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Abstract: Trackside acoustic signals are useful for non-contact measurements as well as early warn-
ings in the diagnosis of train wheelset bearing faults. However, there are two important problems
when using roadside acoustic signals to diagnose wheel-to-wheel bearing faults; one is the presence
of strong interference from strong noise and high harmonics in the signal, and the other is the low
efficiency of bearing fault identification caused by it. Therefore, from the viewpoint of solving the
two problems, a sparse operation method is proposed for denoising and detuning the modulation
of the roadside acoustic signal, and a machine learning classifier with a Genetic Algorithm (GA)-
optimized Radial Basis Neural Network (RBFNN) is proposed to improve the rate at which the
features of roadside acoustic signal faults are recognized. Firstly, the background noise is filtered out
from the Doppler-corrected acoustic signal using the Sparse Representation method, and the inverse
wavelet transform is reconstructed into a noiseless signal. Secondly, the interference high-harmonic
signal in the signal is filtered out using the Resonant Sparse Signal Decomposition (RSSD) method.
Then, the GA is selected to optimize the parameters of the RBF neural network and build a fault
diagnosis model. Finally, the extracted acoustic signal feature set is trained on the network model,
and the trained model is used for testing. In summary, the sparse operation on the roadside acoustic
signal processing and the GA-RBFNN diagnosis model were verified as being very effective in the
diagnosis of roadside acoustic train wheel pair faults through the simulation experiment.

Keywords: train wheelset bearing; fault diagnosis; roadside acoustic signal; sparse operation; GA-RBF

1. Introduction

With the rapid development of the railroad industry, the operational safety of trains is
becoming more and more important to people. One of the important components for the
safe operation of trains is the wheelset bearing. The problem or failure of wheelset bearings
can immediately endanger the safe operation of trains and cause major accidents [1]. There
are many applications of vibration processing, shaft temperature and acoustic technology
in wheel-to-table bearing fault diagnosis technology. Among them, the fault diagnosis tech-
nology based on vibration signal processing is the most mature [2–4]. From the traditional
signal processing to the intelligent diagnosis of machine learning and deep learning [5,6],
the processing based on vibration signal is able to effectively complete the fault diagnosis.
However, in the process of train operation, the vibration signal analysis method cannot
complete the diagnosis task simply and efficiently due to the limitation of many complex
and complicated environments. The characteristics of non-contact measurements and early
warning of acoustic signal can effectively overcome this drawback [7]. However, a method
has not been developed due to its acoustic distortion, large background noise and few
identification and diagnosis methods. In recent decades, Doppler aberration correction
technology has been developed, including the resampling technique [8], time domain
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variable sampling technique [9], instantaneous frequency estimation [10], time domain
interpolation resampling technique [11], time frequency amplitude matching technique [12],
model-driven correction [13], microphone array [14] and other methods. The denoising
of roadside acoustic signals and the identification of acoustic fault features are relatively
lagging behind, and these are the two main problems studied in this paper.

First, for the problem of acoustic signal noise reduction, many noise reduction meth-
ods have been proposed, including modal decomposition techniques, multiple filter noise
reduction, microphone array techniques, relatively novel neural network techniques, statis-
tical modeling techniques, etc. Scholars at home and abroad have conducted a significant
amount of research and achieved fruitful results, providing ideas for writing this paper.
However, each have their own limitations when applied to the processing of roadside
acoustic signals. Various modal decomposition techniques [15,16] can perform adaptive
signal decomposition based on local features, but they require multiple iterations and are
prone to modal aliasing, resulting in the loss of diagnostic value of the signal itself. Various
filters [17] can significantly reduce the background noise of the target signal and are highly
adaptable, but their time–frequency domain trade-offs may lead to distortion in the acoustic
signal. Microphone arrays [18] rely on multiple microphones to capture the spatio-temporal
field technique, but increase the amount of computation and are more difficult to apply in
realistic scenarios. Neural network techniques for noise reduction [19] are relatively new
and have adaptive and self-learning capabilities, but the need for large amounts of data
for online training is an important issue required to drive neural network techniques to
achieve noise reduction. Statistical modeling [20] is also a more common acoustic signal
noise reduction technique, achieving noise suppression by establishing a model between
the signal and the noise by estimating the noise, but modeling the roadside acoustic signal
itself is a problem. Therefore, this paper uses sparse signal noise reduction for the method,
which includes Sparse decomposition Feature Extraction (SFE), Sparse Dictionary Learning
(SDL), etc. The signal for sparse operation requires an accurate sparse dictionary that can
represent the original signal to build features, as a better design of sparse coefficients can
ensure a better sparsity. Feature extraction can use the sparse signal as an input, while the
signal sparse representation, due to its sparsity, can be performed on the signal partition
separation, providing the possibility of reducing the amount of computation. The roadside
acoustic signal is non-linear with the sparse nature of the signal, making it fully applicable
to this method. The Sparse Representation method focuses on the selection of the sparse
objective function and design of the sparse coefficients. Niall Hurley et al. [21] proposed six
rational features and derived them, including Robin Hood, Scaling, Rising Tide, Cloning,
Bill Gates and Babies, to help evaluate the sparse performance. Martin Genzel et al. [22].
analyzed the stability of sparsity from sparse modeling, and explored the stability of sparse
expressions in terms of recovering redundancy when frame variation explains the sparse
representation of signals. Zhang et al. [23] described in detail the method of using sparse
optimization for diagnosis. An effective early fault diagnosis method of FNBN based
on the sparsity theory was synthesized and described. Hou et al. [24]. used MOMEDA
combined with acoustic signals to diagnose bearings based on sparse operations to achieve
known noise and feature enhancement with the aim of making the signal sparse while
enhancing the fault characteristics. Yu et al. [25]. proposed the RLS-RSSD processing
method based on the decay law of the signal and the presence of interference harmonics in
the high- and low-frequency bands of the acoustic signal, which successfully filtered out
the noise and interference harmonics. Zhang, et al. [26] transformed the acoustic signal into
a planar-viewable view, selected the Morlet wavelet to propose AGMWT, performed inner
product operation with the similarity between the measurement map and sub-wavelet and
completed the acoustic noise reduction and feature enhancement.

