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Abstract: This paper presents a synchronous proportional derivative (PD) control method using a
time delay estimator (SPD-TDE) for a four-degree-of-freedom (DOF) parallel robot in practice. The
proposed control is a method that is developed from a synchronous PD control method combined
with a time delay estimator to guarantee the tracking objectives and synchronous requirements of
the robot. Firstly, the synchronous PD control method is designed by defining cross-coupling errors.
A cross-coupling error is determined by incorporating the tracking error and deviation of tracking
error among two adjacent joints or synchronous errors. Then, the asynchronous problem between the
kinematic chains is solved and guarantees that the goal of synchronicity is achieved. Consequently,
to improve the tracking performance of the robot, a time delay estimator is used to estimate and
eliminate the uncertainty components of the system, such as modeling errors and actuator faults.
In addition, the Lyapunov theory is also used to demonstrate the stability and robustness of the
proposed control method. Finally, a testbench 4-DOF parallel robot is built, and the controllers
are embedded in the control board from MATLAB Simulink using the Waijung block set library to
operate the robot preset trajectory tracking. The experimental results of the proposed control method
for the 4-DOF parallel robot are compared with those obtained using other controllers to prove its
effectiveness.

Keywords: 4-DOF parallel robot; PD control; cross-coupling error; synchronous control; time delay estimator

1. Introduction

Nowadays, robots are applied in many fields to replace humans in performing different
tasks and to improve production productivity as well as product quality. There are many
types of robots that have been researched, developed, and commercialized, and one of
them is the parallel robot. The parallel robot has a closed-loop structure; the fixed base is
linked to a moving platform with parallel and identical kinematic chains. It has been widely
applied in many fields, such as industry [1–3], agriculture [4], medicine [5], and motion
simulation [6], due to its distinct advantages of high stiffness, high speed, high accuracy,
high flexibility, and large load-carrying capacity [7]. However, the closed-loop structure
of the robot also brings many difficulties in controlling it, such as a limited workspace,
singularity, the forward kinematic problem, and a complicated dynamic model. Many
control methods have been proposed to deal with the above problems. And these methods
have been divided into two distinct approaches [8]: control methods not based on a model,
such as proportional–integral–derivative (PID) control [9,10], fuzzy control [11], and neural
network control (NNC) [12]; and model-based control methods such as sliding-mode
control (SMC) [13,14], fault-tolerant control (FTC) [15], and adaptive control [16].

Generally, the two control approaches mentioned above solve some problems in
parallel manipulator trajectory tracking control. However, an important problem that exists
in conventional controllers for parallel robots is that the controllers can only individually
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control each joint of the robot without feedback from other joints. Meanwhile, the parallel
manipulator has a closed-loop mechanical structure, and the moving platform follows
the trajectory depending on the coordination of the same kinematic sequences. At any
time, a disturbance or transmission error can occur in one of the loops while the others do
not respond. The lack of synchronicity between the control loops can lead to uncovered
deformation; even deconstruction can happen [17]. To solve this problem, a cross-coupling
synchronous control method has been proposed for closed-loop systems.

