structure and the self-excited frictional oscillator block with higher frequency, making
it difficult to measure amplitude and distribution.Spectrograms and high-precision time
trajectories turned out to be useful tools for detecting these vibrations.

6. Conclusions

The present study investigates the influence of time-varying excitation on the dy-
namics of a mechanical system with multiple degrees of freedom. Both studied models
exhibit similar behavior and show comparable changes in their dynamical characteristics.
However, the impact of excitation frequency on the system’s dynamics is clearly observable.
Higher-frequency vibrations generated by motors, such as DC motors, affect the driven
system’s behavior by altering its typical stick–slip response.

Although the motors attached to the structure of the sliding block on the movable
base do not directly influence the solid body of the pendulum, they effectively transmit
vibrations, indirectly allowing for their detection. This phenomenon is clearly observed in
the presented spectrograms.

Based on the numerical simulations of bifurcation dynamics presented in this work, it
can be concluded that incorporating the dynamics of transmission and unbalanced systems
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into the model, even in an approximate manner, has a significant impact on the system’s
dynamical behavior. These findings have important implications for the design, simulation,
and control of mechatronic systems, highlighting the importance of considering the full
system dynamics and the influence of varying excitation on structural vibration and the
behavior of the entire system.

To the best of our knowledge, the investigated influence of structural vibrations on
frictional contact with variable contact force has not been previously examined in experi-
mental setups, and practical mathematical models incorporating this physical phenomenon
are practically non-existent. This is mainly due to the immense difficulty in accurately
modeling elastic frictional contact. One approach to capturing the system’s response to
different excitations is by introducing an intentionally excited mechanism with a rela-
tively high frequency and observing the system’s response through spectrograms under
various conditions. One suggestion is to employ a self-excited oscillator coupled with
the investigated system, albeit with a soft elastic characteristic, to detect the influence of
structural vibrations.

It is demonstrated that even very small amplitudes and relatively fast repeating forcing
significantly alter the frictional response of the observed stick–slip or creep–slip motion of
bodies experiencing structural vibrations.

The impact of time-varying excitation on a 2-degree-of-freedom mechanical system’s
dynamics is investigated. Both studied models exhibit similar behavior and comparable
changes in their dynamical characteristics. However, the influence of the excitation fre-
quency on the structure is clearly evident. The higher-frequency modes induced by motors,
resulting in structural vibrations, notably affect the driven system’s dynamics.

Finally, experimental observations reveal that the nature of real mechanical contacts,
experiencing sliding or creep–slip friction, undergoes changes when actual driving units
are integrated into the machines. Incorporating such a phenomenon in numerical modeling
poses significant challenges. However, by making certain assumptions, it may be possible
to incorporate other sources of high-frequency vibrations and introduce noisy, non-smooth
signals of external excitation.
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