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Abstract: In this paper, a time-varying formation tracking protocol for second-order multi-sgent
systems (MASs) is presented. The time-varying formation considers translation, rotation, and scaling
of the geometric pattern that defines the formation. The control law is simple yet effective, and it is
composed of a trajectory tracking control and a consensus control that considers the position and
velocity feedback of the connected agents in the MAS. The closed-loop system is asymptotically
stable, and this was proved using the Gershgoring’s disk theorem. The performance of the protocol
was extensively tested in experiments using a dynamic extension of the differential-drive robot
model. The protocol was tested for different communication topologies and also dealt with switching
topologies. The proposed protocol presented good performance regaring both time-varying formation
and topology changes. Moreover, a comparison with an existing controller and with only trajectory
tracking control has been provided, thus showing that the proposed protocol preserves the formation
for all the tested topologies in a better way.

Keywords: second-order systems; consensus; multi-agent system; time-varying formation

1. Introduction

Cooperative control problems for multi-agent systems (MASs) have been studied in the
last two decades. The success of cooperative control strategies relies on the information that
the members of a MAS share among them in order to achieve a global task. The engaging
control problem is to design suitable algorithms so that a group of agents converge to
a desired position that also implies a formation, an agreement, or even a time-varying
formation. The scientific community interest in this subject is that it can be applied in
diverse areas, such as cooperative surveillance [1], spacecraft formation [2], the formation
of unmanned aerial vehicles (UAVs), and autonomous vehicle coordination, among others.
Some of the classical control strategies that have been proposed for formation control
include leader–follower, virtual structure, and behavioral-based control [3–8].

The backbone of many distributed formation control schemes has been the consensus
theory; over the past ten years, several advances have been made in the consensus control
of MASs, and various results were derived [9–14]. Several consensus protocols are based on
first-order dynamics; see, for instance, [15–22]. However, the motion equations of several
vehicles are often modeled as second-order dynamics. For instance, the model of a wheeled
mobile robot can be taken to double integrator dynamics for each position coordinate using
the feedback linearization technique.

In [23], consensus protocols were stretched to deal with the formation control problems
of second-order MASs using a leader–follower and virtual structure approach. More results
on consensus based formation control have been reported in [24–26]. In [27], a second-
order algorithm under direct information communication was proposed. Several practical
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applications involve source seeking and target enclosing, which comprise forming a desired
time-varying formation in MASs such as those composed by UAVs [28]. In [29], a consensus
and H∞-based control for heterogeneous multi-agent systems composed of first-order and
second-order integrator agents was proposed, and some numerical simulation results were
presented to test this approach.

In the state of the art, it is more common to find time-invariant formation tracking
controllers and consensus tracking controllers for double integrator MASs with fixed or
switching topologies [30–33]. However, these results are not directly suitable to solve
time-varying formation tracking problems, such as, for instance, where the formation
must be scaled or rotated. To this end, some results can be found in [28] where a time-
varying formation tracking controller for second-order MASs with switching topologies
was proposed; a leader–follower approach was applied for UAVs, and the design procedure
relied on solving a Riccati equation. In the work of [34], a formation control was designed
for heterogenous MASs, which was based on a distributed observer to estimate the leader’s
state. In [35], a distributed model predictive control consensus strategy was proposed to
develop a time-varying formation.

In the work of [36], a collision avoidance controller for time-varying formation tracking
was developed, and the authors proved their strategy in an extended differential-drive
robot model by using simulations. The authors designed a non-linear controller that uses
a leader agent strategy based on a consensus-weighted control and a non-linear tracking
control to follow a time-varying trajectory. In [37], a distributed tracking control with
obstacle avoidance for unicycle-type robots was proposed; the authors merged hierarchical
task-based control and consensus control to follow a time-varying reference. From the
authors knowledge, there are few proposed methods to deal with time-varying formation
tracking, and these are limited in how they deal with simple trajectories, which only are
able to scale the formation.

In this work, a time-varying formation protocol for second order MASs is presented,
which is based on a trajectory tracking control and a consensus approach. The time-varying
formation considers the translation and rotation of the MAS, as well as the formation
expansion and contraction. An extensive experimental evaluation is presented using a
group of differential-drive robots for different communication topologies. The closed-
loop system was asymptotically stable, and this was proved using the Gershgoring’s disk
theorem. A dynamic extension of the model of the differential-drive robots was used to
control the acceleration, which was integrated to send velocity commands to the robots.
The control law is simple yet effective; the combination of trajectory tracking control
and consensus control results in an improved accuracy of the formation tracking. The
implementation of the control law considers the position and velocity of neighboring robots
in the MAS, which are obtained from a computer vision system. The proposed protocol also
dealt with switching topologies, i.e., the convergence of the tracking error was achieved
despite changes in the communication topology. The experimental evaluation included a
comparison with an existing controller and discusses the benefits of using the consensus
part of the control law in contrast to only using the tracking control.

The outline of the paper is as follows: in Section 2, the problem statement and the
proposed control scheme are presented. The error dynamics are defined in Sections 3 and 4,
and the stability analysis is developed. In Section 5, an extensive experimental evaluation
is provided, and the paper closes with some conclusions in Section 6.

2. Problem Formulation and Proposed Control Scheme

A second-order multi-agent system with n agents can be described by the following
double integrator model of the ith agent:

ξ̇i = ζi,

ζ̇i = ui,
(1)
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where ξi represents the position of the ith agent in an m-dimensional space, i.e., ξi ∈ Rm;
therefore, the velocity of the ith agent is ζi ∈ Rm, and the control input ui ∈ Rm corresponds
to the acceleration vector of each agent.

Several dynamic models of robotic systems can be simplified to the form of the model
(1) by means of a linealization process, such as manipulators [38] and quadrotors [39].
We are particularly interested in formation control of differential-drive robots (DDRs).
The kinematic model of a DDR provides first-order relationships for the design of velocity
controllers; however, the dynamic extension [40] of the kinematic model allows the designer
to treat the system as second order and propose acceleration controllers. In this case, the
proposed controller for system (1) will provide the desired accelerations for the dynamic
extension. In practice, most of the experimental platforms receive velocity commands,
and a low-level controller executes those commands. Thus, the design of the acceleration
controllers requires the integration in time of the computed control signals, which has the
advantage of providing some smoothness to the commands that are sent to the robot. This
aspect is specially useful to diminish discontinuities when formation control is addressed
for switching topologies.

Problem 1. We aim to design n acceleration control inputs ui for each agent modeled as in (1) to
track the desired values (ξiD(t), ζiD(t), and ζ̇iD(t)) that define a trajectory in accordance with a
formation between agents, such that the following is accomplished:

• limt→∞[ξi(t)− ξiD(t), ζi(t)− ζiD(t)]T = 0 for i ∈ {1, . . . , n},
• limt→∞(ξi(t)− ξ j(t)) = αi(t) for i, j ∈ {1, . . . , n}, i 6= j,

where αi(t) is a time-varying inter-agent position between agent i and j that can be computed from
the reference trajectory ξiD(t) of each agent.