The cross-coupling control for the serial manipulator was first introduced by Ko-
ren [18]. This control method involves defining the tracking error, synchronous error, and
cross-coupling error. The deviation between the joint angle response and the reference
joint is the tracking error. The difference between the tracking errors of two transmission
joints adjacent is the synchronous error. And the combination of tracking and synchronous
errors is a cross-coupling error. The cross-coupling error is used to design the synchronous
controller and to achieve the goal of synchronicity or the simultaneous convergence of
tracking and synchronous errors to zero. As a result, this method significantly improves the
tracking performance and ensures the goal of synchronizing the system. Recently, several
studies on synchronous algorithms have been published and applied to many subjects. For
example, Dong Sun et al. used cross-coupling control technology on CNC machines [19]
and multiple-motion-axis systems [20–22]. In robotics, Dong Sun et al. designed a syn-
chronous tracking control method for a 3-DOF parallel robot [23]; Weiwei Shang et al.
implemented a synchronous method for a planar parallel robot with a redundant actuator
in the task space [24]; Piotrr Wos and Ryszard studied a 3-DOF hydraulic translational par-
allel manipulator [25]; Keke Shi et al. used coupled orbit–attitude dynamics and trajectory
tracking control for spacecraft electromagnetic docking [26]; and D. T. Tran et al. experi-
mented with a synchronous algorithm on a 4-DOF parallel manipulator in practice [27].
Considering the above analyses, this study proposes a synchronous proportional derivative
(SPD) control method for a 4-DOF parallel robot to solve the asynchronous problem among
the joints as well as to guarantee the goal of synchronizing the system. Nevertheless, a
4-DOF parallel robot has high nonlinearity and is always affected by external disturbance
and uncertainty components such as modeling error, actuator faults, etc. Meanwhile, the
SPD control method has a simple structure without a clearly dynamic model system. So,
achieving a high orbital tracking performance and resistance to external disturbance and
uncertainty components is a challenge.

Recently, researchers have applied intelligent methods to handle the above prob-
lems. Intelligent methods are used to estimate and eliminate external disturbances and
uncertainty terms via their integration with linear/nonlinear controllers. For example,
in [28], Jinglei et al. designed an adaptive fuzzy backstepping control method based
on dynamic surface control for an uncertain robotic manipulator. Fuzzy networks were
used to approximate the uncertain modeling error and external disturbance in the system.
The control performance of the robotic manipulator was improved significantly. In [29],
Chuang Liu et al. proposed an active disturbance rejection control (ADRC) method for the
electromagnetic docking of spacecraft in the presence of time-varying delay, fault signals,
external disturbances, and elliptical eccentricity. An ADRC scheme was developed to guar-
antee the relative position, relative velocity, and the estimation errors of relative motion
information and the total disturbance of the system. As a result, the proposed control
method for the spacecraft achieved high accuracy and strong robustness. However, these
intelligent methods require complex computation. So, it is not practical to implement them
in real applications. Compared to fuzzy logic or neural networks or ADRC, a well-known
technique is the time delay estimator (TDE), which is also used to estimate and cancel
nonlinear dynamics. Furthermore, TDE has a simple structure that does not use a dynamic
model of the system. Therefore, it is combined with many other control methods to increase
the accuracy and improve the performance of the system, such as the combination of a TDE
and supervising switching control to synchronous control for a chaos system [30]. A PUMA
robot manipulator achieved good tracking performance and chattering reduction using
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the TDE and fuzzy logics systems [31] and linked to the adaptive PID-fractional-order
nonsingular terminal sliding mode control and TDE to obtain higher accurate results for
cable-driven manipulators [32]. Other research incorporates the synchronous sliding mode
control and TDE to ensure the asymptotic convergence of the errors and eliminate the
uncertainty influence of a 2-DOF parallel manipulator [33,34]. To the best of the authors’
knowledge, some studies use the TDE method to control the parallel manipulators. For a
4-DOF parallel robot, due to the complexities of both computation kinematic and dynamic
models, there are very few experimental results of this method.

Based on the above analysis, this paper proposed an SPD-TDE control method for a
4-DOF parallel robot in the presence of uncertainties such as modeling errors and actuator
faults. The proposed control is designed by combining the PD control, cross-coupling
synchronous control, and time-delay estimator. As a result, the asynchronous problem
among the chain kinematics is solved, and the nonlinear components in the system are
estimated and eliminated in the control process. From that, the quality of trajectory tracking
improves significantly, as well as the synchronous objective of the closed-loop system is
achieved.

