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Abstract: An optimized measuring point planning and fitting method for rotor flange and spigot
structures was proposed to achieve precise measurement of position and pose of the aeroengine
rotors during docking processes. Firstly, the impact of circumferential phase angle, distribution
range angle, total number of measuring points, and number of distribution rings on measurement
uncertainty was analyzed. The measuring point planning schemes for flange and spigot were
proposed. Secondly, the Gauss Newton iterative solution principle considering damping factors was
clarified. Subsequently, an optimized iterative reweighting method consisting of weight iterative
estimation, singular value detection under the Chauvenet criterion, and clustering detection was
proposed for fitting the flange annular end face. A mapping point total least squares method with
practical geometric significance was proposed for fitting the spigot cylinder face. Finally, measuring
and fitting experiments were performed. The singular measuring point detection methods were
verified. Under the optimized fitting methods, the goodness of fit and average orthogonal distance of
flange and spigot structures are 0.756 and 0.089 mm, respectively, which have higher fitting accuracy
than the other traditional methods.

Keywords: aeroengine rotor; flange and spigot; position and pose measurement; measuring point
planning; fitting

1. Introduction

Flange and spigot are the typical positioning structures at the end of an aeroengine
rotor, realizing axis orientation, axial positioning, and radial positioning between adjacent
rotors [1–3]. A large amount of measurement work is required during the rotor docking
assembly processes, to obtain the initial position and pose of each rotor and to provide
data for docking trajectories [4–6]. Therefore, the measuring and fitting accuracy is crucial,
directly determines the assembly accuracy of the rotors, and has a significant impact on the
dynamic performance of the entire engine [7–10].

Automated systems have gradually been applied in the measurement of aeroengine
rotors [11–15]. Among these, the multi-axis precision mechanical contact measurement
system and laser measurement system have the advantages of high reliability and automa-
tion [16–18]. A large number of point cloud coordinates are generated after measurement.
The question of how to arrange the number and position of measuring points is a key
issue in balancing measurement accuracy and efficiency [19–22]. Based on the measuring
point planning, optimizing the corresponding fitting methods for different structures is an
effective way to further reduce the uncertainty of model parameters [23–25]. In summary,
reasonable measuring point planning and optimized fitting methods of the flange and
spigot structures are important prerequisites for obtaining the rotor position and pose
information quickly and accurately.
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In recent years, some scholars have conducted relevant research on the measuring
point planning strategy of aeroengine rotors [26,27]. Zhang et al. have proposed a redun-
dant measuring point detection method for the measurement of rotor end faces, and the
optimized algorithm improved the accuracy by 21 µm compared with the traditional least
squares (LS) fitting method [28]. Zhu et al. constructed a heuristic floating forward search
algorithm to efficiently find a near-optimal solution for measuring point layout [29]. Ding
et al. used the eigenvalue method to process the point cloud data of the rotor end face,
which has the function of excluding gross error points in the measurement points [30]. How-
ever, the existing measuring point planning methods mainly deal with integral surfaces
with simple geometric shapes, and their applicability to complex spatial feature structures
such as flange and spigot is limited.

With regard to the research regarding the fitting methods for typical axes and circular
contours: Xie et al. established a spatial axis LS fitting model with non-cylindrical data
filtered out [31]. The Limacon model is widely used in circular profile measurement to
characterize eccentricity parameters [32,33]. Chetwynd et al. improved the parameter
estimation method of LS fitting radius in the Limacon model [34]. Sun et al. proposed
the vector projection method in cylindrical contour fitting. Compared with the traditional
Limacon model, the accuracy of rotor roundness has been improved by 2.2 µm, and the
accuracy of coaxiality has been improved by 9.39 µm [35,36]. Zhang et al. constructed
a particle swarm optimization algorithm for fitting aeroengine rotor models based on a
two-dimension laser displacement sensor, and the measurement accuracy of cylindricity
error was improved by 1.768 µm compared with the traditional method [37]. Wang et al.
used the equivalent homogenization processing and 3D LS method for fitting aeroengine
rotor annular plane [38]. For different geometric features, researchers also carried out
comparative studies on various fitting methods based on the same set of point cloud data.
Song et al. compared the fitting performances of six normal line fitting methods on different
types of geometries, e.g., sphere, cylinder, and ellipsoid [39]. Nouira et al. compared the
fitting accuracy of different models such as LS circle, minimum area circle, maximum
inscribed circle and minimum circumscribed circle, and proposed a fitting method based on
a micro displacement model [40]. The above research constructed the corresponding fitting
algorithms for the points with specific distribution forms, achieving higher fitting accuracy
compared with traditional methods. However, few targeted combinatorial optimization
algorithms have been established to meet the requirements for fitting the spatial position
and pose of the rotor flange and spigot structures. Moreover, it is no longer possible to
measure the flange and spigot again after the rotors are docked, so higher fitting accuracy
is required in a single fitting process.

In this paper, a systematic study on measuring point planning and fitting methods
for typical rotor flange and spigot structures was carried out. First, the impact of different
measuring point distribution parameters on the model uncertainty was analyzed and a
measuring point planning strategy was proposed. Then, the optimized iterative reweight-
ing method for fitting flange and the mapping point total least squares method for fitting
spigot were proposed, respectively. Finally, the measurement and fitting experiments were
performed. The singular value point detection methods were compared and the fitting
accuracy of the optimized fitting methods was verified.

This paper is organized as follows. In Section 2, the measuring point planning method
is proposed; in Section 3, the optimized fitting algorithm is proposed; in Section 4, the
measurement experiments are performed; and in Section 5, the conclusions are presented.