Notice that αi(t) allows us to define a time-varying formation that can be scaled and/or rotated
according to the desired trajectory ξiD(t). Thus, the challenge in this problem is to accurately
track a formation that can be subject to the scaling and rotation of the geometric pattern defining
the formation.

To solve this problem, we propose the following control law that consists of two
components:

ui = uiT + uiC, (2)

where uiT is a trajectory tracking controller, and uiC is a consensus-based controller. Consid-
ering the desired trajectories ξiD, ζiD, and ζ̇iD, the tracking controller is defined as follows:

uiT = ζ̇iD − β(ζi − ζiD)− α(ξi − ξiD), (3)

with α > 0 and β > 0 being proportional gains for the position and velocity errors,
respectively.

The consensus controller uiC takes into account the connections between the agents.
The elements aij of the adjacency matrix A describe the connectivity topology. Considering
the desired trajectoryies ξiD and ζiD, the consensus control law is defined as follows:

uiC = −
n

∑
j=1

aij
(
γ
(
(ξi − ξiD)− (ξ j − ξ jD)

)
+ δ
(
(ζi − ζiD)− (ζ j − ζ jD)

))
. (4)

γ and δ are non-negative control gains for the position and velocity consensus, respectively.
The control law in (2) aims to maintain a formation with multiple robots while each one
follows an individual path; therefore, the position and velocity errors of the current agents
(ξi − ξiD) and (ζi − ζiD), as well as the ones of its neighbors (ξ j − ξ jD) and (ζ j − ζ jD), must
be taken into account.

In the following section, we aim to express the control law in terms of the error of the
whole multi-agent system to obtain the conditions that the controller gains (α, β, γ, and δ)
must satisfy to guarantee closed-loop stability.
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3. Error Dynamics

Since the controller in (2) is dependent on the agent’s position, velocity, and accelera-
tion, the first- and second-time derivatives of the error must be obtained. Let the position
error of the ith agent be defined as follows:

ei = ξi − ξiD. (5)

The time derivative of (5) gives the velocity error as follows:

ėi = ζi − ζiD. (6)

The time derivative of (6) leads to the acceleration error:

ëi = ζ̇i − ζ̇iD. (7)

The substitution of (5) and (6) into (2) leads to the following:

ui = ζ̇iD − βėi − αei −
n

∑
j=1

aij
(
γ
(
ei − ej

)
+ δ
(
ėi − ėj

))
. (8)

Given that the control input ui is directly assigned to each agent’s acceleration ζ̇i by
the agent’s model (1) and by using (7), the second-order dynamics of the error are defined
by the following:

ëi = −βėi − αei −
n

∑
j=1

aij
(
γ
(
ei − ej

)
+ δ
(
ėi − ėj

))
. (9)

For m-dimensional agents, consider the m-dimensional vectors ei = [ei1 , ei2 , . . . , eim ]
T ,

ėi = [ėi1 , ėi2 , . . . , ėim ]
T , and ëi = [ëi1 , ëi2 , . . . , ëim ]

T . A generalization of the Equation (9) for a
number of n agents of m dimension is defined by the following:

ė1
ė2
...

ėn
ë1
ë2
...

ën


=

[[
0 In

−αIn − γL −βIn − δL

]
⊗ Im

]


e1
e2
...

en
ė1
ė2
...

ėn


. (10)

Let us define e = [eT
1 , eT

2 , . . . , eT
n ]

T , ė = [ėT
1 , ėT

2 , . . . , ėT
n ]

T , and ë = [ëT
1 , ëT

2 , . . . , ëT
n ]

T .
According to (9), the second-order dynamics of the whole MAS can be rewritten as follows:[

ė
ë

]
=

[[
0 In

−αIn − γL −βIn − δL

]
⊗ Im

]
︸ ︷︷ ︸

E

[
e
ė

]
, (11)

where L is the Laplacian matrix.
The matrix in (11) is the closed-loop error dynamics matrix E for the controller in (2).
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4. Stability Analysis

To conduct a stability analysis, the interest is to verify the eigenvalues of the closed-
loop error dynamics matrix E in (10); therefore,

det(E− λI2nm) =

∣∣∣∣([ 0 In
−αIn − γL −βIn − δL

]
⊗ Im

)
− λI2nm

∣∣∣∣. (12)

Inserting the λ terms into the Kronecker product in (12) yields

det(E− λI2nm) =

∣∣∣∣[ 0 In
−αIn − γL −βIn − δL

]
− λI2n ⊗ Im

∣∣∣∣. (13)

Including the λ terms into the error dynamics matrix in (13) yields

det(E− λI2nm) =

∣∣∣∣[ −λIn In
−αIn − γL −βIn − δL− λIn

]
⊗ Im

∣∣∣∣. (14)

Using the property of the Kronecker product det(A⊗ I) = det(A)m yields the following:

det(E− λI2nm) =

∣∣∣∣ −λIn In
−αIn − γL −βIn − δL− λIn

∣∣∣∣m. (15)

Developing (15) as the determinant of a 2-by-2 block matrix yields

det(E− λI2nm) = det((−λIn)(−βIn − δL− λIn)− (In)(−αIn − γL))m. (16)

Expression (16) can be simplified as

det(A− λI2nm) = det
(
(λ2 + λβ + α)(In) + (λδ + γ)L

)m
. (17)

A property of the Laplacian matrix is

det(λIn + L) =
n

∏
i=1

(λ− µi), (18)

where µi is the ith eigenvalue of −L.
By comparing (17) and (18), we have the following:

det
(
(λ2 + λβ + α)(In) + (λδ + γ)L

)m
=

n

∏
i=1

[λ2 + λβ + α− (λδ + γ)µi]
m. (19)

Rearranging the terms at the right hand of (19) leads to the quadratic expression

det
(
(λ2 + λβ + α)(In) + (λδ + γ)L

)m
=

n

∏
i=1

[λ2 + λ(β− δµi) + (α− γµi)]
m. (20)

The eigenvalues of the closed-loop error dynamics matrix E are given by the following:

λi± =
−β + δµi ±

√
β2 − 2βδµi − δ2µ2

i − 4α + 4γµi

2
. (21)

Given that µi are the eigenvalues of −L, and its diagonal elements are as follows:

−Lii = −
n

∑
j=1,j 6=i

aij; (22)
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therefore, the Gershgorin’s diagram for the −Lmatrix consists of a series of discs (Figure 1)
located on the left-hand side of the complex plane, and all of them are tangent to the
imaginary axis.

Figure 1. Typical distribution of the Gershgorin disks and eigenvalues µi for the −Lmatrix.

