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Abstract: Curvic couplings are used in applications demanding high positional accuracy and high
torque transmission; therefore, improving their design and enhancing their load-carrying capacity is
crucial. This study introduced the kinematic model Curvic3D, which was developed to produce the
accurate geometry of both members of a curvic coupling using a CAD system. The model enabled
the complete parametrization and customization of the coupling design using important geometric
parameters. The couplings produced using Curvic3D were then imported into a finite element analysis
model also developed as part of this study. A detailed analysis of the stresses developed on the teeth
of the concave and convex parts provided information about the behavior of the coupling under
different loading conditions. Finally, a series of geometric parameters, such as the number of teeth,
the number of half pitches, the root fillet radius, and gable angle were examined as to their influence
on the load-carrying capacity of the curvic coupling. The study concluded that all the examined
parameters have a significant effect on the tooth flank and root area stresses.

Keywords: curvic coupling; CAD; manufacturing modeling; simulation; FEA

1. Introduction
1.1. Curvic Coupling Applications

Curvic couplings are important components used in many industrial applications
and especially in joining two shafts or two sections of a shaft. They are well-suited to
applications demanding high precision, reliability, and high torque transmission capabil-
ities. Curvic couplings are commonly used in the following sectors: 1. The aerospace
industry, in jet engines, gas turbine power plants, and helicopter rotor systems. 2. Power
generation, in gas and steam turbines, enabling the transmission of torque from the turbine
to the generator. 3. Marine propulsion, in ship propulsion shafts and propellers. 4. Heavy
machinery, such as mining equipment, industrial compressors and large-scale machine
tools. 5. The defense industry, including military aircraft, armored vehicles and naval
vessels. 6. The oil and gas industry, in oil and gas drilling and production machinery.
They enable torque transmission in drilling rigs, pumps and compressors. 7. Robotics
and automation, where precise motion control is necessary. They also find applications in
robotic arms, CNC machines, and other automated equipment.

1.2. Curvic Coupling Geometry and Manufacturing

Curvic couplings are mechanical connections utilized for the connection of two rotating
components and transmitting torque between them. They are designed to provide rigid
connection, ensuring the accurate alignment of the shafts and high torque transmission.
Additionally, a curvic coupling is advantageous in that its positional accuracy in both axes
actually improves over time as opposed to degrading [1]. A curvic coupling is ring-shaped
and consists of two members: the convex and the concave part. In most cases, the two
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members are clamped together with bolted connections. Both components have curved
teeth placed circumferentially on the face of the part. This curvature is formed as a result of
the machining process kinematics and tool geometry. Curvic couplings are most commonly
machined with face-mill cutters or cup-type grinding wheels [2]. One member of the
coupling is machined with the outer edge of the cutter, resulting in a concave tooth form,
whereas the other member is machined with the inner edge of the cutter, forming a convex
tooth, as shown in Figure 1. The kinematics of the process is relatively simple and is
realized in the following steps. Firstly, the cutter engages with the left and right tooth flank
feeding into the coupling until the final depth of the coupling slot is reached. The cutter is
then retracted from the workpiece and remains at a certain distance until the workpiece
rotates one pitch around its axis. Finally, the first step is repeated and the cutter is fed into
the work gear at the next indexing position to machine the next slot of the coupling. This
manufacturing process is a single-indexing process; thus, the slots are cut two at a time,
and the manufacturing of a complete part of the curvic coupling is completed when all
slots of the part are formed.
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Figure 1. Curvic coupling manufacturing principle.

Figure 2 presents the basic geometry of the curvic coupling cutting tooth profile. The
main geometric parameters affecting the geometry of the coupling teeth include the tooth
addendum ha, tooth dedendum hd, normal pressure angle an, chamfer height hc, chamfer
angle ac, gable angle ag, and tooth root radius rt.
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2. State of the Art and Contribution of the Present Study