2. Measuring Point Planning Method

The schematic that illustrates the measurement of the flange and spigot structures of
the aeroengine rotors is shown in Figure 1. With regard to the measuring point planning
of the flange annular end face. The end face description equation can be represented by
zM = a1 + a2xM + a3yM in the measurement coordinate system OM-xyz. Without loss of gener-
ality, allow N measuring points Mi (xMi, yMi, zMi) distributed on the plane zM = 0 to be fitted.
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To simplify the calculation, the case of N = 3 is analyzed first. The measuring points M1 (0,

0, 0), M2 (xM2, 0, 0) and M3

(
xM3,±

[√
RC

2 − (xM3 − xM2/2)2 +
√

RC
2 − xM2

2/4
]

, 0
)

are

shown in Figure 2a. The equation of the annular end face is transformed into a1 = −(AxM
+ BxM + CxM)/C, a2 = −A/C, a3 = −B/C. Where A, B, and C are the model parameters of
the plane general equation. The model parameter uncertainty is defined as the standard
deviation of the fitting parameter and is associated with the measurement system error
σM. The uncertainty of the parameter of the flange plane general equation is shown in
Equations (1)–(3).

δA =

√
3
∑

i=1

[(
∂A
∂xi

)2
+
(

∂A
∂yi

)2
+
(

∂A
∂zi

)2
]

σM

=

(√
2RC

2 − 2(xM3 − xM2/2)2 +
√

2RC
2 − xM2

2/2
)

σM

(1)

δB =

√
3
∑

i=1

[(
∂B
∂xi

)2
+
(

∂B
∂yi

)2
+
(

∂B
∂zi

)2
]

σM

=
√

2(xM2
2 + xM3

2 − xM2xM3)σM

(2)

δC =

√
3
∑

i=1

[(
∂C
∂xi

)2
+
(

∂C
∂yi

)2
+
(

∂C
∂zi

)2
]

σM

=

√
(8RC

2 + 2xM2
2) + 4

√[
2RC

2 − 2(xM3 − xM2/2)2
]
(2RC

2 − xM2
2/2)σM

(3)
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Figure 1. Schematic of the measurement process of the aeroengine rotor flange and spigot struc-
tures. 

 
Figure 2. Schematic of measuring point distribution schemes: (a) simplified assumption of three 
points distributed on the flange end face; (b) points distributed uniformly on single ring on the 
flange end face; (c) points distributed uniformly on double rings on the flange end face; (d) sim-
plified assumption of three points distributed on the spigot cylindrical face; (e) points distributed 
uniformly on the spigot cylindrical face. 

For situations where the measurement trajectory is limited, measuring a large arc 
range can suffice instead of measuring the entire circle. The analysis of the impacts of the 
number of measuring points and the uniform distribution range on the uncertainty of the 
end face model parameters are necessary. The measuring points are arranged symmet-
rically as shown in Figure 2b. Parameter a1 determines the third-row element az in the 
workpiece pose column matrix a, which is an important parameter for determining the 
spatial angle of the end face axis (the angle between the end face normal vector and the 
coordinate axis OM-z). The uncertainty δa1 of parameter a1 using the LS method is calcu-
lated as Equation (7). 

Figure 1. Schematic of the measurement process of the aeroengine rotor flange and spigot structures.

It can be calculated that when xM3 = xM2/2, xM2
2 + xM3

2− xM2xM3 has the minimum
value, both δB and δC have the minimum values simultaneously. The uncertainty of attitude
column matrix a representing the fitted normal vector of the rotor end face is shown in
Equations (4)–(6).

δax =
√

2σM/xM2 (4)

δay =

√
6√

4RC
2 − (2xM3 − xM2)

2 +
√

4RC
2 − xM2

2
σM (5)

δaz = 0 (6)

The increase in xM2 and yM3 leads to a decrease in uncertainty δax and δay, i.e., the
relative distance of the measuring points M1, M2, and M3 should be as far as possible. Then
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δax = δay and xM2 = ±
√

3RC and the angle among OM-Mi is 2π/3. When the calculation
method is generalized to N ≥ 3, it can be concluded that the uncertainty of the end face
parameters is minimized when the measuring points are uniformly distributed along
the circumference.
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For situations where the measurement trajectory is limited, measuring a large arc
range can suffice instead of measuring the entire circle. The analysis of the impacts of the
number of measuring points and the uniform distribution range on the uncertainty of the
end face model parameters are necessary. The measuring points are arranged symmetrically
as shown in Figure 2b. Parameter a1 determines the third-row element az in the workpiece
pose column matrix a, which is an important parameter for determining the spatial angle
of the end face axis (the angle between the end face normal vector and the coordinate
axis OM-z). The uncertainty δa1 of parameter a1 using the LS method is calculated as
Equation (7).

δa1 =

√√√√√√√√√
N

∑
i=1

 1
N
−

(
N
∑

i=1
RC cos θi

)2

/N − RC cos θi
N
∑

i=1
RC cos θi

N
N
∑

i=1
(RC cos θi)

2 −
(

N
∑

i=1
RC cos θi

)2

σM (7)

where N is the number of measuring points, RC is the radius of the circular path, θi is
the circumferential angle of the measuring point Mi, and σM represents measurement
systematic error.