Due to the location of the Gershgorin’s disks, it is correct to consider that the real part
of the eigenvalues of −L is lesser or equal to zero, i.e.,

Re(µi) ≤ 0. (23)

According to (23), the susbtitution of µi for (−1)|µi| in (21) yields the following:

λi± =
−β− δ|µi| ±

√
β2 + 2βδ|µi| − δ2|µi|2 − 4α− 4γ|µi|

2
. (24)

Since the first terms in the numerator of (24) are negative (−β − δ|µi|), to ensure
stability, the condition to satisfy is the following:

β + δ|µi| >
√

β2 + 2βδ|µi| − δ2|µi|2 − 4α− 4γ|µi|. (25)

To satisfy (25), the following condition is obtained:

δ2|µi|2
2

> −α− γ|µi|. (26)

The condition (26) is always satisfied given that α, β, γ, and δ are greater than zero
(see Figure 2). Since µi are the eigenvalues of the −L matrix, they are directly related to
the connectivity topology between agents and |µi| > 0, which ensures that condition (26)
is satisfied under any topology (including the spanning tree). Moreover, for the case of
µi = 0, the condition (26) becomes

0 > −α. (27)

Given that α is greater than zero, we can assure that the closed-loop system (11 is stable, even
if there are no connections between agents, thanks to the trajectory tracking controller (3).
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Figure 2. Typical distribution of the Gershgorin disks and eigenvalues λi for matrix E in (11).

5. Experimental Results

The control protocol (2) was implemented and evaluated for differential-drive robots
(DDRs). In order to achieve double integrator dynamics from the kinematics modeling of
the DDRs, we uses input–output linearization with dynamic extension [40], and the control
law provides accelerations; this is explained in the next subsection. The agent’s position is
measured with a computer-vision data acquisition system, and the velocity is estimated
through the obtained position data.

Differential-drive robots (DDRs)

Consider a differential-drive robot i as depicted in Figure 3. The kinematics model of
the DDR with dynamic extension is expressed as follows:

vxi = ẋi = vi cos θi,

vyi = ẏi = vi sin θi,

θ̇i = ωi,

v̇i = ui,

(28)

where xi and yi are the position coordinates of the rear wheels axis center (see Figure 3),
vi = [vxi , vyi ]

T is the velocity vector of the same point, θi is the angle that denotes the
heading of the DDR with respect to the x axis, ωi is the angular velocity, and ui is the
robot’s translational acceleration, which is always parallel to the velocity vi.

Figure 3. DDR model.
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To obtain a transformation from the control input (ui ∈ R2) in the Cartesian plane to
the robot’s translational acceleration (ui) and angular velocity (ωi), consider the position
error of the rear wheels axis center (see Figure 3) as follows:

ei =

[
xi − xiD
yi − yiD

]
. (29)

Considering the first derivative, we yield:

ėi =

[
ẋi − ẋiD
ẏi − ẏiD

]
=

[
vi cos θi − ẋiD
vi sin θi − ẏiD

]
, (30)

The second derivative is

ëi =

[
ui cos θi − viωi cos θi − ẍiD
ui sin θi + viωi sin θi − ÿiD

]
. (31)

Rearrangement of the terms after the factorization of the ui and ωi terms leads to
the following:

ëi =

[
cos θi −vi cos θi
sin θi vi sin θi

][
ui
ωi

]
−
[

ẍiD
ÿiD

]
. (32)

Solving for the transformed control input [ui, wi]
T yields[

ui
ωi

]
=

[
cos θi −vi cos θi
sin θi vi sin θi

]−1[ẍi − ẍiD + ẍiD
ÿi − ÿiD + ÿiD

]
. (33)

Then, the pseudo-kinematic model for the agents is defined as follows:[
ui
ωi

]
=

[
cos(θi) −vi sin θi
sin(θi) vi cos θi

]−1[ẍi
ÿi

]
. (34)

The Equation (34) provides the required relationship to implement the proposed
control protocol (2) developed for double integrators that now becomes applicable for
DDRs. We can define [ẍi, ÿi]

T = [uxi , uyi ]
T as the desired agent acceleration vector of the ith

robot, and each component is computed using the proposed control law (2). The relation
provided in (34) requires that the agent i remains in motion, since the matrix in (34) becomes
singular if vi = 0.

Since the DDRs are controlled through the angular velocity of the wheels, the follow-
ing expressions are used to obtain the left (ωl) and right (ωr) wheel velocities from the
translational and angular robot velocities:

ωl =
2vi −ωiL

2R
, ωr =

2vi + ωiL
2R

, (35)

where the base length or distance between wheels is L, and R is the wheel’s radius.
Notice that the control signal given by the controller is composed of [ui, ωi]

T to com-
pute the desired velocities for each robot wheel vi and wi; therefore, ui must be integrated
to obtain vi; this operation acts as a low-pass filter. In addition, notice that, for cases where
0 < vi << 1 and the direction of vi is non-parallel to the vector [ẍi, ÿi]

T , ωi will change
rapidly, which might degrade for a short time the tracking performance of the controller (2)
on the DDRs through the pseudo-kinematic model (34).

The robots used are named MitotianiV1 (from the Nahuatl word dancer), which where
designed and built in Cinvestav Saltillo and are depicted in Figure 4. These robots receive
angular velocity commands for each wheel via Bluetooth, which is an on-board micro-
controller that executes a PID control for each wheel. The wheels angular velocity feedback
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signals are obtained from 12 pulse per revolution (ppr) encoders that, in combination with
a 78.125:1 gearbox, achieve a 937 ppr.

Figure 4. Custom-made differential-drive robots used for experimentation.

Data acquisition

To measure every agent’s position and orientation, ArUco markers were used in
combination with a 1280 × 720 pixel USB camera, which was fixed looking downwards
at frame rate of 30 frames per second; the workspace was a plane of 4.13 by 2.32 m; see
Figure 5.

Figure 5. Work space provided by the camera’s field of view.

5.1. Experiments

To test the performance of the controller (2), the task to maintain a complex time-
varying formation in the plane is assigned. In the following subsection, the flexible forma-
tion is defined. To exhaustively test the properties of (2) under different topologies, several
experimental sets are presented. Additionally, (2) is compared with an existing controller
and a trajectory tracking controller.

5.1.1. Formation Definition

The controller (2) can be used with any connectivity and formation; to this end a
flexible formation is defined in Figure 6 with a virtual center VC, the coordinates (xc, yc),
the angle θ f to indicate the orientation of the formation, and the radius r. The angle φi
defines the desired position of the ith agent along a circumference. These parameters
provide flexibility to obtain a time-varying formation with changes in translation, rotation,
and scale (size).

From this formation definition, the components of the desired trajectory ξD for each
agent are defined by the following:

ξiDx = xc + r cos(θ + φi).

ξiDy = yc + r sin(θ + φi).
(36)
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Then, the desired velocities in x and y can be obtained considering that r, θ, xc, and yc
change along time, and they are are expressed as follows:

ξ̇iDx = ẋc + ṙ cos(θ + φi)− rθ̇ sin(θ + φi).