The main contribution of this paper is summarized as follows:

1. The kinematics and dynamics of a 4-DOF parallel robot are presented based on the
geometric and Euler–Lagrange methods with the daresay. Next, a synchronous PD
control method is designed to solve the asynchronous among the kinematic chains in
the closed-loop system. A combination of the SPD control and time delay estimator is
formed to estimate the total lumped uncertainty components in the system. So, the
quality of trajectory tracking of the robot improved significantly.

2. The stability and robustness of the proposed control are proven using the Lyapunov
theory. Furthermore, a testbench 4-DOF parallel is built, and the controllers are
programmed in MATLAB Simulink and are embedded in board control to operate
robot preset trajectory tracking. From that, the experiment results are collected and
evaluated to demonstrate the effectiveness of the proposed control compared to other
controllers.

This paper is organized as follows: Section 2 presents the problem formulations.
Section 3 presents the design of the proposed control, and the stability analysis of the
proposed controller is discussed. In Section 4, the effectiveness of the proposed controller
will be demonstrated using the experiment, and the experiment results will be compared
to the PD control and the SPD control. Finally, some conclusions and future works are
presented.

2. Problem Formulations

In this section, the solution of the inverse kinematics, forward kinematics, dynamics
model, and synchronous method for a 4-DOF parallel manipulator is presented. This model
is designed using Solidworks 2021. The model is composed of a base platform or fixed
base, a moving platform connected by four upper arms and four lower arms, forming a
closed-loop structure characterized by parallel robots, as shown in Figure 1. The physical
parameters used in the calculation are extracted from the 3D model of the robot, as shown
in Figure 2 and Table 1.

Table 1. The physic parameters of the 4-DOF parallel robot experiment.

Parameters Value Description

L1 181 mm Length of an active limb
L2 498 mm Length of a passive limb
r 136.5 mm Radius of fixed base
d 80 mm Length of the moving platform
h 80 mm Length of the moving platform’s parallelogram bars

hi, di(i = 1, 2, 3, 4) 20.7 mm Distances between Ci and Di, respectively, along PY axis and along PX axis
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Figure 2. The geometry structure of a 4-DOF parallel manipulator: (a) Top view of a base platform;
(b) Side view of a chain kinematic ith; and (c) Top view of a moving platform.

2.1. Kinematics
2.1.1. Inverse Kinematic

In this section, the inverse kinematic solution of a 4-DOF parallel robot determined based
on the position end-effector is presented. The origin coordinate system of the robot is set
on the base platform, with O is the base platform center, and αi(i = 1, 2, 3, 4) is the deviation
angle at each upper arm relative to the X axis, as shown in Figure 2a, (αi = (2i− 1)π/4).
The geometric structure of a kinematic chain is shown in Figure 2b, where r is the distance
from the origin O to the upper arm revolute joint center (|OBi| = r). L1 and L2 are the
lengths of the upper arm and lower arm, respectively, (|Bi Ai| = L1, |AiDi| = L2, i = 1, 2, 3, 4).
qi(i = 1, 2, 3, 4) is the rotation angle of each upper arm. Figure 2c presents the geometric
structure of the moving platform described using x, y, z, θ. Inside x, y, z is the position value
of the end-effector in the PXYZ coordinate system relative to the OXYZ origin coordinate
system, and θ is the rotation angle of the moving platform. In Figure 2c, the coordinate local
PXYZ is present, where P is the controller point, and d, di, h, hi(i = 1, 2, 3, 4) are the geometry
parameters of the moving platform. d is the length of the moving platform (along the x-axis).
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h is the length of the parallelogram bars. hi and di are the distances between Ci and Di,
respectively, along the x-axis and y-axis. Di is the midpoint of [Di1, Di2], where the two ball
hinges connecting the ith lower arm with the moving platform.

The kinematic relationship is based on the following equation:

|AiDi| = L2 (1)

Based on the coordinate OXYZ system, the coordinates of the points Ai, Di and Bi is
determined.