Taking the flange end face of an aeroengine low pressure turbine (LPT) mid shaft
as an example, the measuring path radius RC = 149 mm. The relationship between the
calculated uncertainty δa1 and the number of measuring points N/the angle of uniform
distribution range ϕ is shown in Figure 3a. δa1 reduces significantly when ϕ ≥ 180◦.
Therefore, the measurement range should cover at least half the arc area. The reduction
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rate of the minimum value of the model parameter uncertainty min(δa1/σM) gradually
decreases when N increases step by step in the arithmetic progression of 4, 12, 20, 28, 36.
The reduction rate of min(δa1/σM) is less than 10% when N increases from 28 to 36. Taking
into account the impact on measurement accuracy and efficiency, N = 28 is a reasonable
value. Due to the radial width on the circular end face, the influence of the number of
measuring rings distributed along multiple concentric circles/arcs is analyzed while N = 28.
The uncertainty is shown in Figure 3b when RC = 149, 137 and 125 mm, respectively. When
30◦ ≤ ϕ ≤ 80◦, δa1 under a multi-ring distribution reduces significantly compared with the
single ring scheme and δa1 under a double-ring distribution is lower than under a three-ring
distribution. Due to the limitation of the flange edge width (24 mm) in this example, when
the total number of measuring points remains unchanged, the excessive rings result in a
small radial spacing and a large circumferential spacing of measuring points. Therefore, the
arrangement of measuring points along the double concentric rings is the optimal method
and has min(δa1/σM) = 0.188. In summary, the N = 28 measuring points evenly distributed
in double rings form a reasonable measuring point planning scheme, as shown in Figure 2c.
Similarly, the optimized measuring point planning strategies for end faces at different
positions (shown in Figure 4) in an aeroengine LPT rotor assembly are analyzed, as listed
in Table 1.
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Figure 3. Relationship between measuring point distribution parameters and measurement uncer-
tainty: (a) the influence of the number of flange measuring points and range angle; (b) the influence of
the number of distribution rings of the flange measuring points; (c) the influence of the circumferential
phase angle of the spigot measuring point; (d) the influence of the number of spigot measuring points
and range angle.
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Figure 4. Schematic of the measurement faces on the LPT rotors of an aeroengine.

Table 1. Optimized measuring point planning schemes of all end faces on the LPT rotors of an
aeroengine.

End Faces

Fore Flange
Face on the

Rear Shaft/Aft
Flange Face on
the Cone Shaft

Fore Flange
Face on the

Cone Shaft/Aft
Flange Face on
the Mid Shaft

“Fifth”
Bearing

Positioning
End Face on

the Rear Shaft

Labyrinth Disc
I Positioning
End Face on

the Cone Shaft

Labyrinth Disc
II Positioning
End Face on

the Mid Shaft

Toothed
Coupling

Positioning
End Face on

the Mid Shaft

Total number of
measuring
points N

22 28 14 38 22 12

Distribution
rings 2 2 1 2 2 1

Measuring path
radius RC1

(mm)
104 125 79 191 107 64

Measuring path
radius RC2

(mm)
113 149 - 208 120 -

With regard to the measuring point planning of the spigot cylindrical face. Without
loss of generality, let N points Mproj_i (xproj_Mi, yproj_Mi, zproj_Mi) projected by the measuring
points be distributed on the assumed plane zM = 0. To simplify the calculation, the case
of N = 3 is analyzed first. The mapping points Mproj_1 (0, Rproj_M, 0), Mproj_2 (Rproj_Mcosθ2,
Rproj_Msinθ2, 0), and Mproj_3 (Rproj_Mcosθ3, Rproj_Msinθ3, 0) are shown in Figure 2d. The
coordinate uncertainty of xproj_MO and yproj_MO in the model parameters of the standard
circle is shown in Equations (8) and (9).

δx =

√√√√√ 3

∑
i=1

(∂xproj_MO

∂xproj_Mi

)2

+

(
∂xproj_MO

∂yproj_Mi

)2
σM (8)

δy =

√√√√√ 3

∑
i=1

(∂yproj_MO

∂xproj_Mi

)2

+

(
∂yproj_MO

∂yproj_Mi

)2
σM (9)
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Thus, the uncertainty δO of the center coordinates of the mapped circle is calculated as:

δO =
√

δ2
x + δ2

y =

√
6− 2 cos(θ3 − θ2)− 2 cos θ2 − 2 cos θ3

[sin θ2 − sin θ3 + sin(θ3 − θ2)]
2 σM (10)

When ∂δO/∂θ2 = 0, the uncertainty δO has a minimum value if θ2 = θ3/2. The relation-
ship between δO and circumferential phase angle θ3 is shown in Figure 3c. When θ2 = 2π/3,
θ3 = 4π/3, δO has the minimum value 1.155σM. When the calculation method is generalized
to N ≥ 3, it can be concluded that the uncertainty of the center coordinate has a minimum
value when the measuring points are uniformly distributed along the circumference.

The number of points and the uniformly distributed range angle also have an impact
on the uncertainty δO. The mapping points are arranged symmetrically as shown in
Figure 2e. δO is calculated as Equation (11) when using the LS method.

δO = 2

√√√√√√√√√
N −

(
N
∑

i=1
cos θi

)2

/N(
N −

N
∑

i=1
cos 2θi

)[
N +

N
∑

i=1
cos 2θi − 2

(
N
∑

i=1
cos θi

)2

/N

]σM (11)

The relationship between the uncertainty δO and the number of measuring points
N/the angle of uniform distribution range ϕ is shown in Figure 3d. δO reduces significantly
when ϕ ≥ 180◦. Therefore, the measurement range should cover at least half the arc area.
The reduction rate of the minimum value of uncertainty min(δO/σM) gradually decreases
when N increases step by step in the arithmetic progression of 4, 12, 20, 28, 36, 44. The
reduction rate of min(δO/σM) is less than 10% when N increases from 36 to 44. Taking
into account the impact on measurement accuracy and efficiency, N = 36 is a reasonable
value. Similarly, the optimized measuring point planning strategies for cylindrical faces at
different positions (shown in Figure 4) in an aeroengine LPT rotor assembly are analyzed,
as listed in Table 2.

Table 2. Optimized measuring point planning schemes of all cylindrical faces on the LPT rotors of
an aeroengine.