Secondly, more and more research has been conducted on fault identification and the
diagnosis of mechanical equipment by acoustic signal features, from the traditional spectral
amplitude feature clustering comparison diagnosis method [27,28] and further acoustic
field diagnosis techniques [29,30] to the popular machine learning [31,32] and deep learning
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techniques [33–35] today. These methods include Acoustic Imaging technology [36,37],
Recursive Denoising diagnosis [38], Sparse Representation [39] and One-shot Learning [40].
However, at present, compared to traditional methods that require a significant amount of
manual labor, acoustic length techniques that require a significant amount of equipment and
space as well as deep learning techniques that require a significant amount of updated data,
the development of mature and easily controlled machine learning methods has become
a more dominant research method for processing acoustic signals. Traditional machine
learning methods, including Random Forests, Logistic Regression, Decision Trees, K-nearest
neighbors, etc., have been widely used. Although they are simple to understand and easy
to classify, they are sensitive to outliers, making it difficult when handling slightly larger
data features. In contrast, the RBF neural network has non-linear modeling capabilities and
can handle high-dimensional feature data, while maintaining good robustness to noisy and
missing data, also taking into account the strong learning ability and pattern recognition
ability, which is more suitable for the identification and diagnosis of train trackside fault
feature acoustic signals. Li et al. [4]. used EEMD combined with RBFNN to achieve
fault diagnosis of rolling bearings in trains by inputting the decomposed vectors into the
RBFNN classifier. Xu et al. [41]. combined the VMD technique with GA-RBF and used a
Genetic Algorithm (GA) to optimize the RBF parameters and input the signal components
to successfully achieve the fault diagnosis of rolling bearings.

In this paper, based on the above-mentioned previous research, with the objectives
of solving roadside acoustic denoising and demodulation and improving the fault iden-
tification rate, we creatively propose to use the sparse operation processing method and
GA-RBFNN combined with roadside acoustic signals to diagnose the wheel-to-wheel
bearing faults in running trains. Firstly, the acoustic signal is corrected for distortion by
using the Time Domain Interpolation Resampling Technique (TIR); secondly, the acoustic
signal is decomposed in the wavelet domain, and the wavelet coefficients are filtered by an
adaptive filter to construct a sparse representation factor. Then, the wavelet coefficients
are reconstructed into a noise-free signal by inverse transformation, and the interference
harmonics are then separated using RSSD to retain the acoustic signal containing the fault
information. Finally, the processed acoustic signal containing the fault information is
extracted and GA-RBFNN is used for fault identification. The actual field data simulation
results prove that the sparse operation processing in this paper can effectively remove
the interference noise harmonics from the roadside acoustic signal, and at the same time,
GA-RBFNN performs well in fault identification in the acoustic signal after noise reduction.
Its self-adaptability and large data processing capabilities completely overcome the prob-
lems of the low recognition rate of fault features and local diagnostic defects in traditional
conventional roadside acoustic diagnosis (ABD).

