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Abstract: The aging population has drastically increased in the past two decades, stimulating the
development of devices for healthcare and medical purposes. As one of the leading potential risks,
the injuries caused by accidental falls at home are hazardous to the health (and even lifespan) of
elderly people. In this paper, an improved YOLOv5s algorithm is proposed, aiming to improve the
efficiency and accuracy of lightweight fall detection via the following modifications that elevate its
accuracy and speed: first, a k-means++ clustering algorithm was applied to increase the accuracy
of the anchor boxes; the backbone network was replaced with a lightweight ShuffleNetV2 network
to embed simplified devices with limited computing ability; an SE attention mechanism module
was added to the last layer of the backbone to improve the feature extraction capability; the GIOU
loss function was replaced by a SIOU loss function to increase the accuracy of detection and the
training speed. The results of testing show that the mAP of the improved algorithm was improved by
3.5%, the model size was reduced by 75%, and the time consumed for computation was reduced by
79.4% compared with the conventional YOLOv5s. The algorithm proposed in this paper has higher
detection accuracy and detection speed. It is suitable for deployment in embedded devices with
limited performance and with lower cost.

Keywords: fall detection; k-means++; ShufflenetV2; SE attention mechanism; SIOU loss function

1. Introduction

The global population of individuals aged 65 and above is increasing rapidly [1].
Unattended falls can be a life-threatening risk to these individuals if they are unable to call
for help. According to WHO’s global report on fall prevention among seniors, unintentional
falls within the home environment rank as the second leading cause of accidental injuries
and subsequent fatalities [2], and around half of this demographic are not able to stand up
independently after they fall [3]. If the elderly lose consciousness due to the injury, they
may miss the chance of timely treatment and face a higher risk of death [4]. However, if the
elderly are equipped with fall detection devices, their physical conditions can be monitored
and responded to in real time, and they can be rescued swiftly if their lives and health are
threatened by a fatal injury caused by the accidental fall.

With the development of artificial intelligence, object detection algorithms are becom-
ing more and more important to our lives and have been applied in many fields, such
as security, healthcare, robotics [5], and autonomous driving [6–8]. Currently, there are
two categories of fall detection methods: non-computer-vision-based detection methods,
and computer-vision-based detection methods. The non-computer-vision-based methods
detect fall movement via various sensors. For example, the elderly can wear wearable
devices with built-in sensors (e.g., accelerometers) on the wrist, chest, or waist, and the fall

Machines 2023, 11, 818. https://doi.org/10.3390/machines11080818 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11080818
https://doi.org/10.3390/machines11080818
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0009-0009-7124-5789
https://orcid.org/0000-0002-2967-5859
https://doi.org/10.3390/machines11080818
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11080818?type=check_update&version=1


Machines 2023, 11, 818 2 of 17

movements can be detected by analyzing the human posture data (velocity, acceleration,
etc.) obtained by these sensors. In a study of Mthie et al. [9], fall detection was implemented
by analyzing the changes in acceleration signals of different movements, and falling and
standing up movements were effectively distinguished. Lu et al. [10] analyzed the pressure
signals to determine whether an accidental fall had occurred. However, these methods
have the drawback of relying on the performance of the sensors, which increases the cost
of the device. Furthermore, the installation/wearing of devices equipped with multiple
sensors could reduce the comfort of the elderly in their daily lives. Fall detection via
computer vision relies on figures and videos of the daily activities of elderly individuals
recorded by cameras. When the person in the camera is detected to fall or to have fallen, the
surveillance system can immediately send a distress message proactively so that they can be
rescued in time. In the detection process, image processing, pattern recognition, and other
related techniques are utilized to extract the information of human motion, and the human
behavior detection model is constructed to identify the fall movement. Compared with the
non-machine-vision methods, the machine vision methods have three main outstanding
advantages: (1) they are non-intrusive, so the elderly are free from being inconvenienced
by wearing the devices; (2) they are not affected by environmental noise, which prevents
missed detection or misjudgment caused by the interference of wearable sensors; (3) they
can monitor other abnormal emergencies at the same time.