Cylindrical
Faces

Fore Spigot
Face on the

Rear Shaft/Aft
Spigot Face on
the Cone Shaft

Fore Spigot
Face on the

Cone Shaft/Aft
Spigot Face on
the Mid Shaft

“Fifth”
Bearing

Positioning
Cylindrical
Face on the
Rear Shaft

Labyrinth Disc
I Positioning
Cylindrical
Face on the
Cone Shaft

Labyrinth Disc
II Positioning

Cylindrical
Face on the
Mid Shaft

Gear Coupling
Positioning
Cylindrical
Face on the
Mid Shaft

Total number of
measuring
points N

30 36 22 50 36 18

Spigot radius
RS (mm) 99 119 76 213 125 62

3. Optimization of Fitting Algorithm
3.1. LS Principle and Gauss Newton Iterative Solution Method Considering Damping Factors

Measuring point fitting can be considered a minimization process. A set of observation
values zMi are obtained under the given condition { (xMi, yMi) | i = 1, 2, . . . , N}. The target
is the minimization of the deviation between the values obtained from the mathematical
model and the actual observation values according to a calculation rule. The LS minimiza-
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tion mathematical model is shown in Equation (12). The optimization fitting algorithm in
Sections 3.2 and 3.3 are all constructed based on the LS fitting principle.

χ2 =
N

∑
i=1

wi[ f (xMi, yMi | a )− zMi]
2 → Min (12)

The solution process of the Gauss Newton method for searching the minimum value
χ2 is shown in Figure 5. The gradient of ∆a = 0 when F(a + ∆a) is minimized. The model
parameter adjustment matrix ∆a = −H−1g. The gradient vector g and Hessian matrix H
are decomposed into the Jacobian matrix JLS, as shown in Equation (13).

JLS =


∂ f (xM1,yM1 | a )

∂a1

∂ f (xM1,yM1 | a )
∂a2

· · · ∂ f (xM1,yM1 | a )
∂aM

∂ f (xM2,yM2 | a )
∂a1

∂ f (xM2,yM2 | a )
∂a2

· · · ∂ f (xM2,yM2 | a )
∂aM

...
...

. . .
...

∂ f (xMN ,yMN | a )
∂a1

∂ f (xMN ,yMN | a )
∂a2

· · · ∂ f (xMN ,yMN | a )
∂aM

 (13)
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Model parameter iteration adjustment matrix ∆a is shown in Equation (14). The
iteration termination target is shown in Equation (16).

∆a =
(

JT
LSWJLS

)−1
JT

LSWr (14)

a + ∆a→ a (15)

∣∣∆aj
∣∣ < ε, ∀j (16)

where W is the weight diagonal matrix; r is the residual column vector; and ε is the iteration
termination value.

The traditional Gauss Newton algorithm may fall into saddle points or iterate in wrong
directions. The damping factor µ is introduced in the Levenberg–Marquardt method. Thus,
the iterative adjustment matrix ∆a is revised to:

∆aLM =
(

JT
LSWJLS + µE

)−1
JT

LSWr (17)

The damping factor µ is determined by the adaptive coefficient λµ and the maxi-
mum diagonal element nmax of the quadratic normal matrix N = JT

LSWJLS, as shown in
Equation (18). The empirical value of λµ can be set to 0.001 in the first iteration. The direc-
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tion is correct if χ2(a + ∆a) < χ2(a) after iteration. Then update a + ∆a→a and decrease λµ

in the next iteration. Otherwise, update a and increase λµ.

µ = λµnmax (18)

3.2. Optimized Fitting Method for Flange Annular End Face

The weight wi is theoretically independent of each observation value zMi and is in-
versely proportional to the square of the standard uncertainty of the probability distribution
function of zMi. However, the uncertainty cannot be directly calculated in practical appli-
cations. Therefore, iterative operations can be used to obtain a more accurate estimated
weight. The iterative mathematical model makes the singular points deviate more sig-
nificantly. Thus, singular points can be removed accurately before weighted fitting is
performed again. The optimized iterative reweighted LS process for the flange annular end
face is shown in Figure 6.
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3.2.1. Iterative Estimation of Weights Based on Residuals

The residual ∆i is approximately mapped to the weight wi. When the observed value
zMi under (xMi, yMi) is very close to the model function, it causes 1/∆i to become too high.
It is therefore necessary to set a reasonable upper limit value for wi:

wi =


1

λ2
L

, if |∆i| < λL
1

∆2
i
, if |∆i| ≥ λL

(19)

The residual ∆i obeys a normal distribution due to the influence of independent
random factors. Its lower bound value λL is determined by Equation (20). To simplify
operations, λL can be set as the median of absolute residual |∆i|, causing 50% of the
observed values to have the same weight, 1/λ2

L.

λL = κL
∧

σwzM (20)

∧
σwzM =

{
N

N

∑
i=1

[
wi

( ∧
a1 +

∧
a2xMi +

∧
a3yMi − zMi

)2
]

/

[
(N − 3)

N

∑
i=1

wi

]}1/2

(21)

where
∧

σwzM is the estimated value of the standard deviation of the weighted observation

value zMi and
N
∑

i=1
wi/N is the normalized mean weight value.

For the first round of fitting, i.e., the initial model parameter estimation method with

equal weight, the reader can refer to Appendix A. Then, wi can be related to ∆i and
∧

σwzM

in the second round. The number of measuring points N for each flange is less than 100
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to ensure measurement efficiency. Then, the high value of
∧

σwzM causes λL to become too
high. It is difficult to distinguish observations with low |∆i| from the measuring points.
Therefore, it is necessary to re-estimate the weight values after obtaining the mathematical
model in the last round of fitting. One should then repeat the iterations between point
cloud fitting and weight estimation until the changes in the model parameters are small
enough.

3.2.2. Standard Residual Singular Value Detection Based on the Chauvenet Criterion

If there is a singular value in the measuring points, its weight needs to be zeroed:

wi =

{
0, if |∆i| ≥ λ0;
wi, if |∆i| < λ0

(22)

Singular points are found by calculating thresholds. Under the LS framework, the
observed mean zMi in the standard deviation formula corresponds to the estimated value.
There are three elements in the parameter vector a of the flange end face. The standard

deviation
∧

σzM is estimated by Equation (23).

∧
σzM =

[
N

∑
i=1

( ∧
a1 +

∧
a2xMi +

∧
a3yMi − zMi

)2
/(N − 3)

]1/2

(23)

Threshold λ0 is set as Equation (24).