2. Theoretical Foundation
2.1. Doppler Aberration Correction

During the operation of the train, because the moving train (sound source) and
receiving device are in relative motion, the collected acoustic signal in motion will produce
amplitude modulation, frequency shift and band expansion compared to the original
signal, termed acoustic Doppler distortion [42].The roadside acoustic signal acquisition
model is shown in Figure 1,and the relationship between the original frequency and the
received frequency can be obtained according to the geometric model parameters and
Morse acoustic theory:

f0 = (
C + V0

C−VS cos θ(t)
) fs (1)

The Doppler aberration correction technique is well-established and is not described
in this paper. We used the TIR, where the correction process is as follows:

1. The equation for the interpolated fitted time series is derived from the acoustic model
motion relationship;

2. The time series is determined from the resampling frequency;
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3. The interpolated fitted time series is calculated from the formula determined in the
first two steps;

4. Amplitude reduction is conducted on the Doppler distortion signals;
5. The amplitude-reduced signal from step 4 is interpolated using the fitted time series

from step 3 for signal correction.
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Figure 1. Roadside acoustic acquisition model.

2.2. Sparse Representation Method

The Sparse Representation method is essentially a method for reconstructing the target
signal in the original signal as well as the covariance signal after compressing and sparing
the target signal [43]. Let a set of signals be discrete signals of finite length, x∈ RN×1,
Φ = {φ1, φ2 . . . φN} be a set of orthogonal bases and the signal x be expanded on the base
φ as

x =
N

∑
K=1

φkαk = Φα (2)

where αk < x, φk > x, and α ∈ RN×1. When αk (1 ≤ K ≤ N) contains at most K non-zero
coefficients, then {αk} is said to be strictly sparse. For the signal x, if it is projected onto a
set of vectors Ψ = {ψ1, ψ2 . . . ψM}, one obtains M measurements, i.e.,

y = Ψα (3)

where Ψ ∈ RM×N , M � N, and y can be interpreted as linear measurements of x. The
number of linear equations corresponding to the multiple in Equation (3) is larger than
the number of equations, so it is not directly used to solve and recover x. Substituting
Equations (2) into (3) yields

y = Ψα = ΨΦTx = Θx (4)

where Θ = ΦΨT is the matrix of M× N according to Equation (4), which can be x from
the N dimension down to the M dimension. That is, the signal y, at time α, is K sparse
and satisfies the relation K < M� N; therefore, one can use the reconstruction algorithm
to solve the sparse coefficients in the equation, and then reconstruct the signal x using
Equation (2). At this time, the constraint Ψ satisfies the isometric condition, which can be
understood as a vector v, for any K sparse where Ψ satisfies

√
1− δK ≤

||pv||2
||v||2

≤
√

1 + δK (5)

where δk > 0 is the RIP constant. Additionally, in the reconstruction of the sparse signal
into the original signal, in order to solve the problem of too many unknowns, defining
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the sparsest solution in the set of feasible solutions can be used directly to minimize l0
parameterization, i.e.,

min||α||l0
s.t.y = ψα = ΨΦTx

(6)

However, the problem of minimizing l1 parameterization can be understood as the
problem of solving NP-hard, whereupon

min||α||l1
s.t.y = ψα = ΨΦTx

(7)

Regarding the parametric minimization problem of the above equation, the parameter
optimization can be performed by the matching tracking algorithm (MP) or the orthogonal
matching tracking algorithm (OMP).

2.3. RBF Neural Network

The RBF neural network is a feed-forward neural network, which is a three-layer
forward network with a single implicit layer, including an input layer, implicit layer and
output layer [44], and its main feature mainly uses a radial basis function as the activation
function. Using the radial basis function as the activation function is based on the distance
between the input vector and the weight vector ||dist|| as the independent variable, where

R(||dist||) = e−||dist||2 (8)

The general expression of the activation function of the radial basis neural network is

R(xp − ci) = exp(− 1
2σ2 xp − c2

i ) (9)

The radial basis activation function is set to a Gaussian function with the expression

ϕ(r) = exp(− r2

2σ2 ) (10)

For the RBFNN, three parameters need to be determined: the radial basis function
center, the variance, and the weights between the hidden layer to the output layer [45].
The structure of the radial basis network is shown in Figure 2, by the following output
correspondence equation:

yj = ∑n
i=1njexp(− 1

2a2 ||xp − ci||2)j = 1, 2 · · · n (11)

The radial base center is determined using Equation (8), the variance and weights are
determined using Equation (11), the weights can be obtained by the least squares method
and all the above three parameters can be obtained by the optimization algorithm.
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Figure 2. Gaussian topology of radial basis network.
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The radial basis function is used as the “base” of the implicit unit, forming the space
of the implicit layer. The implied layer maps the input vector from the low-dimensional
space to the high-dimensional space, which becomes linearly separable, and the features
are classified after the output layer. In this paper, the output of RBFNN has four modes:
normal, inner and outer ring damage and roller damage of the bearing, i.e., the output
node is 1.