Equation (1) can be rewritten as follows:

Ei sin qi + Fi cos qi + Gi = 0 (2)

where Ei, Fi, and Gi are the functions of the robot geometry.
The inverse kinematic can be obtained by solving Equation (2) as follows:

qi = 2 tan−1

−Ei −
√

E2
i + F2

i − G2
i

Gi − Fi

(i = 1, 2, 3, 4) (3)

Remark 1. The formula of Ei, Fi, and Gi functions is presented in detail in Appendix A.

2.1.2. Forward Kinematic

The forward kinematic of a 4-DOF parallel robot aims at calculating the end-effector
position by knowing the joint angles q. However, this leads to an eighth-order polynomial
in θ. Therefore, the Jacobian scheme can solve the problem more efficiently than the
algebraic method.

The Jacobian matrix is the relationship between the end-effector velocities and rotation
angle velocities. It can be written as follows:

.
P = J

.
q (4)

where J is the Jacobian matrix of the system,
.
P =

[ .
X

.
Y

.
Z

.
θ
]T

is the velocity of the end

position of the end-effector, and
.
q =

[ .
q1

.
q2

.
q3

.
q4
]T is the velocity of the rotation angle.

The square on both sides of Equation (1), we can obtain the following:

|AiDi|2 = L2
2 (5)

The derivative of Equation (5) for time is given using the following:

A
.
P + B

.
q=0 (6)

From Equations (4) and (6), we can obtain the following:

J = −A−1B (7)

The forward kinematic of the parallel robot is obtained via the integration of the below
equation as follows [35,36]:

χn+1 = χn + ρJ(χn, qn)(qd − qn) (8)

where χn is the coordinate of the end-effector position, χn+1 is the coordinate of the next
end-effector position, qn is the current joint angle of the robot, qd is the desired joint angle,
and ρ is the arithmetic coefficient.
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2.2. Dynamic Model

The dynamic equation of a 4-DOF parallel robot is as follows:

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) + τf

(
q,

.
q
)
+ JTFext = ατ (9)

where M(q) ∈ R4×4 is the inertial matrix, C
(
q,

.
q
)
∈ R4×4 is the Coriolis/Centrifugal

matrix, G(q) ∈ R4×1 is the gravitational vector, τf ∈ R4×1 is the friction vector, J is the
Jacobian matrix, Fext ∈ R4×1 is the external disturbance vector, q,

.
q,

..
q ∈ R4×1 are the

vectors of the position, velocity, and acceleration of the joint angles, τ ∈ R4×1 is the joint
torques vector, and α ∈ R4×4 is the diagonal positive define matrix.

By giving a constant diagonal matrix, M ∈ R4×4, the expression (9) can be rewritten in
another form as follows:

M
..
q + N

(
q,

.
q,

..
q
)
= τ (10)

where N
(
q,

.
q,

..
q
)
=
[
M(q)−M

] ..
q + C

(
q,

.
q
) .
q + G(q) + τf + JTFext + (I−α)τ is the total

lumped uncertainty components.

Assumption 1. The connection between the fixed base and the moving platform of the robot is
through the links and spherical joints. The mechanical parts are machined with high precision. So,
the friction among the joints of the robot is negligible.

2.3. Synchronous Errors and Cross-Coupling Errors

To consider the synchronous of a close-loop chain manipulator, the synchronous con-
trol objective is to simultaneously converge both the tracking error e(t) and synchronous
error es(t) to zero, whereby the deviation among two adjacent joints is called the syn-
chronous error. Moreover, to achieve this goal, the cross-coupled error is defined as the
combination of both tracking and synchronous error, and the cross-coupled error is used to
design a synchronous controller.

The synchronous error has the following form:

es1(t) = e1(t)− e2(t)
es2(t) = e2(t)− e3(t)
es3(t) = e3(t)− e4(t)
es4(t) = e4(t)− e1(t)

(11)

where esi (t) is the synchronous error of the ith axis, and ei(t) is the tracking error of the ith
joint.