λ0 = κ0
∧

σzM (24)

The Chauvenet criterion defines the probability of observed values occurring within
the mean bandwidth range. The probability Pin of ∆i occurring within the interval

[−κ0
∧

σzM , κ0
∧

σzM ] is shown in Equation (25).

Pin= 1− Pout =
∫ κ0

∧
σzM

−κ0
∧

σzM

e−(∆i/
∧

σzM )
2
/2/
(√

2π
∧

σzM

)
d∆i = erf

(
κ0√

2

)
(25)

where erf is the Gauss error function.
Set the nominal number of occurrences of singular values to v0 = NPout. The rela-

tionship between the coefficient к0 and the number of measuring points N is shown in
Equation (26).

κ0 =
√

2erfinv
(

N − v0

N

)
(26)

where erfinv is the Gauss inverse error function.

3.2.3. Clustering Detection

The principle of clustering detection requires that qualified observations be classified
into a one-dimensional category. Their absolute deviations Λi = |∆i| are relatively concen-
trated. Simultaneously, the deviations of singular values are far away from this category.
Thus, the specified interval value is searched for in the deviation sorting and is used as
the criterion for singular value determination. Cluster detection can avoid misjudgment
caused by the sparsity of observation distribution.

The absolute deviations Λi are arranged in ascending order and renumbered ordinal
number n:

· · · ≤ Λj ≤ · · · ≤ Λk ≤ · · · ≤ Λl ≤ · · · (27)

Λs[1] ≤ · · · ≤ Λs[n] ≤ Λs[n + 1] ≤ · · · ≤ Λs[N] (28)
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The difference of absolute deviations between adjacent orders is:

d[n + 1] = Λs[n + 1]−Λs[n] (29)

There is a significant gap between the absolute deviations of singular values and the
absolute deviations before their orders. The global criterion is that the difference of absolute
deviations is higher than the typical threshold, i.e., d[n] ≥ к1dglob[n]. The local criterion is
that the difference in absolute deviations is higher than the threshold generated by partial
fore correlation values, i.e., d[n] ≥ к2dloc[n]. The threshold λ0 is set as Equation (30).

λ0 = Λs[n], if
d[n]

dloc[n]
= max (30)

The global threshold dglob[n] and local threshold dloc[n] are defined as the weighted
average of specific differences, shown as Equations (31) and (32). The weight decreases as
the absolute deviation of the current measuring point increases and the slope is related
to the number of measurement points N. The dloc[n] mainly depends on the influence of
the differences of the adjacent absolute deviations. Local changes in the differences are
overestimated when the absolute deviations are equal. dloc[n] should be adjusted using
Equation (33). Clustering detection is self-adaptive for both dglob[n] and dloc[n] change
with d[n].

dglob[n] =
n−1

∑
j=1

d[n− j]e−2(j/N)2
/

n−1

∑
j=1

e−2(j/N)2
(31)

dloc[n] =
n−1

∑
j=1

d[n− j]e−72(j/N)2
/

n−1

∑
j=1

e−72(j/N)2
(32)

dloc[n] =
{

d[n]/κ2, if count{d[n− j] = 0} > (n− 1)/2
dloc[n], if count{d[n− j] = 0} ≤ (n− 1)/2

(33)

3.3. Optimized Fitting Method for Spigot Cylindrical Face

The coordinates of the projection points Mproj_i on the fitted end face of the spigot
measuring point Mi are calculated as Equation (34).

xproj_Mi
yproj_Mi
zproj_Mi

 =


xMi −

a2(a1+a2xMi+a3yMi−zMi)

a2
2+a2

3+1

yMi −
a3(a1+a2xMi+a3yMi−zMi)

a2
2+a2

3+1

zMi +
a1+a2xMi+a3yMi−zMi

a2
2+a2

3+1

 (34)

To obtain the spatial circle center Oproj_M(b1,b2,b3), the fitting equation after mapping
is shown as Equation (35).{

zproj_Mi =
√

b4
2 −

(
xproj_Mi − b1

)2 −
(
yproj_Mi − b2

)2
+ b3

zproj_Mi = a1 + a2xproj_Mi + a3yproj_Mi
(35)

Compared with the traditional LS method, an optimized total least squares (TLS)
method is proposed to minimize the square of the distance between the mapping of
observation points and the tangent points. The tangent point is on the tangent line of the
model and is orthogonal to the minimum distance vector of the measuring point and the
model. Thus, TLS has more geometric significance for fitting the mapped spatial circle
of the spigot, as shown in Figure 7. Due to the symmetry of the circular curve, weight
estimation and singular value detection are unnecessary, and observations with relatively
higher errors can also be used as conditional inputs. Referring to the definition of χ2(b),
the fitted model is transformed into f

(
xproj_Mi, yproj_Mi, zproj_Mi | b

)
≡ 0 by shifting terms
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and the end face also provides a limiting condition function. The objective function of TLS
is shown in Equation (36).

FTLS(b) =
N

∑
i=1

(λ− b4)
2 → Min (36)

λ =
[(

xproj_Mi − b1
)2

+
(
yproj_Mi − b2

)2
+
(
a1 + a2xproj_Mi + a3yproj_Mi i − b3

)2
]1/2

(37)
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Different from the linear approximation solution of the minimization equation of
the traditional LS method, the minimization equation of TLS is a nonlinear function re-
garding the model parameter vector b = (b1,b2,b3,b4)T. b can be solved through iterative
compensations, and the initial estimated values in b can be calculated through the average
method, as shown in Appendix A. The partial derivatives of the parameters are shown in
Equations (38)–(41). The Jacobian matrix JLS contains b and requires iterative operations.
Simultaneously, the operations are also constrained by the end face model, i.e., ∆b3 = a1 +
a2b1,fit + a3b2,fit − b3,init.