With the advances in artificial intelligence, detection algorithms are becoming more
and more important to our lives and have been applied in many fields, such as finance,
medical treatment, robotics, and autonomous driving [6,11]. Currently, deep learning
algorithms have become the mainstream in computer-vision-based fall detection and
have been extensively investigated. Deep-learning-based fall detection algorithms can
be categorized as either two-stage algorithms or one-stage algorithms. The two-stage
detection algorithms, such as R-CNN [12], Fast R-CNN [13], and Faster R-CNN [14],
initially generate a series of candidate frames as samples and then classify the samples
via a convolutional neural network (CNN). Liu et al. [15] successfully used Faster R-CNN
for the detection of the elderly falling off furniture. The algorithm detected and tracked
human activity characteristics, measured the changes in these characteristics, and then
determined whether the individual fell by analyzing the locations of the individual and
the furniture in the Cartesian system. One obvious drawback of such algorithms is their
slow detection speed. The one-stage algorithms predict the localization and classification
of targets directly through the target detection network. The algorithms can implement
the end-to-end prediction of target frames and target classes at once, making the detection
faster and more efficient than that of the two-stage algorithms. The mainstream one-stage
algorithms include SSD [16] and the YOLO [17–19] series algorithms. The YOLO series
algorithms have the advantages of being fast and efficient, highly accurate, and easy to
deploy and use. Among them, YOLOv5 is one of the leading target detection algorithms
in the industry, with faster speed and higher accuracy than YOLOv3 and YOLOv4. Yin
et al. [20] achieved real-time accurate fall detection using the improved YOLOv5s model,
but the speed and volume of the algorithm were still deficient. This disadvantage led to an
increase in cost in their study; that is, they needed to upload the video data to the cloud to
judge whether a fall had taken place.

Although video monitoring systems are widely used in public places, this method
still has limits in the detection of indoor falling. This is because the existing fall algorithms
require a large net metering and bandwidth, whereas the slow speed of the home network
limits the fall detection efficiency, making the algorithm difficult to deploy in embedded
devices. In order to solve the problem of the efficiency and accuracy of detection, this paper
proposes a lightweight fall detection algorithm based on YOLOv5s. The algorithm has the
advantages of high detection accuracy, fast detection speed, less hardware requirement and
computational burden, and is feasible for deployment in embedded devices. The structure
of the paper is organized as follows: Section 2 illustrates the modelling of the lightweight
YOLOv5s algorithm;. Section 3 describes the training and validation of the algorithm;
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Section 4 is the results and relevant discussions on the mechanisms of high-accuracy and
high-efficiency detection achieved via the lightweight algorithm.

2. Methodology
2.1. The series of YOLOv5 Algorithms

Typically, there are four categories of YOLOv5 algorithm: YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x; and these models differ in two parameters: the depth and the
width of the network. The depth refers to the number of layers of the network, and the
width refers to the number of channels output by the network layer.

Increasing the width and depth of the model can improve the performance of detection;
however, this also increases the computation time, consumes more memory, and increases
the inference time. Among the algorithms, YOLOv5s has the smallest depth and width, and
has fewer channels per layer of the output mapping networks, which significantly reduces
the number of parameters and, eventually, computational tasks. The typical network
structure of the YOLOv5s algorithm consists of four different parts: input, backbone, neck,
and prediction (head), as shown in Figure 1.
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Figure 1. The network structure of YOLOv5s.

The inputs of the YOLOv5 are images, which are processed via Mosaic-4 for data
enhancement, including cropping, stitching, and scaling operations of the figures. This
increases the training efficiency by enriching the detection dataset and enlarging the small-
scale targets.

The Backbone part uses CSPDarknet53 as the feature extraction network. The network
consists of Conv structure and C3 structure, which are used to extract the feature maps of
the input images and provide the basis for the subsequent processing of the model. Then,
the extracted feature maps are directly input to the spatial pyramid pooling module (SPP)
and are transformed into feature vectors with fixed sizes.

The neck network adopts a PANet+FPN [21] structure to achieve multi-scale feature
fusion. FPN enhances the effect of target detection by fusing high underlying features,
especially for small-sized targets; PANet [22] is the modified FPN with an additional
bottom-up information flow path and the information delivery path is shortened, which
enhances the accuracy of the underlying localization information to the entire feature
extraction network. The structure of PANet is shown in Figure 2.
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The head predicts the features of the target. Anchor boxes are applied on the targeted
feature map to generate the final output vector with category probabilities and target boxes.

2.2. Improved YOLOv5s Network

Although YOLOv5s is relatively small in size among different versions of YOLOv5, it
is still a challenge to deploy the YOLOv5s model directly into embedded devices due to
the following potential issues: (1) real-time inference may be slow; (2) the model size may
exceed the available memory of the embedded device, resulting in the model not being
able to be loaded or run; (3) the device may overheat during inference, which affects the
inference performance and lifespan of the device. Thus, further lightweight processing of
the YOLOv5s algorithm is needed to reduce the computational task of the model.