3. Sparse Operation Processing
3.1. Wavelet Domain Sparse Representation

The Sparse Representation method was introduced in Section 2.2. The roadside
acoustic signal contains a large amount of noise after collection, and wavelet decomposition
is commonly used to differentiate the signal in the time and frequency domains. We
consider the Sparse Representation method in the wavelet domain for better noise reduction
and signal information retention. It is assumed that, for a given finite length acoustic
signal, after wavelet decomposition, a wavelet domain filter can be selected for filtering,
where the adaptive filter can autonomously select the minimum mean square error, whose
mathematical equation can be expressed as [46]

ĝw(i) =
θ2(i)

θ2(i) + ε2 (12)

where θ(i) represents the wavelet coefficients after wavelet decomposition of the signal,
ε2 can be expressed as infinitesimal constants known as the sparse representation of the
wavelet domain design scheme shown in Figure 3, where Gg represents the hard threshold
function, Ĝw represents the parametric adaptive filter and the final wavelet coefficient θ̂2
can be expressed as

θ̂2 = Ĝwθ2 (13)

1
W 1

q
gG

1
q̂

1

1
W

- 1̂
x

2
W 21

q̂x

2
W

2
q

ˆ
wG

2
q̂

1

2
W

-

2
x̂

1
W 1

q
gG

1
q̂

1

1
W

- 1̂
x

2
W 21

q̂x

2
W

2
q

ˆ
wG

2
q̂

1

2
W

-

2
x̂

Figure 3. Sparse representation of wavelet domain adaptive filtering.

It can be seen that the process undergoes two wavelet transforms, denoted as W1
and W2. The signal undergoes the first transformation to obtain the wavelet coefficient θ1,
passes through a hard threshold for the T = 2 · std filter, undergoes the W2 transformation
for the wavelet coefficients θ2, attenuates the amplitude of the wavelet coefficients and
reconstructs θ1 for the signal x̂1. The fault signal shock generation is in accordance with the
law of pull-down distribution, from which the sparsity factor can be constructed as

x = 1− 1
2λ e(−

|x+y|
λ ) x < −τ

0 −τ < x < τ

x = 1− 1
2λ e(−

|x−y|
λ ) x ≥ τ

(14)

where τ is the scale parameter taken as 0.5, τ is the control limit threshold that must be
greater than zero taken as τ = 1

N ∑N
i=1|x(i)|. The sparsity factor is shown in Figure 4.
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Figure 4. Design sparsity factor.

Additionally, the wavelet sparse representation of θ̂21 is a set of wavelet coefficient
vectors. Then, the random matrix X is constructed, obeying Gaussian distribution, θ̂2 is
measured to obtain the measurement y = Xθ̂2, the measurement y is reconstructed to
obtain the wavelet coefficients using the orthogonal matching tracking algorithm and the
wavelet inverse transform is performed to obtain the recovered signal x̂.

3.2. Resonant Sparse Signal Decomposition (RSSD)

In Section 3.1, the acoustic signal was processed into a noise-free reconstructed sparse
signal using sparse representation in the wavelet domain, but the denoised fault features
are still disturbed by the harmonic information. Based on this, the Resonant Sparse Signal
Decomposition (RSSD) method is introduced to decompose and de-resonate the acoustic
signal according to the different resonant behaviors of high and low frequencies, whereby
the fault information is present in the lower resonant components.

In the RSSD method, two adjustable Q-wavelet transforms (TQWT) can be used to
represent the signal components of the oscillatory behavior in two different messages,
with Q representing the quality factor. It actually represents a two-channel bandpass filter
with a real-valued scale factor for signal splitting and filtering as well as synthesis, as
schematically shown in Figure 5. While the low-pass filter H0(ω) and the high-pass filter
H1(ω) are constructed with the following equations [47]:

H0(ω) =


1 |ω| ≤ (1− β)π

θ
(

ω+(β−1)π
α+β−1

)
(1− β)π ≤ ω < απ

0 απ ≤ |ω| < π

(15)

H1(ω) =


0 |ω| ≤ (1− β)π

θ
(

απ−ω
α+β−1

)
(1− β)π ≤ ω < απ

1 απ ≤ |ω| < π

(16)

where the θ(•) function represents the high and low bandpass filter determinants, α and
β represent the scaling parameter pair and r represents the redundant oversampling rate.
Additionally, the result of TQWT depends on the choice of quality factor, whose maximum
decomposition level Lmax can be expressed as [25]

Lmax =
log( N

4Q+1 )

log( Q+1
Q+1− 2

r
)

(17)
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The parameters in the RSSD method can be adaptively selected to ensure that their
conversion metrics are maximized.