Research on curvic couplings and specifically curvic coupling manufacturing is rela-
tively limited to the industrial sector. In their article, Gleason Works [2] provided funda-
mental knowledge on curvic couplings’ design. The basic types of curvic couplings were
listed, and brief descriptions of the respective manufacturing processes were provided.
The authors also made useful suggestions for the geometry of fixed curvic couplings. The
most important contribution of their work was the description of the complete design
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procedure to determine the necessary geometry of a curvic coupling to transmit a certain
load. Richardson et al. [3] developed a three-dimensional and a two-dimensional finite
element model for the simulation of the contact behavior of curvic couplings. The study
aimed to compare the two simulation approaches and determine whether two-dimensional
modeling is sufficient to analyze the contact of curvic couplings. A study to validate the
three-dimensional finite element contact developed by Richardson et al. was presented
in [4]. The finite element method results were evaluated in comparison with the results
obtained from a photoelastic test. Rensis et al. [5] developed a three-dimensional axisym-
metric curvic contact model to predict the maximum stresses in three loading cases. In
his work on gas turbine engines, Boyce [1] described the role of couplings in power trans-
mission between two shafts of an engine. Among others, the author discussed the use of
curvic couplings in such setups. A three-dimensional finite element model was developed
by Jiang et al. [6] to analyze the contact stresses of the curvic coupling in a gas turbine
under a blade-off load condition. A methodology for the design of Hirth ring couplings
which are used in the machine tool industry was provided by Croccolo et al. [7]. First, the
standard formulas currently used in the industry were listed. Then, the forces generated
in Hirth couplings were calculated with a new analytical method taking into account the
role of friction. The proposed equations were also experimentally validated on a machine
tool rotary table. Zhang et al. [8] presented a modified analytical method to calculate the
equivalent stress on the double-row curvic coupling teeth, taking the deep beam bending
effect into account. A finite element model was also presented to analyze the contact stress
of the curvic couplings under different loads. The study concluded that the bolt preload
has the greatest impact on the contact stress, while the rotating speed of the shaft reduces
the contact stress. A new type of large curvic coupling gear consisting of a large gear and
a curvic coupling was presented by Jung et al. [9]. Finite element analysis simulations
were conducted to determine the maximum Von Mises stress developed on the model
under two different external loads. Nielson [10] studied the potential of using CMM as
a means of investigating the contact pattern of curvic couplings. In the field of the simu-
lation of manufacturing processes, a series of studies have shown the potential of using
CAD-based simulation models in complex manufacturing processes [11,12]. Li et al. [13]
proposed a curvic coupling design with a double circular arc root fillet to improve the
stress concentration on the tooth root. Huang et al. [14] proposed a method to calculate
the machine setting parameters for curvic coupling manufacturing on a spiral bevel gear
grinding machine. Pisani et al. [15] investigated the behavior of curvic couplings using
two- and three-dimensional boundary finite element models. The two approaches were
compared as to the required effort for the model generation, the results’ accuracy levels,
and the post-processing capability. A method for the calculation of the contact and bending
stiffness of a curvic coupling was developed by Yu et al. [16]. Kim et al. [17] presented a
novel approach in curvic coupling modeling combining a Greenwood–Williamson contact
model with a 3D solid element model. A study was also performed to investigate the effect
of several parameters on vibration and stress. Yang et al. [18] investigated the stiffness of
curvic couplings in order to determine the tensile–compressive stiffness of the coupling. In
their investigation, they considered the stiffness characteristics of the coupling with uni-
form and non-uniform load distribution. A novel mechanical model considering the curvic
coupling stiffness weakening in various loading conditions, such as shearing, compression,
bending, and torsion, was developed by Liu et al. [19].

The present study introduces the first model for the kinematic simulation of curvic
couplings’ manufacturing that accurately produces the convex and concave tooth geometry.
Moreover, finite element analysis is utilized for the investigation of the effects of several
geometric features of the two members on the load-carrying capacity of the coupling. A
complete platform for the design, analysis of in-use performance, and manufacturing
has been developed, allowing the end user to optimize the design and performance of
curvic couplings.
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3. CAD Model

Curvic3D is a CAD-based simulation model developed as part of this study. The
algorithm simulates the process kinematics so the curvic tooth flank solid geometries are
produced as output. This simulation approach aims to enable the accurate parametric
modeling of curvic couplings. Figure 3 shows a flowchart of the simulation process.
Modeling and simulation procedures are implemented in the following steps:

I: Calculation and modeling of the blank curvic coupling geometries.
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The calculation process begins with the modeling of the two blank geometries for the
convex and the concave component of the coupling. The blank geometries consist of two
simple rings, the inner diameter of which is the inner diameter of the curvic coupling, while
the outer diameter is the outer diameter of the curvic coupling. The area between the inner
and outer diameter forms the face width of the curvic coupling tooth. As stated in [2], the
inner diameter of the coupling should be equal to or greater than 75% of the outer diameter.

II: Tool profile and cutter geometry calculation.

Afterwards, the tooth profile geometry is calculated and drawn according to DIN 3972
standard [20]. The cutter radius and cutter center distance are calculated and considered in
the modeling process.