Equation (11) can be rewritten in the matrix format as follows:
es1(t)
es2(t)
es3(t)
es4(t)

 =


1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1




e1(t)
e2(t)
e3(t)
e4(t)

 = Te(t) (12)

The cross-coupled error is expressed below as follows:

E(t) = e(t) +βes(t) (13)

where E(t) ∈ R4×1 is a cross-coupled error, and β ∈ R4×4 is a diagonal matrix positive
definite. Substituting (12) into (13), we can obtain Equation (13) in simple form as follows:

E(t) = (I +βT)e(t) (14)

where I is an identity matrix.
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Remark 2. Based on Equation (14), if the inverse (I +βT) exists, and β is chosen suitable,
(I +βT), it will be positive definite and have a full rank. When E(t)→ 0 leading to e(t)→ 0
and es(t)→ 0 , the synchronous control object will be obtained.

The first derivative of the function E(t) is calculated as follows:

.
E(t) = (I +βT(t))

.
e(t) (15)

The second derivative of the function E(t) is calculated as follows:

..
E(t) = (I +βT)

..
e(t) (16)

3. Control Design
3.1. Synchronous PD Control

The structure of the synchronous PD control for a 4-DOF parallel manipulator under
the existence of the uncertainty components is shown in Figure 3. The cross-coupling
error receives an informal tracking error of each joint and calculates the synchronous
error between two adjacent joints. After that, these two errors are incorporated into the
cross-coupling error, which is an input to the controller to calculate the control value.
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The control law is presented as follows:

τ = KP2E + KD2

.
E (17)

where KP2 , KD2 ∈ R4×4 denote the coefficient matrix of the proportional, derivative terms,
respectively, and positive definite. E ∈ R4×1 is the cross-coupling error vector.

3.2. Proposed Control

The diagram of the proposed control for a 4-DOF parallel robot in practice is presented
in Figure 4. The proposed control is developed from the synchronous PD control based on a
time-delay estimator (TDE). The TDE uses the past observation of the response of the system and
the control actions rather than adjusting the controller gains or identifying system parameters,
thereby leading to a model-independent controller. Indeed, TDE can estimate and eliminate the
uncertainty terms such as modeling errors and actuator faults in the system. Therefore, the quality
trajectory tracking is improved significantly, and the synchronous of the system is also achieved.
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The control objective is the output response q of the system following the reference
trajectory qd, which means the tracking error e = qd − q converges to zero. The following
defines the desired error dynamics:

..
e + KD*

.
e + KP* e = 0 (18)

Based on Figure 4, we can see that the control input has the following form:

τ = Mu + N̂
(
q,

.
q,

..
q
)

(19)

with
u =

..
qd + KD*

.
E + KP*E (20)

where N̂
(
q,

.
q,

..
q
)

denotes the estimate of N
(
q,

.
q,

..
q
)
, which is obtained via the TDE subsys-

tem. If the matrix M is chosen suitable, and the time delay L is small enough, we can obtain
N̂
(
q,

.
q,

..
q
)

equal to a slightly time-delayed past value, N
(
q,

.
q,

..
q
)

t−L, namely as follows:

N̂
(
q,

.
q,

..
q
)
= N

(
q,

.
q,

..
q
)

t−L (21)

Based on Equation (10), which can find N
(
q,

.
q,

..
q
)

at the time (t− L), and substituting
it into Equation (21), we obtain the following:

N̂
(
q,

.
q,

..
q
)
= N

(
q,

.
q,

..
q
)

t−L = τt−L −M
..
qt−L (22)

From Equations (19), (20) and (22), the SPD-TDE control law for a 4-DOF parallel
manipulator is expressed as follows:

τ = M
( ..

qd + KD*

.
E + KP* E

)
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( )1
t L

−
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Equation (29) is calculated by multiplying (28) with M  and combined with Equation 
(9) as follows: 