ξ̇iDy = ẏc + ṙ sin(θ + φi) + rθ̇ cos(θ + φi).
(37)

Figure 6. Formation definition for n agents.

5.1.2. Evaluation for Different Formation Trajectories

Given that the formation definition allows for translation, rotation, and scaling, the
proposed controller (2) was tested with circular trajectories that included formation rotation
and scaling.

All the experiments where conducted under three different topologies: fully connected,
ring, and spanning tree (see Figure 7). The controller’s gains in (2) were determined through
the simulation of a circular trajectory. Thirty different values for α, β, γ, and δ between the
(0, 1) interval were tested to simulate all the possible combinations, and eight hundred
ten thousand simulations where executed. Only the simulations that saturated the robots
wheel velocities (ωlmax = ωrmax = 6.9 rad

s ) for less than five hundred milliseconds where
considered. The simulation with the lowest error norm summation provided the following
controller gains: α = 0.172, β = 0.782, γ = 0.172, and δ = 0.782, which were selected
for experimentation.

(A) Fully connected (B) Ring (C) Spanning Tree

Figure 7. Topologies used in the experiments.

In all the experiments, the desired trajectory of the virtual center VC was a circle with
a 0.7 m radius and a velocity of 0.1 radians per second, i.e.,

xc = 0.7 cos(0.1t).

yc = 0.7 sin(0.1t).
(38)

To evaluate the experiments, the average error norm was introduced, and, for a MAS
with n = 4 agents during an experiment with p samples, it is calculated as follows:

ē =
1
p

∑n
i=1

√
(ξik − ξiDk)

2

n
. (39)

Experiment set 1: Slight rotation.
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To generate a demanding trajectory, the formation translation described in (38) was
maintained while the formation was slowly rotated, that is,

θ = 0.1(t− t0).

r = 0.2.
(40)

The results for the topologies depicted in Figure 7 are shown in Figures 8–10.
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EekX1JAq2WpOi3RJ7lFWkzEBo-FzzWe4zYb_gUoczIlvRA?e=mKQGYw (accessed on 29 June 2023).
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Figure 9. Results for a ring topology for experiment set 1; video here: https://cinvestav365-my.
sharepoint.com/:v:/g/personal/neftali_gonzalez_cinvestav_mx/Ee8HmrK47g9HvidnVcbB3
qwB0l3H30CzqcPPdCP5Dw0Rnw?e=hVe0yN (accessed on 29 June 2023).
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Figure 10. Results for a tree topology for experiment set 1; video here: https://cinvestav365
-my.sharepoint.com/:v:/g/personal/neftali_gonzalez_cinvestav_mx/EaIrWd90HJtBqFKiZ0q_
0mwBFF1jWs_OrA_4d9i7dysT6w?e=YpvvL2 (accessed on 29 June 2023).
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Experiment set 2: Translation, rotation, and scaling.
The purpose of this set of experiments was to test the controller behavior when the

formation radius and orientation changed; the formation’s orientation and radius are
defined as follows:

θ = 0.3(t− t0).

r = 0.4 + 0.2cos(0.2(t− t0)).
(41)

This case represents a challenging case of time-varying formation. The corresponding
results are shown in Figures 11–13.
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Figure 11. Results for a fully connected topology for experiment set 2; video here:
https://cinvestav365-my.sharepoint.com/:v:/g/personal/neftali_gonzalez_cinvestav_mx/
EbmFh_xM02BLrVyme7jZHS4BGVZmCdeiPMTRf3R2RTUpvA?e=DrIiEI (accessed on 29 June 2023).

−1.0 −0.5 0.0 0.5 1.0 1.5

X [m]

−1.0

−0.5

0.0

0.5

1.0

Y
 [

m
]

t=0s

t=20s

t=40s

ξ1

ξD1

ξ2

ξD2

ξ3

ξD3

ξ4

ξD4

0 10 20 30 40 50 60
time [s]

0.00

0.05

0.10

0.15

0.20

0.25

E
rr

o
r 

[m
]

||e1||

||e2||

||e3||

||e4||

10 20 30 40 50 60
0.00

0.01

0.02 ̄e= 0.00674m

(A) Trajectories (B) Error norm

Figure 12. Results for a ring topology for experiment set 2; video here: https:
//cinvestav365-my.sharepoint.com/:v:/g/personal/neftali_gonzalez_cinvestav_mx/EX-W-
LE2pZFOnodl238A6kkBk5WPDGM-ilepW0NKDWykTw?e=mIA9aA (accessed on 29 June 2023).
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Figure 13. Results for a tree topology for experiment set 2; video here: https://cinvestav365
-my.sharepoint.com/:v:/g/personal/neftali_gonzalez_cinvestav_mx/EaqroXmsCUFEsPfnhx3R1
1kBp8zU3UrmYJtaLAX_lGPe8Q?e=Luuh9u (accessed on 29 June 2023).
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Discussion for experimental sets 1 and 2

According to the results of the formation average error summarized in Table 1, it
can be stated that there was a tradeoff between performance and connectivity. Greater
connectivity, as in the fully connected topology, implies greater control output, since there
are more agents taken into account in the computation of the control signal. However,
greater control signals decrease the formation average error norm.

Table 1. Formation average error norm for every connectivity in experimental sets 1 and 2.

Experiment Set Fully Connected Ring Spanning Tree

Experiment set 1 3.24 mm 1.71 mm 1.57 mm
Experiment set 2 10.09 mm 6.74 mm 6.34 mm

Given that the robot recieves wheel velocity commands, the acceleration ui must be
integrated to obtain the agent’s velocity vi; this process serves as a low-pass filter for every
agent´s velocity. Contrarily, in the angular velocity ωi of every agent, noise is present,
given that no integration is applied (see Figure 14).
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Figure 14. Comparison between the agent’s translational velocity and angular velocity during
experiment 2 with a fully connected trajectory.

The noise from the angular velocity signal can be considered as a perturbation. Higher
connectivity implies that this perturbation is transferred in a faster way between the agents.
According to this, it can be explained why the fully connected topology has poorer tracking
performance than the ring or spanning tree, despite having a greater connectivity and
greater control output ui.

5.1.3. Switching Topologies

It is known that consensus-based approaches are able to deal with changes in the com-
munication topologies ([17,28]). In this section, we present the results when the topology is
changed among the three considered connectivities of Figure 7.

Experiment set 3: Connectivity changes.
To test the controller’s performance when the connectivity between agents changed,

the formation’s orientation and radius were computed as in (40). The experiment began
with a spanning tree topology, which then switched to ring connectivity when the experi-
ment elapsed time (t) was 20.94 s, after which the topology changed to fully connected at
t = 41.88 s. The results are shown in Figure 15.
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Figure 15. Results for the topology change (tree to ring to fully connected) for experiment set 3; video
here: https://cinvestav365-my.sharepoint.com/:v:/g/personal/neftali_gonzalez_cinvestav_mx/
Eb8VWzzAFnlCkLhshtESV3sBxmuwJEJacR8sGgQ5USr2yA?e=u5Fcr2 (accessed on 29 June 2023).