III: Simulation of the process kinematics. Tool trajectory creation.

In order to obtain the solid geometry of the cutting tool, the process kinematics must
be integrated with the tooth profile and cutter geometry. The kinematics of the process
consists of a rotation of the cutter around its axis and feed of the cutter towards the
workpiece. Parameters such as the cutter radius and cutter center distance are taken into
consideration, and the solid geometry of the cutting tool is formed, as shown in the upper
right part of Figure 3, as a result of the combination of process kinematics, tooth profile,
and cutter geometry.
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IV: Calculation of the convex and concave components’ geometry.

The final step of the simulation includes the interaction of the cutting tool and the
two workpieces. Two subassemblies are formed; the first one consists of the cutting tool
and the concave component, and the second one includes the cutting tool and the convex
component. Using Boolean operations, such as Boolean subtraction, the simulated curvic
tooth surface can be obtained. The algorithm is configured so that the final finishing pass
of the machining operation is implemented; therefore, the cutting tool is placed directly at
the final depth of the curvic slot. Nonetheless, the algorithm supports rough machining
operation with the tool performing multiple passes until the final slot depth. This way, the
undeformed chip geometries can also be obtained, enabling the calculation and analysis of
the cutting forces.

4. Finite Element Analysis and Simulation Model

Aiming to achieve the analysis of the contact behavior and developed stresses of curvic
couplings with variable geometries under various loading conditions, a finite element sim-
ulation model was developed. The solid models of the couplings were obtained using the
CAD model Curvic3D. Three-dimensional modeling was preferred over two-dimensional
as the complex geometry of a curvic coupling can be represented more accurately. The
model aims to simulate the contact conditions and contact stresses for a curvic coupling
in high-rotating speed applications such as high-pressure turbine shafts. The primary
loads that couplings withstand in such applications are considered in the model, and all
necessary assumptions are made, as described in the following paragraphs.

4.1. Solid Models and Materials

Figure 4 shows two indicative solid models of the two members of a curvic coupling
used in the simulation. The assembled coupling is obtained from Curvic3D, and it can be
used directly as is. A specific material has to be assigned to both members of the coupling.
In the present investigation, AISI 4340 annealed steel was assigned to the curvic coupling
throughout the study.
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AISI 4340 is a nickel–chromium–molybdenum alloy steel, known for its toughness and
strength, and it is used, among other applications, in gear manufacturing. Table 1 shows
the specific material properties.
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Table 1. Material properties of AISI 4340 annealed steel.

Property Value Units

Density 7850 kg/m3

Elastic modulus 205 GPa
Yield strength 470 MPa
Specific heat 475 J/Kg·K

4.2. Global Mesh and Local Mesh Controls

The selected element type for both global and local mesh is the ten-node tetrahedral
solid element. Two regions of mesh were assigned to both parts. The local mesh control
with a 0.4 mm element size was applied to the coupling tooth surface to provide more
accurate results since this was the region of interest. The global mesh applied to the rest of
the solid bodies of both members in order to control the computational time had a 1.5 mm
element size. Figure 5 shows the two types of mesh applied to each member.
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4.3. Boundary Conditions

Figure 6 presents the final boundary conditions of the model. The displacements and
loads were defined based on the literature [8,9] as well as a series of simulations.
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4.3.1. Loads

Centrifugal force: The centrifugal force applied on the curvic coupling results from
the rotating speed of the shaft, which equals 10,000 rpm.

Torque: Equation (1) gives the separating force Fs acting on the curvic coupling as a
result of the torque. Equation (2) provides the minimum clamping force Fc to counterbal-
ance the action of separating force Fs. Equations (3) and (4) provide the stresses σt and σc
developed due to the act of clamping force and torque. The allowable torque is calculated
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according to Equation (5), which gives the equivalent stress on the coupling teeth caused
when the coupling is subjected to the bolt preload (clamping force) Fc and the torque T.

Fs =
T
A

× tan an (1)

Fc = 1.5 × T
A

× tan an (2)

σt =
T

A × Z × w × h0
(3)

σc =
Fc

2 × Z × w × h0 × tan an
(4)

σeq =
Fc

2 × Z × w × h0 × tan an
+

T
A × Z × w × h0

(5)

According to Equation (5), setting the maximum allowable stress on the teeth at
σa = σy/sf = 156.7 MPa with the safety factor at sf = 3, the maximum allowable torque value
is calculated to be T = 4642 N·m. This torque is applied to the model for all the simulations
performed in this study.