To optimize the algorithm by avoiding the issues, the K-means++ algorithm is used
on the fall dataset to optimize the scale of predefined anchors, which improves the match-
ing degree between anchor points and real samples. The backbone is replaced by the
lightweight ShuffleNetV2 network to simplify the fall detection model. Then, the SE atten-
tion module is embedded at the end of the backbone to make up for the loss of accuracy
caused by model simplification. Finally, the SIOU loss function is introduced to improve
the detection accuracy of the model and accelerate the convergence speed. The structure of
the improved YOLOv5s network is shown in Figure 3.
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2.2.1. K-Means++ Algorithm

The anchor boxes in YOLOv5 are conventionally clustered using the K-means al-
gorithm. However, this algorithm randomly assigns initial cluster centers, which could
deviate from the optimal cluster centers, lead to local optimum solution, and impact the
efficacy of the clustering. Therefore, the K-means++ clustering approach is applied to
generate more proper anchor values, aiming to improve the training convergence without
additional parameters and computation. The mechanism of K-means++ can be expressed
as follows:



Machines 2023, 11, 818 5 of 17

Firstly, a sample is randomly selected from the sample data set as the initial cluster
center. The shortest distances between the samples and the selected clustering center are
then calculated, and the samples are assigned to the category corresponding to its closest
cluster center. The probability of each sample to be selected as the next cluster center is
calculated according to Equation (1).

p =
D(n)2

∑n∈N D(n)2 (1)

where D(n) represents the shortest distance from the sample to the cluster center. When a
new sample is assigned into the cluster, the clustering center is recalculated based on the
updated clustering samples. This process is repeated to select all the clusters to obtain the
K clustering center set.

Table 1 shows the default and optimized sizes of the priori anchor boxes. The K-
means++ algorithm selects the initial clustering centers using a smarter initialization,
which avoids the instability of random initialization and avoids falling into local optimal
solutions. Additionally, the K-means++ converges quickly after selecting the appropriate
cluster centers, which plays a role in the training convergence of the fall detection dataset.

Table 1. Prior anchor frame size before and after improvement.

Feature Map Scale Default Anchor Box Size Optimized Anchor Box Size

Small scale (P3, 80 × 80) (10,13) (16,30) (33,23) (23,58) (44,125) (113,278)
Mesoscale (P4, 40 × 40) (30,61) (62,45) (59,119) (191,468) (238,257) (356,204)
Large scale (P5, 20 × 20) (116,90) (156,198) (373,326) (367,518) (479,359) (561,539)

In Table 1, 80 × 80 represents the size of the shallow feature map (P3), which contains
more low-level information and is suitable for the detection of small-sized targets. In
contrast, 20 × 20 represents the size of the deep feature map (P5), which contains more
high-level information, such as contour, structure, and other information, and it is suitable
for the detection of large-sized targets. The other 40× 40 is the size of the mesoscale feature
map (P4), which uses an anchor size between the two mentioned above and is used for
detecting medium-sized targets. The second column indicates the preset anchor box size
for the three scales, and the two numbers in parentheses indicate the width and height of
the anchor box. The third column shows the optimized anchor box size.

2.2.2. Lightweight ShuffleNetV2 Backbone Network

The CSPDarknet53 feature extraction network is commonly used in YOLOv5s. Al-
though the features extraction is efficient, it is difficult to deploy the algorithm into the em-
bedded devices due to its heavy computational duties. In this study, the ShuffleNetv2 [23]
network was used in the improved algorithm to replace the original backbone of YOLOv5s,
which met the requirements of being lightweight and highly accurate. ShuffleNetV2 inher-
its the deep separable convolution [24] and channel shuffle from ShuffleNetV1 [25], and
can split the channel. The two basic units of ShuffleNetV2 are shown in Figure 4. It can be
seen that the channels of the units are divided into two branches because the channel splits
before concatenation (Figure 4a), which can effectively reduce the redundant features and
increase the network computational efficiency. Adding the channel shuffle module after
shortcut connections avoids the problem that the output of a channel only comes from a
small part of the original feature map, which realizes the exchange of feature information
between different branches and improves the detection accuracy. The application of channel
split and channel shuffle compresses the computation and memory usage of the model,
significantly simplifying the model.
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For S_Block1, the left branch constantly maps through shortcut connections to increase
the network structural depth, which reduces the fragmentation and accelerates the training
speed. The right branch performs convolution through multiple layers to ensure the equal
channel numbers of input and output. This minimizes the memory access to improve the
modelling speed.

S_Block2 is a downsampling module where the two branches are introduced directly
into the input without the splitting operation. It adjusts the number of channels using 1 × 1
convolution and downsamples of the depth convolution in steps of 2. The two branches
are concatenated together to halve the size of the feature map and double the number
of channels.