3.3. Analog Signal Processing

To illustrate the effectiveness of the method for acoustic signals, simulated rolling
bearing failure acoustic signals from mechanical equipment were used. The signal is
expressed as x = x1(t) + x2(t) + x3(t), and the Doppler distortion effect can be removed
directly. The parameters of the simulated signal are shown in Table 1. We know that
the signal generated by fault collision is due to transient shock, and when simulating
the synthetic signal of a rolling bearing fault, noise and periodic interference harmonic
components must be added. Therefore, x1(t) represents the harmonic component of
the period, x2(t) represents the impact of a rolling bearing failure and x3(t) indicates
the surrounding sound component when the rolling bearing is generated, i.e., noise. In
addition, white noise is not considered in the signal to more closely resemble the sound
signal in the train wheel pair driving. The formula construction is shown below [48,49].
The time of the simulation signal was set to 0.5 s and the sampling frequency was 45,600 Hz.

x(t) = x1(t) + x2(t) + x3(t)
x1(t) = ∑l Alcos(2πl fr + θl)

x2(t) = ∑i Cie−2πξ fn(t−iT−τi)sin(2π
√

1− ξ2 fn(−2πξ fn(t− iT − τi) + ϕ0))

x3(t) = ∑j Rje
−2πξ ′ fn

′(t−Trj)sin(2π

√
1− ξ ′2 f ′n(t− Trj))

(18)

where fr, Al , θl are the rotation frequency, amplitude and initial phase of the shaft, respec-
tively. Ci, ξ, fn, T, ϕ0 denotes the amplitude, damping ratio, intrinsic frequency, period and
initial phase, respectively. The bearing fault induction frequency is set to 85 Hz. The time
interval is T = 1/85.ξ ′, Rj, f ′n, Trj. All can be generated by random variables.

Table 1. Simulation of bearing channel side acoustic signal parameters.

x1(t)
Rotation

frequency
Phases Amplitude Phases Amplitude

50 90 10 180 5

x2(t)
Rotation

frequency
Periodicity Amplitude Damping

ratio
Phases

4250 1/85 (0,1) 0.03 270

x3(t)
Change

frequency
Time Damping

ratio
Amplitude \

∼U (2000, 6000) ∼U (0,5) 0.025 ∼U ( −2,2) \

Figure 6 shows the simulated generated acoustic signal and the time domain wave-
form denoised using the wavelet domain Sparse Representation method. Figure 6a is
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the synthesized simulated signal, Figure 6b is the noise, Figure 6c is the fault signal and
Figure 6d is the partial harmonic and the presence of periodic harmonics. According
to Equations (12)–(14), the length of the filter was chosen to be 500, the analog acoustic
signal was reconstructed by the first wavelet decomposition for sparse representation and
a random matrix obeying Gaussian distribution was constructed. After the second wavelet
decomposition and inverse wavelet transform, the noise information in the recovered signal
is evidently a more sparse signal, indicating that the noise is suppressed. According to the
Rasch transform, the control threshold τ > 0 and τ are taken to be close to
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Figure 6. Analog signal denoising results. (a) Displayed as a time-domain graph of the total
synthesized signal; (b) Time-domain plot of a noisy signal; (c) Includes time-domain diagram of fault
signals; (d) is periodic interference harmonic.

After removing the noise from the signal using wavelet domain Sparse Represen-
tation, the fault characteristics may still be disturbed by harmonics since the high- and
low-resonance harmonics are composed of different signals and the fault information is
found in the lower-harmonic components. Therefore, the RSSD method was introduced in
this paper. In order to set the quality factors according to the different signal characteristics,
Q1 and Q2 were chosen in steps of 0.3 in the range of 4–9 and 1–2, respectively, and the
redundancy factor r ≥ 3 can reduce the computational effort, so its value was chosen as
3. Combined with Equation (17), the decomposition levels L1 and L2 can be determined,
which are the maximum decomposition levels for the high and low harmonics, respectively.
Figure 7 shows the decomposition of the high- and low-resonance harmonics of the de-
noised acoustic signal using RSSD. The interference signals present in the high-resonance
harmonics are clearly singled out.
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Figure 7. RSSD method for de-noised signals. (a,b) are the time-domain plot and frequency-domain
envelope of the highly resonant interference harmonics; (c,d) are the time-domain plot and frequency-
domain envelope of the low-resonance interference harmonic.