The effect of the topology change was tested alongside with a perturbation; the
topology was switched at t = 30s in combination with the following perturbation in the
velocity of agent 1.

ξ̇1 =

{
0 if 29.5 < t < 30.5
ζ1 otherwise.

(42)

The results for perturbation and topology changing from fully connected to ring are
shown in Figure 16. To display the results of all possible combinations with the three tested
topologies in a compact manner, only the error norm curves in the time interval [20, 40] s
are depicted in Figure 17.
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Figure 16. Results for the topology change (fully connected to ring) and perturbation for experi-
ment set 3; video here: https://cinvestav365-my.sharepoint.com/:v:/g/personal/neftali_gonzalez_
cinvestav_mx/EXIh3GjVC8NOuQye8QP_790BpdkhSIVSNtRyNIPGwephfg?e=cuJ8Xe (accessed on
29 June 2023).

Discussion for topology change experiments

The mean error norm for the experiment of sequential topology change—tree→ ring
→ fully connected—are depicted in Figure 15 and summarized in Table 2. The increment
of the mean error norm in Table 2 is consistent with the results shown in Table 1, since
the connectivity was abruptly increased, and the error increased accordingly. The values
of error in Table 2 were obtained by considering only the last 10 s of every topology. The
sequential increment in the connectivity also implied an increment in the number of links
between agents, thereby promoting the transference of rotational velocity perturbation, as
was similarly discussed at the end of the previous subsection.
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Table 2. Mean error norm during the sequential topology change experiment (tree→ ring→ fully
connected).

Tree Ring Fully Connected

1.78 mm 1.67 mm 4.24 mm

25 30 35 40 45
t[s]

0.00

0.02

0.04

0.06

0.08

0.10

E
rr

o
r 

[m
]

̄e= 0.00313m ̄e= 0.00224m

||e1||

||e2||

||e3||

||e4||

25 30 35 40 45
t[s]

0.00

0.02

0.04

0.06

0.08

E
rr

o
r 

[m
]

̄e= 0.00314m ̄e= 0.00182m

||e1||

||e2||

||e3||

||e4||

(A) Fully connected to ring (B) Fully connected to tree

25 30 35 40 45
t[s]

0.00

0.02

0.04

0.06

0.08

E
rr

o
r 

[m
]

̄e= 0.00212m ̄e= 0.00351m

||e1||

||e2||

||e3||

||e4||

25 30 35 40 45
t[s]

0.00

0.02

0.04

0.06

0.08

E
rr

o
r 

[m
]

̄e= 0.00169m ̄e= 0.00179m

||e1||

||e2||

||e3||

||e4||

(C) Ring to fully connected (D) Ring to tree

25 30 35 40 45
t[s]

0.00

0.02

0.04

0.06

0.08

E
rr

o
r 

[m
]

̄e= 0.00165m ̄e= 0.0042m

||e1||

||e2||

||e3||

||e4||

25 30 35 40 45
t[s]

0.00

0.02

0.04

0.06

0.08

E
rr

o
r 

[m
]

̄e= 0.0019m ̄e= 0.00231m

||e1||

||e2||

||e3||

||e4||

(E) Tree to fully connected (F) Tree to ring

Figure 17. Results for the topology change with perturbation for experiment set 3.

The average error norm for the experiments of Figure 17 with simultaneous topology
change and perturbation are displayed in Table 3. From the results in Figure 17C,E it is
noticeable that the fully connected topology achieved faster perturbation recovery, followed
by the ring topology (see Figure 17A,F). Therefore, it can be stated that a low connectivity
leads to slower perturbation recovery (see Figures 17D,B).

Table 3. Formation average error norm for every connectivity in experiment sets 1 to 5.

First/Second
Topology Fully Connected Ring Spanning Tree

Fully connected – 3.13→ 2.24 mm 3.14→ 1.82 mm
Ring 2.12→ 3.51 mm – 1.69→ 1.79 mm

Spanning tree 1.65→ 4.2 mm 1.9→ 2.31 mm –
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5.1.4. Comparison with an Existing Controller

The proposed controller (2) was compared with a second-order variant of the controller
reported in [41], which is portrayed in (43).

ai =
1
ki

(
n

∑
j=1

gijaj −
n

∑
j=1

gijγ0[(qi − qj)− (δi − δj)] + γi(vi − vj)+

gir[ar − γ0(qi − δi − qr)− γ1(vi − vr)]

)
,

(43)

where qi, vi, and ai ∈ R2 are the position, velocity, and acceleration of the agent i, respec-
tively, and γ0, γ1, and γ2 are non-negative control gains; gij are the values in the adjacency
matrix that link agent i to agent j; δi is the desired distance vector between agent i and the
formation center; gir is a value that defines if an agent has access to the desired position
and velocity (qr, vr); ki is defined as ki = gir + ∑n

j=1 gij.

Experiment set 4: Comparison with a similar controller

In this set of experiments, the controller (43) was tested under the spanning tree
topology (see Figure 7). For the experiment, a circular trajectory was chosen as in (38) with
simultaneous formation rotation, as described in (40). The results are shown in Figure 18.
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Figure 18. Results for the tree topology using an existing controller (43) for experiment set 4; video
here: https://cinvestav365-my.sharepoint.com/:v:/g/personal/neftali_gonzalez_cinvestav_mx/
EcRcBnoHVxJJpUuYD2wlMRMByfBLWFvgzdYm3sTuJoDnfA?e=l6S4ck (accessed on 29 June 2023).

To test the controller (43), the desired formation trajectory with translation, rotation, and
scaling is defined in (41); the result under the spanning tree topology is displayed in Figure 19.
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Figure 19. Results for the spanning tree topology and the desired formation trajectory (41), using an
existing controller (43), for experiment set 4; video here: https://cinvestav365-my.sharepoint.com/:v:
/g/personal/neftali_gonzalez_cinvestav_mx/Ef-wE4SLTM5GgjphnvWsEXwBOxz9VsBW3ngx3
lZfIOgGTA?e=ExHzhF (accessed on 29 June 2023).
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Discussion for the controller comparison experiments

For the desired formation with a simple trajectory (38), the average error norm in the
experiment with the compared controller (43) was 48.35 mm, which was in contrast with
the result for the proposed controller (2), which was 1.57 mm. For the complex trajectory
with translation, rotation, and scaling (41), the average error norm for the experiments with
the compared controller (43) was 22.57 mm, which was in contrast with the result for the
proposed controller (2), which was 6.34 mm. This was consequence of how the distance
between each agent and the virtual center δi was considered in the compared controller
(43). For a formation trajectory where the agents have different velocities or accelerations
(i.e., curved formation trajectories or formation, rotation, and scaling), this controller was
unable to follow the desired formation trajectory, since the agent´s velocity or acceleration
with respect to the formation center was not considered; hence, the proportional behavior
of the error with respect to the formation radius, as shown in Figure 19.