2.2.3. SE Attention Module

Inspired by the way that human eyes can naturally and efficiently find important
areas in complex scenes, the “attention mechanism” has been introduced into the field of
computer vision [26]. Due to its excellent performance, the attention mechanism is widely
used to solve various tasks in computer vision, such as image recognition, object detection,
semantic segmentation, etc. Currently, most studies focus on the extraction of spatial
features but lack attention to different channels. To enhance the network’s perception
of character motion features in videos, the relationship among the channels should be
considered.

The SE attention module [27] can automatically learn the importance of each channel
through training, and assign different weights to the spatial and channel dimensions of the
network. The more important the information about the channel, the larger the weighting
factor. This module directs the network to focus on important features and ignore irrelevant
features, which improves its ability to distinguish the features. The structure of the SE
attention module is shown in Figure 5.
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The SE attention module consists of three main operations: Squeeze, Excitation, and
Rescale. The Squeeze operation transforms the input feature map into a global description
vector through global averaging pooling. The fall usually involves changes in human
posture and the surrounding environment. With the Squeeze operation, the network is
able to capture the global features from inputs, which provides a more comprehensive
contextual understanding, and improves the accuracy on distinguishing fall movement
from other motions. While keeping the number of channels C unchanged, the size of the
input feature map is compressed from (H,W) to (1,1), and then global pooling is used to
encode the overall spatial feature of one channel into a global feature. The value indicating
the cth channel after the squeezing operation can be calculated via Equation (2).

zc = Fsq(uc) =
1

H ×W ∑H
i=1 ∑W

j=1 uc(i, j) (2)

where zc represents the one-dimensional vector of the cth feature. H represents the height
of the feature map and W represents the width of the feature map. uc(i, j) denotes the cth
global feature.

The Excitation operation emphasizes the attention of features related to the fall move-
ment by learning the relationships among feature map channels. The features of the
fall movement involve overall body movements and posture changes, which are often
transferred via specific channels. Through the excitation operation, the network is able to
self-adaptively learn the weights of each channel to highlight the focus on fall movement
features, which enhances the network’s response to the channels related to fall movement,
improving the accuracy and sensitivity of detection. The weights can be calculated via
Equation (3).

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W2δ(W1z)) (3)

where σ refers to the Sigmoid function, δ refers to the ReLU function, and g(z, W) refers to
the bottleneck structure consists of two fully connected layers, W1 ∈ R C

R×C and W2 ∈ RC× C
R .

The Rescale operation re-weights the feature map based on the learned excitation
vectors. The detection of fall movement is usually disturbed by the complex background
interference. By re-weighting the feature map, the rescale operation highlights important
features and suppresses interference with less important features, which improves the
localization and detection of fall movement and enhances the network’s ability to perceive
key actions of falling. The rescaling the weights of the channels can be calculated via
Equation (4).

∼
xc = Fscale(uc, sc) = scuc (4)

where
∼
xc indicates the output result. Fscale(uc, sc) denotes the product of the feature map uc

and channel weights sc.

2.2.4. Improvement of the Loss Function

In the YOLOv5s network, the loss function consists of three components: the rectangu-
lar frame loss, the classification loss, and the confidence loss. The rectangular box loss uses
GIOU loss [28], which adds the smallest rectangular box surrounded by the real and pre-
dicted boxes in the calculation of the loss based on IOU. This solves the problem of gradient
vanish when there is no overlapping area between the two boxes. Assuming that A repre-
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sents the ground truth, B represents the prediction frame, and C is the smallest bounding
box that can cover them, the GIOU loss can be calculated by the following equations:

IOU =
|A∩ B|
|A∪ B| (5)

GIOU = IOU− C− (A∪ B)
C

(6)

LGIOU = 1−GIOU (7)

However, GIOU could degenerate to IOU when the predicting box contains the
ground truth. Additionally, slower convergence and less-accurate regression are the major
drawback of the GIOU. Therefore, the improved algorithm uses SIOU loss [29] to replace
the original GIOU loss function in this study. SIOU loss considers the vector angle between
the desired regressions and the redefined penalty indicator. The SIOU loss function consists
of four losses: angular loss, distance loss, shape loss, and IOU loss.