4. GA-RBFNN Diagnostic Model

In Section 2.3, the radial basis neural network was defined as a kind of forward
propagation neural network with a single hidden layer, possessing a relatively simple
network structure but with fast computation speed when computing large data samples.
Combined with this paper, a total of four types of faults were designed to be included in
the train wheelset bearing: bearing health, inner ring fault, outer ring fault and rolling
element fault. The output side of the network only needs to set one output node to
satisfy the conditions. However, the RBF neural network regularization requires the
determination of three parameters: the center of the function Ci, the variance di and
the weights between the hidden layer and the output layer ωkj, where the choice of the
variance affects the overall width and computational speed of the network; a comparison
graph of the different variances is shown in Figure 8. The mean value of the regularized
Gaussian function is µ = (0, 1,−1, 0, 0) and the variance is σ2 = (1, 1, 1, 2, 4). The choice of
these three parameters can be determined according to the data to be processed and the
optimization method. The roadside acoustic signal feature vector in the diagnosis process
contains a large amount of data and requires fast computation, and the GA meets these
optimization conditions.
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Figure 8. Gaussian curve distribution with different mean variances.

The population individuals of the GA are decided according to the simple structure of
the RBF network and the types of faults addressed. The initial population individuals were
60, the maximum number of iterations was 16, the crossover was a two-point crossover to
meet the demand, the probability of the crossover was 0.5 and the probability of variation
was 0.04. Figure 9 clearly shows when the fitness function is chosen for the misclassification
training data, the number of iterations and the evolutionary error variation curve. Figure 10
shows the entire GA-RBF optimization diagnosis process.
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Figure 9. Evolutionary process of GA-RBFNN.
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Figure 10. GA-RBF optimization process.

5. Experimental Signal Analysis
5.1. Experimental Conditions

In order to verify the effectiveness of the proposed method, the acoustic signals
collected by the TADS diagnostic system in service along a railroad section in China were
selected for verification, and the acoustic signals were the original signals not transformed
into electrical signals after the system was collected. The acoustic acquisition of the train
wheelset bearings is shown schematically in Figure 11. A train was recorded three times
through the collection system, measuring when the alarm was triggered by the wheelset
bearing position of an abnormal acoustic wave in the same carriage and on the same side.
Eventually, after inspection of the wheel pair disassembly process, it was clear that the
wheel pair bearing contained faults such as damage to the outer ring, inner ring and rolling
body, and the fault level was determined to be a secondary fault, with the wheel pair
bearing fault location shown in Figure 12. That is, the recorded sound can be determined
to be the fault signal, which can be used as the main signal for the next analysis.

After the staff measurement, the damage data size is shown in Table 2. At the same
time, the acquisition of the train’s into- and out-of-speed comparison and access to the
shaft temperature detection system and humidity test were measured, the resulting data of
which are shown in Table 3. It is worth noting that the temperature here for the adhesion of
the bearing temperature sensor, a temperature change control of 80 ◦C or less, indicates
that the temperature is not abnormal; furthermore, the humidity can only be taken as a
relative value, with acquisition of the humidity sensor below 70%, indicating that there is
also no major change. In addition, it can be seen that the speed of the train passing through
the acquisition system does not vary by much, so there is no significant change in speed



Machines 2023, 11, 765 13 of 22

nor in the temperature or humidity values, thus having a minimal impact on the acoustic
signal and not affecting the quality of the signal itself.

Table 2. Bearing failure dimensions.

No. Fault Location Fault Point Size (Length × Width × Depth)

1 Normal /
2 Inner ring failure 50 mm × 40 mm × 3 mm
3 Outer ring failure 50 mm × 50 mm × 3 mm
4 Roller failure 10 mm × 10 mm × 2 mm

Table 3. Speed temperature and humidity values at the time of acquisition.

Speed
Temperature Humidity

Drive in Drive out

First 95km/h 96km/h 55°C 40%
Second 97km/h 96km/h 61°C 47%
Third 95km/h 96km/h 53°C 53%

When the train passes through the collection system, the speed is 90 km/h–120 km/h;
at this time, the axial load of the bearing is 6 t; the speed is 9050 r/min; the sampling
frequency is 48 kHz; the sampling depth is 24 bits; and the vertical distance from the train’s
wheel-to-wheel sound source is r = 2 m. Additionally, it is known that the bearing is a
single-row radial cylindrical roller bearing (NU2234U), commonly used in China, and its
parameters are shown in Table 4.