Clamping force: To define the displacement boundary conditions of the convex gear, a
series of simulations was conducted to determine the necessary preload force to compensate
for all the separating forces acting on the curvic coupling. The minimum preload clamping
force to prevent the separation of the two members should exceed the sum of all the
separating forces acting on the coupling. According to Gleason Works [2], the clamping
force should be at least 1.5–2 times the sum of all separating forces acting on the curvic
coupling teeth. In this study, several simulations were performed to determine the necessary
clamping force so the curvic coupling was not disassembled. For a given centrifugal
force resulting from the rotational speed N = 10,000 rpm and torque T = 4642 N·m, the
minimum clamping force was defined as Fc = 42 kN. Applying this clamping force to the
coupling, the distance between the two members during simulation was not increased by
more than 15 µm.

4.3.2. Displacements

As shown in Figure 6, the axial and angular displacements at the back face of the
concave member are constrained to 0 (fixed face), a necessary assumption made to avoid
the excessive displacement of the model and prevent the simulation from failing. In
operating conditions, the displacements’ constraints would be shared between the convex
and the concave part. The displacements of the convex member are only controlled via the
clamping force and are not subject to any other constraints. Furthermore, an investigation
to determine the suitable displacement boundary conditions was carried out, examining
the behavior of the model under different displacements’ constraints. The above described
displacements were selected because they better represent the actual curvic coupling
operation and have also been used by other researchers in the literature [8,9].

4.4. Interaction Conditions

The no-penetration contact condition was applied globally to the model. Under this
contact condition, the two parts/models of the curvic assembly behave as two separate
solid bodies that interact but cannot penetrate each other. The friction coefficient between
the two parts was set to µ = 0.15.

4.5. Results

An analysis of the coupling behavior under different loading conditions was carried
out prior to determining the final loading state that would be applied on the curvic coupling.
Two loading cases were examined: 1. assembly, where only the clamping force is applied
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to the model, and 2. operation, where preload force, centrifugal force, and torque are
loading the coupling as in normal operation. The results showed that loading the curvic
coupling with only the clamping force was the most demanding case with respect to the
developed stresses as the maximum Von Mises stress reached σv,max = 469 MPa, which is
practically the yield strength of the material. In the second loading case of operation where
the coupling was subjected to all three loads, the maximum Von Mises stress did not exceed
σv,max = 357 MPa.

A baseline finite element simulation was performed using the boundary conditions
presented above and was used as a reference for the subsequent parameters investigation.
The solid model of the curvic coupling was obtained from Curvic3D, and the geometric
features of the coupling are shown in Figure 7. As can be seen in the figure, the stresses
are distributed evenly on the loaded tooth surface of both concave and convex members.
The maximum Von Mises stress occurred along the tooth root of the convex gear. While the
opposite tooth surface was not loaded, the opposite root area carried some load but the
stress remained at low levels.
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Since the maximum Von Mises stress of σv,max = 357 MPa is lower than the yield
strength of the material (σy = 470 MPa) and the minimum factor of safety is FOS = 1.316, the
results were reasonable and could be used as a reference for the subsequent investigation.
Figure 8 presents the factor of safety plot for the convex member of the coupling. As
can be observed, the stresses developed for the most part of the curvic correspond to an
FOS = 3, except for a narrow region at the root of the loaded flank of the tooth where the
safety factor drops at lower values. These results verify the calculation procedure using
Equations (1)–(5), considering that these equations are only used as an approximation of
the actual loading conditions; hence, many assumptions and simplifications are made.
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Figure 9 shows the displacement plot of the curvic coupling. As mentioned above,
the displacements of the back face of the concave part are constrained to 0, and this is also
noticeable in the figure. The maximum displacements are observed on the convex member
and stay below 12 µm due to the adjustment at the clamping load, which was determined
in order to counterbalance the separating forces acting on the coupling.
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5. Investigation of the Effect of Geometric Parameters on the Contact Stresses

Following the development of the FEA simulation model and the initial assessment of
the simulation results, a series of simulations was carried out to investigate the effect of
several coupling geometric parameters on the developed Von Mises stresses. For each simu-
lation case, a separate curvic coupling was modeled using Curvic3D and was subsequently
embedded in the finite element model.