For the angle loss, SIOU loss adds the angle perception between the center of the real
frame Bgt and the predicted frame B, which reduces the distance-related extra variables.
The angle loss can be calculated with the following equations:

d =

√(
bgt

x − bcx

)2
+
(

bgt
cy − bcy

)2
(8)

Bh = max
(

bgt
cy , bcy

)
−min

(
bgt

cy , bcy

)
(9)

x =
Bh
d

= sin(α) (10)

Λ = 1− 2× sin2(arcsin(x)− π

4
) (11)

where Λ is the final calculation result of the angular loss. x is the sine of the angle α between
the center points of the real and predicted frames in the figure; d is the distance between
them; and Bh is the relative height difference between the two points.

The distance loss of SIOU (∆) is different from that of GIOU due to the new addition
of the angle calculation, which is expressed as follows:

ρx = (
bgt

cx − bcx

cw
)

2

, ρy = (
bgt

cy − bcy

ch
), γ = 2−Λ (12)

∆ = ∑t=x,y

(
1− e−γρt

)
(13)

where ρx and ρy are the squared ratios of the relative distances of the centroids of the real
and predicted boxes in the X and Y directions to the width and height of the smallest outer
rectangles. e is the Euler constant.

The formula for calculating shape loss is shown in Equations (14) and (15).

Ww =

∣∣w− wgt
∣∣

max(w, wgt)
, Wh =

∣∣h− hgt
∣∣

max(h, hgt)
(14)

Ω = ∑t=w,h

(
1− e−wt)θ (15)

where (w, h) and
(
wgt, hgt) are the widths and heights of the prediction frame and the real

frame, respectively; θ is the attention coefficient in the shape loss calculation formula, and
the values were defined between 2 and 6 for different data sets.
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The final SIOU loss can be calculated via Equation (16).

LSIOU = 1− IOU +
∆ + Ω

2
(16)

The SIOU loss function effectively increases the convergence speed of the model and
improves the performance of the fall detection model.

3. Training and Testing of the Algorithm
3.1. Training Environment

In this study, the training of the lightweight algorithm was implemented on a com-
mercial desktop, and the specifications of the hardware are listed in Table 2. The major
parameters of the improved YOLOv5s in the training process were set as follows: the epoch
was 300, the batch size was 16, the learning rate was 0.01, the cosine annealing hyperparam-
eter was 0.15, the stochastic gradient descent optimizer SGD (Stochastic Gradient Descent)
was used, the learning rate momentum of the optimizer was 0.937, and the weight decay
coefficient was 0.0003.

Table 2. Training environment configuration.

Configuration Parameter

CPU AMD Ryzen7 5800H
GPU 6GB NVIDIA RTX 3600 Laptop

Accelerated environment CUDA 11.4 CUDNN 8.2.4
Development language Python 3.8

Operating system Windows 11

3.2. Testing Environment

In order to facilitate the deployment of deep learning models into the right edge
development hardware, NVIDIA has launched a number of miniature AI development
kits, such as Jetson AGX Orin, Jetson Orin NX, Jetson AGX Xavier series, Jetson Xavier
NX series, Jetson TX2 series, Jetson Nano, etc. Jetson Nano is cost-effective, and the power
consumption is lower among these development kits. It was used as the embedded device
for deployment in this study. Table 3 shows the configuration details of the Jetson Nano
used in the testing experiments.

Table 3. Testing environment configuration.

Configuration Parameter

CPU 4-core ARM® Cortex®-A57 MPCore
GPU NVIDIA Maxwell™ with 128 NVIDIA CUDA® core

Memory 4 GB 64 bit LPDDR4
CUDA Pytorch

Programming Language Python3.6

3.3. Dataset

The fall detection dataset, which was the set of images of falling-down figures, was
used to simulate falls in different circumstances. To enhance the robustness and generaliza-
tion ability of the training algorithm, and the fall detection performance under different
conditions, we used a data augmentation method on the dataset. As shown in Figure 6, the
data enhancement operations, such as darkening, brightening, flipping, Gaussian noise
addition, salt and pepper noise addition, and equalization, were used to simulate various
situations that may occur in the real world, including different indoor lighting levels and
different viewing angles. After data augmentation, the final dataset contained 9,834 images,
which were made up of 7,984 training images and 1,850 testing images (Table 4).
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Table 4. The training dataset: categories of movement and the amount of training/test data.