∂ f /∂b1 =
(
b1 − xproj_M

)
/λ (38)

∂ f /∂b2 =
(
b2 − yproj_M

)
/λ (39)

∂ f /∂b3 =
(
b3 − a1 − a2xproj_Mi − a3yproj_Mi

)
/λ (40)

∂ f /∂b4 = −1 (41)

4. Measurement Experiment

Measurement and fitting experiments for an aeroengine low-pressure turbine shaft
are performed. The three-axis measurement system includes: measuring head RENISHAW
OMP 40-2 (a high-precision three-dimensional contact probe that can be used on coordinate
measuring machines, with unidirectional repeatability of 1 µm and can be equipped with
various types of measuring needles) and optical interface OMI-2T (an anti-interference
infrared optical receiver for probe signals, with a detection range of 6 m). The initial position
and pose of the workpiece in each experiment is randomized using an adjustment fixture.
The measuring points are arranged according to the proposed planning schemes. The
traditional fitting methods and the proposed optimized fitting methods are used to process
the same set of measurement data, respectively. The singular point detection methods
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are verified and the results, such as goodness of fit and model parameter uncertainty,
are compared.

4.1. Measurement and Fitting Experiment of Flange end Face

The flange end face measurement experiment is shown in Figure 8. In each measure-
ment experiment of the rotor with random position and pose, five fitting schemes are used
to fit the same coordinate data of the measurement points. The processes of different fitting
schemes are shown in Figure 9.
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Figure 9. Five fitting schemes in flange measurement experiments.

Taking one experiment as an example, the coordinates of the measuring points are
listed in Table 3. The initial estimated model parameter vector ainit is obtained after equal
weight fitting and the compensation step size ∆a calculated based on the weighting times
in different fitting schemes are listed in Table 4. All ∆ai ≤ 0.01 in the fourth iteration of
weight estimation. Thus, the iteration is terminated.

Table 3. Coordinates of the measuring points on the flange end face.

Point Ordinal i Coordinate (xMi, yMi, zMi) (mm) Point Ordinal i Coordinate (xMi, yMi, zMi) (mm)

1 (779.131, −28.201, 738.614) 15 (755.145, −27.781, 739.189)
2 (765.561, 36.669, 740.852) 16 (743.757, 26.638, 741.100)
3 (725.182, 89.201, 743.466) 17 (709.884, 70.707, 743.266)
4 (665.992, 118.993, 745.763) 18 (660.228, 95.703, 745.333)
5 (599.710, 120.149, 747.419) 19 (604.624, 96.671, 747.502)
6 (539.475, 92.431, 748.026) 20 (554.089, 73.419, 748.019)
7 (497.208, 41.339, 747.523) 21 (518.630, 30.555, 746.707)
8 (481.281, −23.014, 745.988) 22 (505.269, −23.431, 745.412)
9 (494.854, −87.879, 743.753) 23 (516.656, −77.848, 743.528)

10 (535.232, −140.412, 741.160) 24 (550.530, −121.921, 741.345)
11 (594.424, −170.208, 738.866) 25 (600.188, −146.915, 739.493)
12 (660.704, −171.360, 737.185) 26 (655.788, −147.884, 738.012)
13 (720.941, −143.646, 736.614) 27 (706.324, −124.632, 737.485)
14 (763.209, −92.552, 737.063) 28 (741.783, −81.770, 737.861)
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Table 4. Initial estimated values and iterative compensation values of the model parameters.

Iterations Initial Values of Model Parameters and
Iterative Compensation Values

Equal weight ainit = [758.7075, −0.0247, 0.0307]
First weighting ∆a = [−0.2475, 0.0003, −0.0006]

Second iteration reweighting ∆a = [−0.0677, 0.0001, −0.0001]
Third iteration reweighting ∆a = [−0.0203, 0.0000, 0.0000]

Fourth iteration reweighting ∆a = [0.0046, 0.0000, 0.0000]
Reweighting after removing singular values ∆a = [0.0001, 0.0000, 0.0000]

The two methods for detecting singular points are compared. In the standard residual
method, according to Chauvenet criterion, N = 28 makes к0 = 2.785 when the nominal

probability of singular value v0 = 0.15.
∧

σzM = 0.054 of the observed values after equal
weight fitting. The threshold for this detection is λ0 = 0.151. The residual |∆19| = 0.761

and |∆20| = 0.743 exceed λ0.
∧

σzM = 0.064 and λ0 = 0.179 after iterative reweighted fitting.
Under this condition, |∆19| = 0.894 and |∆20| = 0.880 are also detected as exceeding λ0.
Then, both methods determine that the measuring points i = 19, 20 are singular. In cluster
detection, when the equal weight fitting is used, the difference d[27] = 0.549 in absolute
deviations of measuring point i = 19 (sorting number n = 27) exceeds the local threshold
к2dloc[27] = 0.348 under coefficient к2 = 2. This means that the points i = 19, 20 with greater
absolute deviations show local anomalies. However, d[27] does not exceed the global
threshold к1dglob[27] = 1.669 under к1 = 17. Therefore, the local anomalies are considered
to be caused by the sparsity of the observed value distribution and are nonsingular points.
Similarly, singular points are not detected when using ordinary weighting. If the iterative
reweighting fitting is used, d[27] = 0.775 of i = 19 (n = 27) exceeds к1dglob[27] = 0.611 under
к1 = 17 and к2dloc[27] = 0.163 under к2 = 2. Therefore, this position is the boundary point
for distinguishing singular categories, i.e., measuring points i = 19, 20 are singular.

Due to iterative reweighting, the weight of potential singular points that deviate
significantly decreases. The fitting end face is closer to the measuring points with smaller
deviation. Thus, the singular points can be easier to detect. The numbers of singular points
of five measurement experiments with rotor random positions and poses are listed in
Table 5. Whether the measuring points have better weights has a smaller impact on the
standard residual method, but a greater impact on the clustering detection method. Thus,
it is necessary to perform iterative estimation of weights and model parameters before
detecting singular points. The two methods have different judgment criteria, but both have
achieved good results in detecting singular points and can achieve better fitting accuracy.
Thus, both are reasonable methods for detecting singular points and can be used in parallel
when the numerical control system has sufficient computing power.