5.1. Effect of the Number of Teeth

For the examination of the effect of the number of teeth, three simulation cases with
varying numbers of teeth—Z = 21, 24 and 27—showed that the maximum developed Von
Mises stress decreases from σv,max = 394 MPa to σv,max = 330 MPa as the number of teeth
increases. Figure 10 shows the values of maximum Von Mises stress obtained from the
three simulation cases. All of the maximum stress values were developed at the tooth root
of the convex gear. The dramatic effect of the number of teeth on the Von Mises stress is
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explained by the fact that as the number of teeth increases, the load is distributed amongst
more teeth, leading to a decrease in overall stresses.
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5.2. Effect of the Number of Half Pitches

The number of half pitches included between the two tooth flanks that the cutter
machines is also an important parameter affecting the geometry and therefore the strength
of the curvic couplings. As shown in Figure 11, the increase in half pitches decreases the
maximum developed Von Mises stress from σv,max = 363 MPa to σv,max = 319 MPa. This
can be explained due to the fact that the maximum stress in all simulation cases develops
at the convex gear tooth root, the tooth thickness of which increases with the increase in
half pitches.
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5.3. Effect of Tooth Root Radius

Analyzing the effect of tooth root radius on the development of Von Mises stresses,
three cases were examined in which the tooth radius was rt = 0.235, 0.435, and 0.635 mm. In
all three cases, the maximum stress occurred on the root of the convex member; therefore,
the change in root radius had a great impact on the maximum Von Mises stress which
dropped from σv,max = 388 MPa to σv,max = 303 MPa, as shown in Figure 12. The increase
in the root radius enhanced the strength of the coupling; thereby, the maximum stress
decreased dramatically.
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5.4. Effect of the Gable Angle

A useful parameter that many curvic coupling manufacturers take into consideration
is the gable angle. A total of seven simulations were executed to determine the effect of
gable angle on the development of Von Mises stress on the coupling. The results revealed an
interesting relation between the increase in gable angle and maximum Von Mises equivalent
stress. As can be seen in Figure 13, the maximum Von Mises stress remains constant at
about 360 MPa from ag = 0◦ until the gable angle reaches 1.5◦ and then slightly increases to
reach σv,max = 376 MPa at ag = 3.5◦. At ag = 4◦, the maximum Von Mises stress value drops
abruptly close to σv,max = 305 MPa and remains constant for the rest of the simulation cases.
Hence, it can be concluded that, for this particular curvic coupling geometry, values of the
gable angle between ag = 4◦ and 5◦ are optimum as they would result in reduced stresses.
Values of the gable angle above 5◦ were not examined since the produced geometry would
not lead to an allowable assembly.
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6. Conclusions

The CAD model Curvic3D for the parametric three-dimensional modeling of curvic
couplings was developed as part of this study. The model simulates the manufacturing
process kinematics achieving the automatic modeling of the solid geometries of both convex
and concave members of the coupling, using custom-defined parameters. A finite element
analysis was also carried out to study the stresses developed on the tooth contact surface
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during operation at high rotating speed. Several case studies were simulated to investigate
the influence of different geometric parameters on the developed Von Mises stress. The
solid geometries of the curvic couplings were obtained from Curvic3D and examined with
FEA for their load-carrying capacity. The number of teeth, the number of half pitches, the
tooth root radius, and the gable angle were analyzed as to their effect on the load-carrying
capacity of the curvic coupling. All of these parameters were found to have a great impact
on the strength of the coupling, and the results were discussed in detail. The tooth root
radius had the strongest impact on the developed stresses, followed by the number of teeth
and the gable angle. All of the parameters showed a standard trend of the maximum Von
Mises stress except for the gable angle. More specifically, the maximum stress decreased
with the increase in the number of teeth, the increase in the root radius, and the increase in
half pitches. On the contrary, maximum stress slightly increased with the increase in the
gable angle before dropping abruptly above ag = 3.5◦.
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Nomenclature

Di Inner curvic diameter mm
Do Outer curvic diameter mm
Z Number of teeth -
hp Number of half pitches -
w Face width mm
Rw Grinding wheel radius mm
ha Tooth addendum mm
hd Tooth dedendum mm
an Normal pressure angle ◦

ac Chafmer angle ◦

hc Chafmer height mm
ag Gable angle ◦

rt Tooth root radius mm
Fs Separating force N
T Torque N·mm
A Mean radius of the coupling mm
Fc Clamping force N
σt Stress due to torque MPa
h0 Contact height mm
σc Stress due to clamping force MPa
σeq Equivalent stress MPa
σv,max Maximum Von Mises stress MPa
σy Yield strength MPa
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