Sort Training Testing

Fall detected 3234 854
Walking 2401 506

Siting 2349 490
Total 7984 1850

The dataset contained three categories, “Fall detected”, “Walking”, and “Sitting”.
Figure 7 shows some images from this dataset. The sample distributions of the above three
categories are shown in Table 4.
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4. Results and Discussion
4.1. Evaluation of the Improved Yolov5s Algorithm

In this study, ablation experiments were conducted using the self-built fall detection
dataset to test the validity of the algorithm, and the performance of the algorithm was
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evaluated via the following parameters: the number of parameters (Param), floating-point
operations per second (FLOPs), and the size of the model weight files (Weights) were
used to evaluate whether a model is lightweight. Specifically, the Param is the sum of
the parameters in a model, which is an important indicator of memory usage and the
initialization time of the program. The computational volume, also known as FLOPs, is the
sum of the number of multiplications and additions when performing forward inference,
which reflects the requirement of the hardware due to the computational units and the size
of the model. The model weight file (Weights) is required for the final deployment. For
devices with limited space resources, it is necessary to keep the model weight file as small
as possible.

In addition, the detection effect was evaluated using Precision (P), Recall (R), mean
Average Precision (mAP), and forward pass time (FP). Precision is the proportion of true
positive examples in the prediction result; Recall is the proportion of all positive examples
that are correctly predicted; mAP is the average precision value for each class; FP time is
the time that is required for data to pass through the neural network, from input to output.
The four indicators can be quantified via the following equations:

P =
TP

TP + FP
(17)

R =
TP

TP + FN
(18)

AP =
∫ 1

0
PdR (19)

mAP =
∑N

i APi

N
(20)

where TP is the number of targets detected correctly by the model, FP is the number of
targets detected incorrectly by the model, and FN is the number of correct targets missed
by the model. Therefore, the FP time is the sum of preprocessing time, inference time, and
NMS time.

4.2. The results of Ablation Experiment

To validate the model, ablation experiments were conducted using the self-built fall
detection dataset in this study. The specific results of the ablation experiments are shown
in Table 5. The “

√
” indicates that the corresponding method was used to improve the

model, and the “-” denotes that the corresponding method was not applied in the fall
detection model.

Table 5. The results of the ablation experiments.

K-Means++ ShuffleNetV2 SE SIOU P/% R mAP/% Param/106 FLOPs/109 Weight/MB

- - - - 93.2 91.5 92 7.1 16.5 13.6√
- - - 94.2 91.9 93.2 7.1 16.5 13.6

-
√

- - 90.2 88.7 89.4 2.4 3.3 3.5
- -

√
- 93.8 91.7 93.1 7.2 16.6 13.7

- - -
√

94.3 92.1 93.3 7.1 16.5 13.6√ √ √ √
96.5 94.3 95.2 2.4 3.4 3.4

According to Table 5, compared with the conventional YOLOv5s model, the detection
accuracy of the improved algorithm is improved with the application of the K-means++
clustering algorithm which generated anchor frames. By replacing the original CSPDark-
net53 feature extraction network with the lightweight ShuffleNetV2 network, the model
lost some accuracy and the mAP decreased by 2.8%, compared with the original YOLOv5s
model. Table 5 also shows the results of different modified YOLOv5s models. It can be
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found that the value of Param of the model is reduced by 66.2% and the Weight is reduced
by 74%. This significantly reduces the complexity and computational task of the algorithm
and boosts the detection speed while maintaining the light weight. With the addition of
the SE attention module, the mAP is improved by 1.2% with a minimum influence on the
size and complexity of the model; this verifies the effectiveness of adding the SE attention
module, which trades a small amount of computation for a large improvement in detection
performance. By replacing the original GIOU loss function with the SIOU loss function,
the change in mAP is insignificant (1.4%), thus verifying the effectiveness of the SIOU
loss function. Furthermore, the improved model improves detection accuracy by 3.5%,
reduces weight by 75%, reduces number of parameters by 66.2%, and reduces computation
by 79.4%, compared with the YOLOv5s model. The detection speed was boosted, and the
weight was significantly reduced, while ensuring accuracy, which reflects the feasibility
of deploying the improved real-time fall detection algorithm in embedded devices with
limited computational resources.

4.3. Comparison with Different Algorithms

To further evaluate the performance of the improved algorithm, a variety of current
mainstream target detection algorithms, including Faster R-CNN, YOLOv3, YOLOv4, and
YOLOv5, were used as comparisons in an in-house fall detection dataset, and the results of
the various detection models are shown in Table 6.

Table 6. Comparison of the detection performance of several models on the test set.

Model mAP/% Param/106 FLOPs/109 Weight/MB

Faster R-CNN 79.6 28.4 304.1 108
YOLOv3 84.5 61.5 154.5 234
YOLOv4 90.4 64.3 132.6 244
YOLOv5 95.6 7.1 16.5 13.6

Improved-YOLOv5 96.5 2.4 3.4 3.4

Among the listed models, the faster R-CNN cannot meet the requirements of high
accuracy and high speed of fall detection because the algorithm requires two stages to com-
plete the inference task, making the calculation too complex to perform real-time reasoning
tasks. Although YOLOv3 and YOLOv4 algorithms have higher detecting accuracy, they are
not appropriate for the deployment in embedded devices with limited computing resources
due to the larger size of their models, number of parameters, and higher computation bur-
den. By comparing the performance of the YOLOv5 and the improved-YOLOv5m models,
it can be found that the overall performance of the improved model, Improved-YOLOv5, is
better; it outperforms the base model YOLOv5s, which is the base model of those listed
in Table 6.