5.1.5. Trajectory Tracking Comparison

The following experiments are presented to compare the proposed approach in
(2), which combines a trajectory tracking term and a consensus control with only tra-
jectory tracking.

Experiment set 5: Trajectory tracking controller comparison.

To compare the performance of the proposed controller (2) with the trajectory tracking
term only (3), we considered the more complex case of formation with translation, rotation,
and scaling. Then, the formation trajectory in (41) was set as the desired one, and the results
are shown in Figure 20.
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Figure 20. Results for the trajectory tracking term only (3) without consensus control for experi-
ment set 5; video here: https://cinvestav365-my.sharepoint.com/:v:/g/personal/neftali_gonzalez_
cinvestav_mx/EUHELjVi1ZtPtGqT4waUwKcB-G4GATFyfa5k7fPUGs3gpg?e=lZsIpX (accessed on
29 June 2023).

The results displayed in Figure 20 show that the trajectory tracking controller (3) could
follow trajectories with formation translation, rotation, and scaling. This experiment can be
compared with the results in Figures 11–13.

The performance of the trajectory tracking controller (3) under the disturbance (42)
was tested when the formation was moved on the plane and slowly rotated, as mentioned
in (40). The results are depicted in Figure 21. For comparison purposes, the proposed
controller (2) was also tested under the same conditions (see Figures 22–24).
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Figure 21. Results for the non-consensus control (3) under the disturbance (42) for exper-
iment set 5; the vertical dashed lines indicate the duration of the perturbation (42); video
here: https://cinvestav365-my.sharepoint.com/:v:/g/personal/neftali_gonzalez_cinvestav_mx/
EZimkegmYQhKuiU2o2OPp58BP2a9z00NWKuSQwAvY-KzUA?e=lf0JSn (accessed on 29 June 2023).
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Figure 22. Results for the proposed controller (2) under the disturbance (42) and fully connected topol-
ogy for experiment set 5; the vertical dashed lines indicate the duration of the perturbation (42); video
here: https://cinvestav365-my.sharepoint.com/:v:/g/personal/neftali_gonzalez_cinvestav_mx/
EcPHrIuWplRAi3fWRd3jFvsBXsb-QH8WbOw5gm_9rPrr4w?e=NmrNYf (accessed on 29 June 2023).
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Figure 23. Results for the proposed controller (2) under the disturbance (42) and ring topology for
experiment set 22; the vertical dashed lines indicate the duration of the perturbation (42); video
here: https://cinvestav365-my.sharepoint.com/:v:/g/personal/neftali_gonzalez_cinvestav_mx/
EYSmzUAWlgpGiK_sKrCjPooB0Vlh5q5u5wGVrAZNpgc1vA?e=owDBdq (accessed on 29 June 2023).
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Figure 24. Results for the proposed controller (2) under the disturbance (42) and tree topology
for experiment set 5; the vertical dashed lines indicate the duration of the perturbation (42); video
here: https://cinvestav365-my.sharepoint.com/:v:/g/personal/neftali_gonzalez_cinvestav_mx/
EVWI2JeIP7RCka-Gn3uaHJcBMznb0kcSwT691PJbqCegng?e=hzdbdu (accessed on 29 June 2023).

Discussion for the trajectory tracking comparison

As was aforementioned, the experiment for the controller (3) presented in Figure 20
was also carried out with the proposed controller (2) under the three different topologies
in experiment set 2 (Figures 11–13). To summarize, the average error norm in those
experiments is displayed in Table 4.

Table 4. Average error norm for the trajectory tracking controller for experiment set 5 and the
proposed controller for experiment set 2.

Trajectory Tracking
Controller Fully Connected Ring Spanning Tree

7.11 mm 10.09 mm 6.74 mm 6.34 mm

According to the average error norm in Table 4, the trajectory tracking controller (3)
was ranked between the ring and fully connected topologies for the controller (2). The
lowest average error norm was achieved by the controller (2) under the spanning tree
topology, and the largest average error norm was obtained by the controller (2) with the
fully connected topology.

Regarding the perturbation recovery of the tracking controller (3) in Figure 21, it
exhibited a greater recovery time (43.94 s) than the controller (2), (38.8 s for spanning tree
connectivity), regardless of the connectivity between the agents.

6. Conclusions and Future Work

A controller was proposed to generate the acceleration inputs for a second-order MAS
such that all the agents followed a time-varying formation trajectory in a coordinated manner.
The convergence of the closed-loop error dynamics was demonstrated through the Gersh-
gorin’s circle theorem for n agents of dimension m under any connectivity of communication,
and a sufficient stability condition was provided. An extensive experimental evaluation
of the controller was carried out with three different topologies: fully connected, ring, and
spanning tree. The experimental set consisted of four custom-built differential-drive robots
(DDRs) and a data acquisition system based on a common webcam. The four robot MASs
were able to follow a time-varying formation that considered translation, rotation, and
scaling with good accuracy. We noticed a direct relationship between the connectivity and
mean error norm, where a larger connectivity led to larger mean error norm.

A dynamic extension was used to map the computed control signal to the DDRs’ linear
acceleration and angular velocity values. The linear acceleration was integrated in time to
send linear velocity to the robots; the angular velocity was directly sent to the robots and
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was a signal with a high frequency component, which can be considered as a disturbance.
Topologies with higher connectivity contributed to the transfer of this disturbance; as a
result, the fully connected topology exhibited a larger mean error norm with respect to the
spanning tree topology. The ring topology provided a tradeoff between the connectivity
and tracking error, since the mean error norm was slightly larger for the ring than for the
spanning tree, but it was smaller than for the fully connected topology.

The proposed controller under the three different topologies and a trajectory tracking
controller were subject to an external perturbation to compare their response. According
to the experiments, it was found that the connectivity played an important role in the
perturbation recovery time and, in general, in transient periods; the controller with a fully
connected topology (higher connectivity) recovered faster than when the spanning tree
topology was applied. Moreover, the perturbation recovery time for the trajectory tracking
controller is larger than the proposed controller under the spanning tree topology.

The proposed controller was challenged by switching the topologies in combination
with a perturbation. It was found that, despite having sudden topology changes, neither
sharp nor large changes in the error norm signals occurred. Therefore, it can be stated that
the proposed controller is able to follow the desired formation trajectory, even with switch-
ing topologies. This property can be exploited to reconfigure the consensus component of
the proposed controller to achieve a lower mean error norm or faster perturbation recovery.

The proposed controller was compared with a similar existing controller; the results
show that the time-varying formation trajectory tracking task was non trivial, since the
compared controller did not converge to the desired formation trajectory, thus exhibiting a
mean error norm that was 30 times larger than the result for the proposed controller under
the spanning tree topology. Moreover, the mean error norm for the existing controller
increased in a second comparison experiment where the desired time-varying trajectory
included rotation and scaling. The proposed controller showed superiority in the accurate
tracking of complex trajectories.