( )

t L−

= −
= + + + −

= + + + − −
f

f

Mε M u q
Mu Cq G τ τ
Mu Cq G τ Mu N







  (29)

Injecting desired dynamics

+ τt−L −M
..
qt−L
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Equation (29) is calculated by multiplying (28) with M  and combined with Equation 
(9) as follows: 

( )

t L−

= −
= + + + −

= + + + − −
f

f

Mε M u q
Mu Cq G τ τ
Mu Cq G τ Mu N







  (29)

TDE

(23)

The closed-loop dynamics are produced by replacing Equations (22) and (23) with
robot dynamics (10):

..
e + KD*

.
E + KP*E = M−1

[
N
(
q,

.
q,

..
q
)
−N

(
q,

.
q,

..
q
)

t−L

]
(24)

If the identity of N = Nt−L is assumed, the closed loop Equation (18) is the desired
error dynamics. The stability condition for the TDE is established by Hsia and Gao [37],
expressed using the following:

‖I−M−1M‖ < 1 (25)

When the close loop system is stable using the stability criterion (25), N−Nt−L is
bounded because N is the sum of continuous terms and bounded discontinuous terms. The
bounded TDE error ε is defined as follows:

ε , M−1
(N−Nt−L) (26)

Then, the closed-loop system dynamics with the TDE becomes the following:

..
e+KD*

.
E + KP*E=ε (27)

The TDE error ε is close to 0 in most of the operating time of the robot manipulators;
however, it exhibits a pulse-type error due to the discontinuity of Coulomb friction at
velocity reversal.

3.3. Stability Analysis

The boundedness of ε can be proved in the same manner as the stability proof in [31].
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The desired error dynamics can be described in different forms based on (20) and (27)
as follows:

ε = u− ..
q (28)

Equation (29) is calculated by multiplying (28) with M and combined with Equation (9)
as follows:

Mε = M
(
u− ..

q
)

= Mu + C
.
q + G + τf − τ

= Mu + C
.
q + G + τf −Mu−Nt−L

(29)

Referring to Equation (10), the time-delayed nonlinear component L can be presented
as follows:

Nt−L =
[
Mt−L −M

] ..
qt−L +

(
C

.
q
)

t−L +Gt−L + (τf)t−L +
(

JTFext

)
t−L

+ (I−α)τt−L (30)

Substituting (30) into (29), we have the following:

Mε =
(
M−M

)
u−

(
Mt−L −M

) ..
qt−L + ∆d (31)

where ∆d = C
.
q + G + τf +

(
C

.
q
)

t−L + Gt−L + (τf)t−L +
(
JTFext

)
t−L + (I−α)τt−L.

It is evident that ∆d is bounded for a small enough L. From Equation (28), we can
determine

..
qt−L as follows:

..
qt−L = ut−L − εt−L (32)

Utilizing (32) to (31), Equation (31) can be rewritten as follows:

Mε =
(
M−M

)
u−

(
M−M

) ..
qt−L + (M−Mt−L)

..
qt−L + ∆d

=
(
M−M

)
u−

(
M−M

)
(ut−L − εt−L) + (M−Mt−L)

..
qt−L + ∆d

=
(
M−M

)
εt−L +

(
M−M

)
(u− ut−L) + (M−Mt−L)

..
qt−L + ∆d

(33)

Equation (33) can be rewritten as follows:

ε = (I−M−1M)εt−L + (I−M−1M)(u− ut−L) + M−1[(M−Mt−L)
..
qt−L + ∆d

]
(34)

Equation (34) is simplified by putting the variables as follows:

Q = I−M−1M,α1 = u− ut−L,α2 = M−1[(M−Mt−L)
..
qt−L + ∆d

]
(35)

Therefore, the desired error dynamics ε is given using the following:

ε = Qεt−L + Qα1 +α2 (36)

For an adequate small time-delayed L, α1 and α2 are bounded.
Equation (36) can be expressed in the discrete-time domain as follows:

ε(k) = Q(k)ε(k− 1) + Q(k)α1(k) +α2(k) (37)

So, if ‖Q‖ < 1, then roots Q(k) reside inside a unit circle, and (37) is asymptotically
bounded with bounded forcing functions α1 and α2.