Table 5. Number of singular points under the different pre-processing and detection methods.

Pre-Processing before Detection Detection Method
Experiment No.

1 2 3 4 5

Equal weight Residual method 2 1 0 2 0
Clustering detection 0 0 0 1 0

Iterative reweighting Residual method 2 1 1 2 0
Clustering detection 2 1 0 2 0

When the singular points are removed, the weight of the model parameter vector
a is re-evaluated after four iterations of reweighting. ∆ai ≤ 0.01 is achieved after one
compensation calculation. Thus, the iteration is terminated. The fitting accuracy results of
the experimental example are listed in Table 6. Because the standard residual method and
clustering detection method have removed the same singular points in this experimental
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example, the corresponding fitting accuracy results are equal. It can be seen that the
weighted fitting obtains a goodness of fit, gfit, that is less than 1.000 and closer to 1.000 than
the equal weight fitting. Thus, the fitting model has a better consistency with the measuring
point data. Simultaneously, the uncertainties of model parameters δa1, δa2 and δa3 decrease
to varying degrees and iterative reweighting further improves fitting accuracy results
compared with the ordinary weighting. The fitting after singular value detection further
reduces the uncertainty of the model parameters in a small range and all uncertainties δa
are less than 0.027. The fitting accuracy results of other experiments show similar patterns
to this experiment example. In summary, “iterative reweighting + singular point detection
(using residual method or cluster detection method) + iterative reweighting” is the optimal
fitting scheme for the annular end face of the rotor flange.

Table 6. Fitting accuracy results of different fitting schemes for a rotor flange.

Fitting Scheme Weighted
Variance χ2

Goodness of
Fit gfit

Uncertainty
δa1

Uncertainty
δa2

Uncertainty
δa3

Equal weight 1.355 0.054 0.289 4.45 × 10−4 4.45 × 10−4

Initial equal weight + ordinary
weighting 8.592 0.344 0.066 9.66 × 10−5 1.09 × 10−4

Initial equal weight + iterative
reweighting 23.244 0.930 0.028 4.35 × 10−5 4.56 × 10−5

Iterative reweighting + singular point
detection + reweighting 18.895 0.756 0.026 4.09 × 10−5 4.26 × 10−5

4.2. Measurement and Fitting Experiment of the Spigot Cylindrical Face

The experiment in which we measured the spigot cylindrical face is shown in Fig-
ure 10. Each spigot measurement experiment is performed after the corresponding flange
measurement experiment. The same coordinate data of each group of measuring points is
fitted through three fitting schemes, including “OLS fitting”, “TLS fitting”, and “Iterative
TLS fitting”.
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Figure 10. Measurement experiment for the rotor spigot: (a) measurement of spigot cylindrical face;
(b) measurement trajectory.

The coordinates of the measuring points are listed in Table 7. The measuring points
are projected towards the fitted flange end face zM = 758.4004 − 0.0243xM + 0.0300yM. The
iterative compensation ∆b using LS and TLS fitting methods are calculated by the initial
estimate model parameter vector binit, which are listed in Table 8. In the iterative TLS
fitting, the fourth iteration is terminated for all ∆bi ≤ 0.01.
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Table 7. Coordinates of measuring points on the spigot cylindrical face.

Point Ordinal i Coordinate (xMi, yMi, zMi)
(mm) Point Ordinal i Coordinate (xMi, yMi, zMi)

(mm)

1 (749.407, −27.570, 735.914) 19 (510.816, −23.424, 741.800)
2 (747.988, −6.840, 736.496) 20 (512.268, −44.161, 741.056)
3 (742.961, 13.347, 737.306) 21 (517.289, −64.343, 740.337)
4 (734.499, 32.334, 738.070) 22 (525.729, −83.333, 739.604)
5 (722.886, 49.592, 738.795) 23 (537.342, −100.582, 738.873)
6 (708.472, 64.551, 739.561) 24 (551.787, −115.522, 738.089)
7 (691.649, 76.746, 740.451) 25 (568.603, −127.775, 737.305)
8 (672.951, 85.874, 741.211) 26 (587.287, −136.891, 736.484)
9 (652.969, 91.608, 741.744) 27 (607.274, −142.623, 735.869)
10 (632.299, 93.777, 742.380) 28 (627.966, −144.795, 735.212)
11 (611.534, 92.340, 742.795) 29 (648.684, −143.330, 734.757)
12 (591.375, 87.282, 743.212) 30 (668.887, −138.297, 734.422)
13 (572.349, 78.825, 743.408) 31 (687.876, −129.845, 734.323)
14 (555.123, 67.192, 743.357) 32 (705.121, −118.199, 734.216)
15 (540.129, 52.775, 743.428) 33 (720.110, −103.756, 734.224)
16 (527.913, 35.938, 743.246) 34 (732.342, −86.929, 734.493)
17 (518.756, 17.244, 742.812) 35 (741.472, −68.230, 734.762)
18 (513.015, −2.741, 742.426) 36 (747.227, −48.238, 735.204)

Table 8. Initial estimated values and iterative compensation values of the model parameters.