Regarding future work, the experimental results have shown that one of the major
drawbacks of using high connectivity in the communication topology for the proposed
controller is the disturbance transference. The main source of disturbance in the system
is the one produced in the dynamic extension that maps the control acceleration signal to
the DDRs’ linear acceleration and angular velocity values, since the angular velocity signal
has a noise component. To improve the time-varying formation tracking of the proposed
controller, a digital filter for the robot’s angular velocity might be proposed to mitigate
these perturbation effects. Since the proposed controller must work with smooth desired
trajectories, we have considered developing a strategy to obtain continuous formation
trajectories from discontinuous trajectories; for instance, this might be achieved through
linear interpolation. Given the good properties of formation tracking of the proposed
controller, it might be extended for the navigation of a formation with capabilities of
translation, rotation, and scaling, which could be coupled with a high-level planner to
define the trajectories.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/machines11080828/s1.

Author Contributions: Conceptualization, N.J.G.-Y. and A.B.M.-D.; methodology, A.B.M.-D. and
H.M.B.; software, N.J.G.-Y.; validation, N.J.G.-Y., A.B.M.-D., and H.M.B.; formal analysis, N.J.G.-Y.,
A.B.M.-D. and H.M.B.; investigation, N.J.G.-Y., A.B.M.-D. and H.M.B.; resources, A.B.M.-D.;
writing—original draft preparation, N.J.G.-Y.; writing—review and editing, N.J.G.-Y., A.B.M.-D. and
H.M.B.; visualization, N.J.G.-Y., A.B.M.-D. and H.M.B.; supervision, A.B.M.-D. and H.M.B.; funding
acquisition, A.B.M.-D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Consejo Nacional de Humanidades Ciencias y Tecnologías,
grants 1007678 and A1-S-26123.

Institutional Review Board Statement: Not applicable.

https://www.mdpi.com/article/10.3390/machines11080828/s1
https://www.mdpi.com/article/10.3390/machines11080828/s1


Machines 2023, 11, 828 21 of 22

Informed Consent Statement: Not applicable.

Data Availability Statement: Details regarding video supporting reported results can be found in
Supplementary Materials.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nigam, N.; Bieniawski, S.; Kroo, I. Control of multiple UAVs for persistent surveillance: Algorithm and flight test results. IEEE

Trans. Control Syst. Technol. 2011, 20, 1236–1251. [CrossRef]
2. Beard, R.W.; Lawton, J.; Hadaegh, F.Y. A coordination architecture for spacecraft formation control. IEEE Trans. Control Syst.

Technol. 2001, 9, 777–790. [CrossRef] [PubMed]
3. Desai, J.P.; Ostrowski, J.; Kumar, V. Controlling formations of multiple mobile robots. In Proceedings of the 1998 IEEE International

Conference on Robotics and Automation, Leuven, Belgium, 20–20 May 1998; pp. 2864–2869.
4. Lewis, M.A.; Tan, K.H. High precision formation control of mobile robots using virtual structures. Auton. Robots 1997, 4, 387–403.

[CrossRef]
5. Rezaee, H.; Abdollahi, F. A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots. IEEE

Trans. Ind. Electron. 2014, 61, 347–354. [CrossRef]
6. Balch, T.; Arkin, R.C. Behavior-based formation control for multi robot teams. IEEE Trans. Autom. Control 1998, 14, 926–939.

[CrossRef]
7. Ranjbar-Sahraei, B.; Shabaninia, F.; Nemati, A.; Stan, S. A novel robust decentralized adaptive fuzzy control for swarm formation

of Multi-Agent systems. IEEE Trans. Ind. Electron. 2012, 59, 3124–3134. [CrossRef]
8. Oh, K.K.; Park, M.C.; Ahn, H.S. A survey of multi-agent formation control. Automatica 2015, 53, 424–440. [CrossRef]
9. Wu, J.; Shi, Y. Consensus in multi-agent systems with random delays governed by a Markov chain. Syst. Control Lett. 2011, 60,

863–870. [CrossRef]
10. Qin, J.H.; Yu, C.B. Cluster consensus control of generic linear multi-agent systems under directed topology with acyclic partition.

Automatica 2013, 49, 2898–2905. [CrossRef]
11. Li, T.; Wu, F.K.; Zhang, J.F. Multi-agent consensus with relative state-dependent measurement noises. IEEE Trans. Autom. Control

2014, 59, 2463–2468. [CrossRef]
12. Qin, J.H.; Yu, C.B.; Gao, H.J. Coordination for linear multi-agent systems with dynamic interaction topology in the leader-following

frame-work. IEEE Trans. Ind. Electron. 2014, 61, 2412–2422. [CrossRef]
13. Zhu, W.; Jiang, Z.P. Event-based leader-following consensus of multi-agent systems with input time delay. IEEE Trans. Autom.

Control 2015, 60, 1362–1367. [CrossRef]
14. Li, Z.K.; Wen, G.H.; Duan, Z.S.;Ren, W. Designing fully distributed consensus protocols for linear multi-agent systems with

directed graphs. IEEE Trans. Autom. Control 2015, 60, 1152–1157. [CrossRef]
15. Fax, J.A.; Murray, R.M. Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 2004, 49,

1465–1476. [CrossRef]
16. Jadbabaie, A.; Lin, J.; Morse, A.S. Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules. IEEE

Trans. Autom. Control 2003, 48, 988–1001. [CrossRef]
17. Olfati-Saber, R.; Murray, R.M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans.

Autom. Control 2004, 49, 1520–1533. [CrossRef]
18. Moreau, L. Stability of Multi-agent Systems with Time-dependent Communication Links. IEEE Trans. Autom. Control 2005, 50,

169–182. [CrossRef]
19. Lin, Z.; Broucke, M.; Francis, B. Local Control Strategies for Groups of Mobile Autonomous Agents. IEEE Trans. Autom. Control

2004, 49, 622–629. [CrossRef]
20. Ren, W.; Beard, R.W.; McLain, T.W. Coordination Variables and Consensus Building in Multiple Vehicle Systems. In Cooperative

Control: A Post-Workshop Volume 2003 Block Island Workshop on Cooperative Control; Kumar, V., Leonard, N.E., Morse, A.S.,
Eds.; Springer-Verlag Series: Lecture Notes in Control and Information Sciences; Springer: Berlin/Heidelberg, Germany, 2004;
Volume 309, pp. 171–188.

21. Ren, W.; Beard, R.W. Consensus Seeking in Multiagent Systems Under Dynamically Changing Interaction Topologies. IEEE Trans.
Autom. Control 2005, 50, 655–661. [CrossRef]

22. Ren, W.; Beard, R.W.; Atkins, E.M. A Survey of Consensus Problems in Multi-agent Coordination. In Proceedings of the American
Control Conference, Portland, OR, USA, 8–10 June 2005.