The experimental results shown in Figure 8 demonstrate the parametric performance
curves of the model before and after improvement. The figure not only shows performance
curves such as accuracy, recall rate, and mAP, but also presents the loss curve of model
parameter optimization. The Box curve represents the boundary box loss, with a smaller
value indicating the target with higher accuracy. The Objectness curve represents the
inferred average loss of the target; the smaller the value, the more accurate the target
detection. The classification curve is the inferred average loss for classification. The
smaller the value, the more accurate the target classification. From the results before and
after optimization, it can be seen that the optimized model has better overall loss and
detection performance.
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Figure 9 shows the visualization of the above model tested on randomly selected
images in the test set. According to the results of the comparative experiments in Table 5
and the results of the visualization tests in Figure 9, the Improved-YOLOv5 model has
higher detection accuracy than other mainstream detection models. Additionally, according
to the three metrics of Param, FLOPs, and Weight, it can be seen that the Improved-
YOLOv5 model has lower complexity which reduced the computational tasks. This means
the improved-YOLOv5s algorithm meets the lightweight design requirements. The fall
detection can be conducted both quickly and accurately, and it is suitable for deployment
in embedded devices.
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4.4. Embedded Device Deployment Experiment

The experiments in this section are designed to evaluate the detecting speed of the
improved model on an embedded device in practice. Jetson Nano was used as the hardware
for deploying the model (Figure 10). Both YOLOv5s model and the improved YOLOv5s
model were deployed on the device, and their inference speed was evaluated using the FP
time. The shorter the forward pass time, the faster the model’s inference.

The main factors affecting FP time include: (1) the size of the input image. The
larger the size of the input image, the more pixel points needed to be processed, and the
more pre-propagation time is needed; (2) the complexity of the model and the number
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of parameters. Larger models usually require more computational resources and time;
(3) hardware devices. The speed of forward pass is affected by hardware devices. The use
of GPU can significantly improve the forward pass speed of the model. In general, the
better the performance of the GPU, the shorter the time required for forward pass; (4) batch
size, which is the number of images input at one time. Larger batch sizes usually result in
higher parallelism and increase the speed of forward propagation. However, the batch size
is also limited by the size of the available graphic memory.

Machines 2023, 11, x FOR PEER REVIEW 16 of 19 
 

 

performance of the GPU, the shorter the time required for forward pass; (4) batch size, 
which is the number of images input at one time. Larger batch sizes usually result in 
higher parallelism and increase the speed of forward propagation. However, the batch 
size is also limited by the size of the available graphic memory. 

In the experiments, the YOLOv5s model and the Improved-YOLOv5 model were de-
ployed into the same Jetson Nano, and the sizes of the testing images were 640 × 640, 512 
× 512, and 320 × 320. The comparative results of the detecting speeds of the two models 
are shown in Table 7. It can be seen that, when the size of the input image is 640 × 640, the 
FP time of the improved model is reduced by 22.3% compared to the YOLOv5s model. 
When the size of the input image is 512 × 512, the FP time of the improved model is re-
duced by 14.9% compared to the YOLOv5s model. When the size of the input image is 320 
× 320, the FP time of the improved model is reduced by 14.0% compared with the 
YOLOv5s model. With the reduction of the input image size, the FP time of both models 
decreases. It is also verified that the FP time is affected by the input image size. The exper-
imental results show that the model Improved-YOLOv5 has faster detection speed than 
YOLOv5s. The improved model achieves a well-balanced detection speed and accuracy. 

 
Figure 10. Jetson Nano embedded device. 

Table 7. Deployment experiment results. 