Fitting Scheme Initial Values of Model Parameters and
Iterative Compensation Values

Initial average method estimation binit = [630.2059, −25.6046, 742.3183, 119.3481]
LS fitting ∆b= [−0.1181, 0.1368, 0.0069, −0.0001]

First TLS fitting ∆b = [−0.1057, 0.1260, 0.0063, 0.0000]
Second TLS fitting ∆b = [0.1119, −0.1387, −0.0069, −0.0001]
Third TLS fitting ∆b = [0.0880, −0.1004, −0.0051, 0.0000]

Fourth TLS fitting ∆b = [0.0005, 0.0090, 0.0002, −0.0001]

TLS is a nonlinear fitting, and the Jacobian matrix JLS contains the model parameter
vector b itself. The orders of magnitude of the diagonal element calculation result of
covariance matrix C are too large and distort model the parameter uncertainty δb. With
regard to the goodness of fit gfit, b is gathered to the same side of the model equation in
TLS method and the observation value defaults to 0. This causes the calculation results
of gfit to become too small to have significance in their evaluation. Therefore, the average
orthogonal distance from the mapping point to the fitting model dTLS = f TLS(b)/N is used
as the main accuracy evaluation indicator. The fitting accuracy results of different fitting
methods of this experiment example are listed in Table 9. TLS fitting achieves smaller
average orthogonal distance dTLS compared with the traditional LS fitting and dTLS can
be further reduced after iterative calculation of ∆b. The fitting accuracy results of other
experiments show similar patterns to this experiment example.

Table 9. Accuracy results of different fitting schemes for rotor spigot.

Fitting Scheme Average Orthogonal
Distance dTLS (mm) Variance χ2 Goodness of Fit gfit

LS fitting 0.116 0.622 0.019
Single TLS fitting 0.105 0.517 0.016

Iterative TLS fitting 0.089 0.366 0.011
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In summary, the iterative TLS fitting method is the optimal scheme for the rotor spigot.
The final fitting equation is calculated as Equation (42).{

0zM =
√

119.34792 −
(

0xM − 630.3006
)2 −

(
0yM + 25.7087

)2
+ 742.3128

0zM = 758.4004− 0.02430xM + 0.03000yM

(42)

Similarly, the TLS fitting method is used to obtain the model parameter vector of
the flange reference hole: bS = [769.8345, −28.0377, 738.8523, 10.1070]. The homogeneous
position and pose matrix of the low-pressure turbine shaft are shown as Equation (43).

T =


0.9996 0.0174 0.0243 630.3006
−0.0167 0.9994 −0.0300 −25.7087
−0.0248 0.0296 0.9993 742.3128

0 0 0 1

 (43)

5. Conclusions

This study focuses on the precise measurement of the position and the pose of the
flange and spigot structures of rotors. The optimized measuring point planning and fitting
methods are proposed and then verified through experiments. The following conclusions
are drawn:

(1) The equation of model parameter uncertainty δa1 that affects the end face normal
vector error angle and the equation of coordinate uncertainty δO of the spigot spatial
circle center are derived. The effects of the circumferential phase angle θi, distribution
range angle ϕ, total number of measuring points N, and multiple concentric measure-
ment paths on uncertainty are analyzed. The measuring point planning schemes for
flange annular end faces and spigot cylindrical faces of the LPT rotors of an aeroengine
are proposed.

(2) The LS minimization criterion and Gauss Newton iterative solution principle under
Levenberg Marquardt damping factors are clarified. Based on this principle, an
optimized iterative reweighting method with singular values removed is proposed for
fitting the flange annular end face, including processes such as residual-based weight
wi iterative estimation, standard residual singular value detection under Chauvenet
criterion, and clustering detection. Additionally, a mapping point TLS method with
practical geometric significance is proposed for fitting the circle center of the spigot.

(3) Measurement and fitting experiments on a low-pressure turbine shaft are performed.
Five fitting methods for the flange annular end face are compared. When the op-
timized iterative reweighting method is used with singular values removed, the
goodness of fit gfit = 0.756, model parameter uncertainty δa1 = 0.026, and δa2 and δa3
< 4.3 × 10−5. Simultaneously, three fitting methods for the spigot cylindrical face
are compared. When the mapping point iterative TLS fitting method is used, the
goodness of fit gfit = 0.011 and the average orthogonal distance dTLS = 0.089 mm. The
proposed fitting methods achieve better fitting accuracy results compared with the
other traditional methods.
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Appendix A

The estimated initial model parameters of the flange end face can be calculated
as follows:

a1,init =

(
J

∑
j=1

N/J

∑
k=1

zMjk − a2,init

J

∑
j=1

N/J

∑
k=1

xMjk − a3,init

J

∑
j=1

N/J

∑
k=1

yMjk

)
/N (A1)

a2,init = (S12S23 − S13S22)/
(

S2
12 − S11S22

)
(A2)

a3,init = (S12S13 − S11S23)/
(

S2
12 − S11S22

)
(A3)

S11 =
J

∑
j=1

N/J

∑
k=1

x2
Mjk −

(
J

∑
j=1

N/J

∑
k=1

xMjk

)2

/N (A4)

S12 =
J

∑
j=1

N/J

∑
k=1

(
xMjkyMjk

)
−

J

∑
j=1

N/J

∑
k=1

xMjk·
J

∑
j=1

N/J

∑
k=1

yMjk/N (A5)

S12 =
J

∑
j=1

N/J

∑
k=1

(
xMjkzMjk

)
−

J

∑
j=1

N/J

∑
k=1

xMjk·
J

∑
j=1

N/J

∑
k=1

zMjk/N (A6)

S22 =
J

∑
j=1

N/J

∑
k=1

y2
Mjk −

(
J

∑
j=1

N/J

∑
k=1

yMjk

)2

/N (A7)

S23 =
J

∑
j=1

N/J

∑
k=1

(
yMjkzMjk

)
−

J

∑
j=1

N/J

∑
k=1

yMjk·
J

∑
j=1

N/J

∑
k=1

zMjk/N (A8)

The estimated initial model parameters of the spigot cylindrical face can be calculated
as follows:

b1, init =
N

∑
i=1

xproj_Mi/N (A9)

b2, init =
N

∑
i=1

yproj_Mi/N (A10)

b3, init = a1 + a2b1, init + a3b2, init (A11)

b4, init =
N

∑
i=1

√(
xproj_Mi − b1, init

)2
+
(
yproj_Mi − b2, init

)2
+
(
a1 + a2xproj_Mi + a3yproj_Mi − b3, init

)2/N (A12)
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