23. Ren, W. Consensus strategies for cooperative control of vehicle formations. IET Control Theory Appl. 2007, 1, 505–512. [CrossRef]
24. Seo, J.; Kim, Y.; Kim, S.; Tsourdos, A. Consensus-based reconfigurable controller design for unmanned aerial vehicle formation

flight. J. Aerosp. Eng. 2012, 226, 817–829. [CrossRef]
25. Dong, X.W.; Yu, B.C.; Shi, Z.Y.; Zhong, Y.S. Time-varying formation control for unmanned aerial vehicles, theories and applications.

IEEE Trans. Control Syst. Technol. 2015, 23, 340–348. [CrossRef]
26. Dong, X.W.; Zhou, Y.; Ren, Z.; Zhong, Y.S. Time-varying formation control for unmanned aerial vehicles with switching interaction

topologies. Control Eng. Pract. 2016, 46, 26–36. [CrossRef]

http://doi.org/10.1109/TCST.2011.2167331
http://dx.doi.org/10.1109/87.960341
http://www.ncbi.nlm.nih.gov/pubmed/36158184
http://dx.doi.org/10.1023/A:1008814708459
http://dx.doi.org/10.1109/TIE.2013.2245612
http://dx.doi.org/10.1109/70.736776
http://dx.doi.org/10.1109/TIE.2012.2183831
http://dx.doi.org/10.1016/j.automatica.2014.10.022
http://dx.doi.org/10.1016/j.sysconle.2011.07.004
http://dx.doi.org/10.1016/j.automatica.2013.06.017
http://dx.doi.org/10.1109/TAC.2014.2304368
http://dx.doi.org/10.1109/TIE.2013.2273480
http://dx.doi.org/10.1109/TAC.2014.2357131
http://dx.doi.org/10.1109/TAC.2014.2350391
http://dx.doi.org/10.1109/TAC.2004.834433
http://dx.doi.org/10.1109/TAC.2003.812781
http://dx.doi.org/10.1109/TAC.2004.834113
http://dx.doi.org/10.1109/TAC.2004.841888
http://dx.doi.org/10.1109/TAC.2004.825639
http://dx.doi.org/10.1109/TAC.2005.846556
http://dx.doi.org/10.1049/iet-cta:20050401
http://dx.doi.org/10.1177/0954410011415157
http://dx.doi.org/10.1109/TCST.2014.2314460
http://dx.doi.org/10.1016/j.conengprac.2015.10.001


Machines 2023, 11, 828 22 of 22

27. Ren, W.; Atkins, E. Distributed Multi-Vehicle Coordinated Control via Local Information Exchange. Int. J. Robust Nonlinear Control
2007, 17, 1002–1033. [CrossRef]

28. Dong, X.; Zhou, Y.; Ren, Z.; Zhong, Y. Time-varying formation tracking for second-order multiagent systems subjected to
switching topologies with application to quadrotor formation flying. IEEE Trans. Ind. Elect. 2017, 64, 5014–5024. [CrossRef]

29. Wang, B.; Sun, Y. Consensus Analysis of Heterogeneous Multi-Agent Systems with Time-Varying Delay. Entropy 2015, 17,
3631–3644. [CrossRef]

30. Cao, Y.C.; Ren, W.; Meng, Z.Y. Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time
formation tracking. Syst. Control Lett. 2010, 59, 522–529. [CrossRef]

31. Hu, G.Q. Robust consensus tracking of a class of second-order multi-agent dynamic systems. Syst. Control Lett. 2012, 6, 134–142.
[CrossRef]

32. Guan, Z.H.; Sun, F.L.; Wang, Y.W.; Li, T. Finite-time consensus for leader-following second-order multi-agent networks. IEEE
Trans. Circuits Syst. I 2012, 59, 2646–2654. [CrossRef]

33. Hong, Y.G.; Hu, J.P.; Gao, L.X. Tracking control for multi-agent consensus with an active leader and variable topology. Automatica
2006, 42, 1177–1182. [CrossRef]

34. Zhou, S.; Dong, X.; Li, Q.; Ren, Z. Time-varying formation tracking control for uav-ugv heterogeneous swarm systems with
switching directed topologies. In Proceedings of the 2020 IEEE 16th International Conference on Control & Automation (ICCA),
Singapore, 9–11 October2020; pp. 1068–1073.

35. Xiao, H.; Philip Chen, C. Time-varying non-holonomic robot consensus formation using model predictive based protocol with
switching topology. Inf. Sci. 2021, 567, 201–215. [CrossRef]

36. Santiaguillo-Salinas, J.; Aranda-Bricaire, E. Time-varying formation tracking with collision avoidance for multi-agent systems.
IFAC-PapersOnLine 2017, 50, 309–314. [CrossRef]

37. Martinez, J.B.; Becerra, H.M.; Gomez-Gutierrez, D. Formation tracking control and obstacle avoidance of unicycle-type robots
guarantreeing continuous velocities. Sensors 2021, 21, 4374. [CrossRef] [PubMed]

38. Basso, E.A.; Pettersen, K.Y. MIMO Feedback Linearization of Redundant Robotic Systems using Task-Priority Operational Space
Control. IFAC-PapersOnLine 2020, 53, 5459–5466. [CrossRef]

39. Martins, L.; Cardeira, C.; Oliveira, P. Inner-outer feedback linearization for quadrotor control: Two-step design and validation.
Nonlinear Dyn. 2022, 110, 479–495. [CrossRef]

40. Sastry, S. Nonlinear Systems: Analysis, Stability, and Control. In Interdisciplinary Applied Mathematics; Springer: New York, NY,
USA, 1999.

41. Ren, W. High-Order and Model Reference Consensus Algorithms in Cooperative Control of Multi-Vehicle Systems. Trans. ASME
2007, 129, 678–688.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/rnc.1147
http://dx.doi.org/10.1109/TIE.2016.2593656
http://dx.doi.org/10.3390/e17063631
http://dx.doi.org/10.1016/j.sysconle.2010.06.002
http://dx.doi.org/10.1016/j.sysconle.2011.10.004
http://dx.doi.org/10.1109/TCSI.2012.2190676
http://dx.doi.org/10.1016/j.automatica.2006.02.013
http://dx.doi.org/10.1016/j.ins.2021.01.034
http://dx.doi.org/10.1016/j.ifacol.2017.08.051
http://dx.doi.org/10.3390/s21134374
http://www.ncbi.nlm.nih.gov/pubmed/34206717
http://dx.doi.org/10.1016/j.ifacol.2020.12.1550
http://dx.doi.org/10.1007/s11071-022-07632-y

	Introduction
	Problem Formulation and Proposed Control Scheme
	Error Dynamics
	Stability Analysis
	Experimental Results
	Experiments
	Formation Definition
	Evaluation for Different Formation Trajectories
	Switching Topologies
	Comparison with an Existing Controller
	Trajectory Tracking Comparison


	Conclusions and Future Work
	References