Table 4. NU2234U bearing parameters.

Inner
Diameter

Outer
Diameter

Section Circle
Diameter

Rolling Body
Diameter

Roller
Numbers

170 mm 310 mm 277 mm 58 mm 14
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Figure 11. TADS roadside acoustic signal acquisition map.

According to the acoustic files collected by the train trackside acoustic signal acquisi-
tion system, the three types of wheelset bearings contain fault acoustic signals. Each type
of collected acoustic signal is rounded to 12 s, and the healthy bearing acoustic signals of
different locations and times of the same train are randomly collected and rounded to 12 s
to facilitate the subsequent data processing and feature extraction.
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Figure 12. Bearing damage position.

5.2. Roadside Acoustic Signal Sparse Operation

For the acquired channel-side acoustic signals, the TIR technique was used for Doppler
aberration correction, and it can be seen that most of the offset waveforms were corrected,
as shown in Figure 13, for the outer ring fault signal.
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Figure 13. Doppler signal correction effect. (a) is time-domain plot of train trackside acoustic signals
containing Doppler effect; (b) is time-domain plots of train trackside acoustic signals corrected for
Doppler effects.

The wavelet domain sparse representation of the Doppler-free acoustic signal is de-
noised with a correction signal of 0.45 s per segment, a hard threshold of 1 for the adaptive
filter and a sparsity factor of τ = 0.5. The time–frequency domain waveforms after de-
noising are shown in Figure 14a,b, which is the time domain waveform, and Figure 14c,d,
which is the frequency domain waveform.

The sound waveform after noise reduction clearly shows the coexistence of high- and
low-resonance harmonics, and the fault information is in the low-resonance harmonics.
The RSSD further removes the interference harmonics, as shown in Figure 15.

In Figure 15a,c are high-resonance harmonics and Figure 15b,d are low-resonance
harmonic signals containing fault information. To compare and illustrate the effectiveness
of this method, the commonly used VMD method was used, and the maximum kurtosis-
worthy IMF was chosen. It is evident from Figure 16 that f exists, indicating the presence of
interference harmonics, making it evidently inferior to the RSSD method.
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Figure 14. Experimental signals Wavelet domain sparse representation denoising. (a,c) are time-
domain plot and frequency-domain envelope of the noise signal; (b,d) are time-domain plot and
frequency-domain envelope after noise removal.
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Figure 15. RSSD acoustic signal processing. (a,c) are time-frequency domain effect of demodulated
highly resonant interference harmonics; (b,d) are time-frequency domain effects of demodulated low
resonance harmonics.
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Figure 16. VMD processing comparison graph. (a) is time-domain waveforms of VMD processed
signals; (b) is frequency domain envelope of the VMD processed signal.

5.3. Feature Extraction

From the roadside sound signals acquired, the TADS system collected four types of
sound signals: health signal, outer ring fault signal, inner ring fault signal and rolling body
fault signal. Each type of signal comprises 10 samples, with a total of 40 samples wherein
each type of signal taken is a 12 s sound file, using wavelet domain Sparse Representation
for noise reduction and RSSD to remove interference harmonics, and then cut into 0.4 s
sections of sound samples, totaling 1200 samples.

These data are then divided into a training set and a test set. Ten original statistical
features were extracted for each signal class according to Table 5 to obtain the sample
vectors of the four states of the train wheel pair bearings. The extracted time–frequency
domain features were fused and clustered using the KJADE algorithm [50]. The convenient
input into the GA-RBFNN caused data confusion due to the feature set; therefore, to
increase the comparability, the PCA algorithm, LDA fusion algorithm and JADE algorithm
were selected after these features were reduced to the three-dimensional space for T-SNE
visualization. The comparison results are shown in Figure 17a,b, which show the clustering
effect, but there is still feature-scattered adhesion [50]; Figure 17c shows that, although
the clustering effect is evident, the clustering effect of single features is not good [50]; and
Figure 17d shows that the clustering of the four types of features is very good [50], with
the features of each signal having their own clustering centers, indicating that the selected
feature fusion algorithm clustering effect is superior. The number of training samples for
the processed signals was set to 60 groups of 240 samples per class for a total of 960 samples,
and the test samples were set to 15 groups of 60 samples per class for a total of 240 samples.

Table 5. Original feature extraction.

Time Domain Frequency Domain
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Figure 17. Comparison of the effectiveness of different feature clustering methods. (a) is the clustering
effect of feature groups after PCA treatment; (b) is the clustering effect of feature groups after LDA
treatment; (c) is the clustering effect of feature groups after JADE treatment; (d) is the clustering effect
of the feature group after the KJADE treatment.