Image Size Model Preprocessing/ms Inference/ms NMS/ms FP Time/ms 

640 × 640 
YOLOv5s 1.6 192.3 12.1 206.0 

Improved-YOLOv5s 1.4 150.2 8.6 160.2 

512 × 512 YOLOv5s 1.2 131.2 10.2 142.6 
Improved-YOLOv5s 1.1 110.8 9.3 121.2 

320 × 320 YOLOv5s 0.7 65.9 7.5 74.1 
Improved-YOLOv5s 0.7 56.2 6.8 63.7 

5. Conclusions 
An effective lightweight fall detection algorithm based on YOLOv5s, which is feasi-

ble for the deployment in an embedded device, the Jetson Nano, is proposed in this study. 
The model used the K-means++ algorithm on a fall dataset, and optimized the scale of 
predefined anchors and improved the matching degree between anchor points and real 
samples. The backbone was replaced by the lightweight ShuffleNetV2 network to simplify 
the fall detection model. The SE attention module was embedded in the end of the back-
bone to make up for the loss of accuracy caused by model simplification. The SIOU loss 
function was applied to improve the detection accuracy of the model and to accelerate the 
convergence speed. The experiment results of testing showed that the mAP of the im-
proved algorithm was improved by 3.5%, the model size was reduced by 75%, and the 
time consumption of computation was reduced by 79.4% compared with the conventional 
YOLOv5s. The improved model has a higher accuracy and faster detection speed, and is 

Figure 10. Jetson Nano embedded device.

In the experiments, the YOLOv5s model and the Improved-YOLOv5 model were
deployed into the same Jetson Nano, and the sizes of the testing images were 640 × 640,
512 × 512, and 320× 320. The comparative results of the detecting speeds of the two models
are shown in Table 7. It can be seen that, when the size of the input image is 640 × 640,
the FP time of the improved model is reduced by 22.3% compared to the YOLOv5s model.
When the size of the input image is 512× 512, the FP time of the improved model is reduced
by 14.9% compared to the YOLOv5s model. When the size of the input image is 320 × 320,
the FP time of the improved model is reduced by 14.0% compared with the YOLOv5s
model. With the reduction of the input image size, the FP time of both models decreases.
It is also verified that the FP time is affected by the input image size. The experimental
results show that the model Improved-YOLOv5 has faster detection speed than YOLOv5s.
The improved model achieves a well-balanced detection speed and accuracy.

Table 7. Deployment experiment results.

Image Size Model Preprocessing/ms Inference/ms NMS/ms FP Time/ms

640 × 640
YOLOv5s 1.6 192.3 12.1 206.0

Improved-YOLOv5s 1.4 150.2 8.6 160.2

512 × 512
YOLOv5s 1.2 131.2 10.2 142.6

Improved-YOLOv5s 1.1 110.8 9.3 121.2

320 × 320
YOLOv5s 0.7 65.9 7.5 74.1

Improved-YOLOv5s 0.7 56.2 6.8 63.7

5. Conclusions

An effective lightweight fall detection algorithm based on YOLOv5s, which is feasible
for the deployment in an embedded device, the Jetson Nano, is proposed in this study.
The model used the K-means++ algorithm on a fall dataset, and optimized the scale
of predefined anchors and improved the matching degree between anchor points and
real samples. The backbone was replaced by the lightweight ShuffleNetV2 network to
simplify the fall detection model. The SE attention module was embedded in the end of the
backbone to make up for the loss of accuracy caused by model simplification. The SIOU
loss function was applied to improve the detection accuracy of the model and to accelerate
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the convergence speed. The experiment results of testing showed that the mAP of the
improved algorithm was improved by 3.5%, the model size was reduced by 75%, and the
time consumption of computation was reduced by 79.4% compared with the conventional
YOLOv5s. The improved model has a higher accuracy and faster detection speed, and is
appropriate for deployment in embedded devices such as Jetson Nano. It can detect the
activity status of the elderly at home in real time and can quickly detect a fall, so that the
fallen person can be helped as soon as possible.
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Abbreviations
Symbol Definition
D(n) The shortest distance from the sample to the cluster center
zc Global eigenvalues of channel c
H Height of the feature map
W Width of the feature map
uc(i, j) Eigenvalues of channel c at point (i,j)
δ ReLU function
σ Sigmoid function
W1 Weight matrix of the first fully connected layer
W2 Weight matrix of the second fully connected layer
s Weight vectors
Fsq() Squeeze function
Fex() Excitation function
Fscale() Recalibration function
Bgt Center of the real frame
B Predicted frame
Bh Relative height difference
Λ Angular loss
x Sine of the angle α between the center points of the real and predicted frames

ρx
Squared ratios of the relative distances of the centroids of the real and predicted
boxes on the X direction to the width and height of their smallest outer rectangles

ρy
Squared ratios of the relative distances of the centroids of the real and predicted
boxes on the Y direction to the width and height of their smallest outer rectangles

(w, h) Width and height of the prediction frame(
wgt, hgt) Width and height of the real frame

Ω Shape loss
θ Attention coefficient in the shape loss
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