5.4. Analysis of the GA-RBFNN Diagnostic Results

From Sections 5.1 and 5.2, the training data and test data were cut into a total of
300 groups, of which 240 groups comprised the training data and 60 groups comprised
the bearing health status, inner ring failure, outer ring failure and rolling element failure
each, with labels set to 1, 2, 3 and 4, respectively. Fifteen groups were available for the
rolling bearing status of each wheel pair in the test data. The training samples were input
into the default parameters in RBFNN and GA-RBFNN, and their training results were
compared, as shown in Figure 18. The training samples were input into the RBFNN with
default parameters and the RBFNN optimized with GA parameters. It is evident that both
are essentially the same in terms of the number of iterations, and that the basic training
error remains the same after 22 iterations; however, the GA-RBFNN training error is closer
to the target 0 compared to the RBFNN with default parameters. Therefore, comparing the
two curves proves that the RBFNN has a stronger convergence after GA optimization.
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Figure 18. Comparison of GA-RBF iteration curves.

The processed training and test data were then input into the RBNN with default
parameters and the RBNN optimized using the GA to perform fault diagnosis of the four
types of acoustic signals of the train wheelset rolling bearings. The output results of the
fault diagnosis are shown in Figures 19–22.
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Figure 19. Diagnostic results comparison chart. (a) is the fault recognition effect of RBF neural
network with default parameters; (b) is a plot of the fault identification effect of the RBF neural
network after using the GA optimization parameters.
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Figure 21. Diagnostic result fitting curve.

As seen in Figure 19, there are nearly 20 incorrect test data elements in the RBNN
diagnostic results with the default parameters, with each set of data set to three sets of
sample points averaged over each type of fault data, totaling 300 sets of data. The diagnostic
accuracy of the default neural network is only 79.6%. In the test data plot after the GA
optimization, it can be seen that there are four data points that fail to fit accurately, and the
diagnosis accuracy reaches 97.22% when averaged over 300 sets of data. The GA-optimized
RBFNN test data fit the training data better, as can be seen in Figures 20 and 21. After
the confusion matrix, it can be seen that the diagnosis rate of the rolling body and normal
bearing among the four types of fault signals is 100%, and that the latter improved the
accuracy rate by an extra 18% compared with the former, proving the effectiveness of the
GA-optimized radial base acoustic feature fault identification network.

To further compare and illustrate the effectiveness of the method, the acoustic feature
data in Section 5.3 were input into the SVM, BP neural network, GA-SVM and GA-BPNN
for training and testing, and the recognition accuracy and rate of each classifier are shown
in Table 6. Combined with Figure 22, it can be clearly seen that the GA-BPNN is closer
to the GA-RBFNN in recognition accuracy. However, its recognition rate is significantly
slower because its BP network structure is more complex than RBF. It can also be seen that
the recognition accuracy of GA-SVM, which has a faster recognition rate than GA-RBFNN,
is much lower and cannot be used for fault diagnosis. In summary, the fault diagnosis
model of the GA-RBFNN roadside acoustic signal is superior to some traditional fault
diagnosis models.

Table 6. Comparison of diagnostic efficiency of different methods.

Model
Time/s

Error Recognition Accuracy
Training Testing

GA-RBFNN 497.93 13.73 9.00 97.22%
SVM 531.60 16.79 136.00 54.60%

BPNN 612.69 21.66 67.00 77.49%
GA-SVM 454.00 11.82 87.00 71.32%

GA-BPNN 511.61 16.47 11.00 96.50%
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Figure 22. Comparison of diagnostic effects of multiple methods.

6. Conclusions

1. For the processing of the background noise and interference harmonics in roadside
acoustic signals, this paper creatively utilizes the sparse representation method in
the wavelet domain to completely remove the powerful reverberation noise in the
roadside acoustic signal, while using the RSSD method to remove the interference
harmonics, laying the foundation to be able to smoothly extract the features and the
fault diagnosis of acoustic signals.

2. For the premise of low-efficiency fault identification in roadside acoustic signals
and less-researched methods, a GA-RBFNN model of roadside acoustic fault feature
diagnosis was proposed. Using the characteristics of GA’s adaptability to large data
processing and robustness, and RBNN’s simple structure and fast processing speed,
the simulation experiments of TADS fault acoustic data in a railroad section site
prove that, after a variety of time–frequency domain fusion clustering acoustic feature
vector inputs, the model can achieve fast and accurate identification of the fault type,
with a recognition accuracy as high as 97.22%. The superiority of the method is
comprehensively demonstrated when comparing the diagnosis rate and accuracy
with those of other diagnosis models.
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