4. Experiment
4.1. Experiment Description

An experiment testbench is built, as shown in Figure 5, including a 4-DOF parallel
manipulator and a control cabinet. Firstly, a 4-DOF parallel manipulator is formed using a
base platform made of steel, four upper arms and four lower arms made of aluminum and
carbon, and a moving platform made of plastic. Four AC servo motors Mitsubishi 400 W
and four gears rate 1:25 actives for four arms make up the move end-effector, following the
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preset trajectory, which is attached on a moving platform. Secondly, a control cabinet to
control a 4-DOF parallel robot consists of a four-driver MR-JE-40A to the amplifier control
signal for four AC Servo, a control box that provides voltage control signals for four-drive
MR-JE-40A, according to the torque control mode and the electric devices, such as a circuit
break, contractor, noise filter module, and DC supply voltage module. Finally, the operating
process of the system is described in Figure 6.
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Figure 6. Description of the operating structure of the system.

Based on Figure 6, the controllers are built on the MATLAB Simulink 2019a using
the Waijung block set library. After that, these programs are embedded into the STM32
F407G board. There are two STM32 F407G boards used here, and they communicate via
the Can bus protocol. Each STM32 F407G board provides a signal control for two-drive
MR-JE-40A and makes the AC Servo motos run. For the STM32 F407G Master board, it
not only provides a control signal for the drivers but also reads the encoder signals from
motors through the corresponding drives at each joint. Furthermore, the STM32 F407G
Master board also receives control commands from Gui control and shows the responses of
the system intuitively.

4.2. Experiment Index

This section presents the experimental index of three controllers on a 4-DOF parallel
robot: PD, SPD, and SPD-TDE. The controllers are programmed on MATLAB Simulink
2019a and integrated into the Waijung block set library to support the embedded program
for the STM32 board to provide analog control signals to the motor driver. Moreover, a
circle trajectory, as calculated using expression (38), is set with the execution time of 40 s.
The operating frequency is 0.2π. The radius is 100 mm. The sampling time of the system is
0.005 s, and the Solver type is auto.
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
Px = 100 cos(0.2πt)
Py = 100 sin(0.2πt)
Pz = −500

(38)

Next, the control coefficients are presented in Table 2.

Table 2. The parameters of the controllers.

Controllers Parameters

PD KP1 = diag
([

55 55 53.5 40
])

, KD1 = diag
([

0.5 0.5 0.45 0.25
])

SPD KP2 = diag
([

55 55 53.5 40
])

, KD2 = diag
([

0.5 0.5 0.45 0.25
])

,
β2 = diag

([
0.15 0.15 0.15 0.15

])
SPD-TDE

KP∗ = diag([4200 4200 4150 4100]), KD∗ = diag([400 400 395 390]),
β∗ = diag([0.15 0.15 0.15 0.15]), M = diag([0.0006 0.0006 0.0006 0.0006]),
L = 0.005

Remark 3. The parameters KP1 , KD1 of the PD control are selected via the trial-and-error method.
Consequently, when incorporating the synchronous method into the PD control, β2 is also designed
and selected according to trial and error, starting from 0, with a step size of 0.1. For the proposed
control method SPD-TDE, the robot operates effectively in reality. The control coefficients are
selected according to the given conditions. The parameter in the diagonal matrix M must be selected
according to the stability condition presented in Equation (25). Then, the coefficient KP* , KD* of
the SPD-TDE control is selected with the initial reference value based on the following relationship
KP1,2 = MKP* , KD1,2 = MKD* . Finally, the delay time is the selected sampling time of the system,
and the value of the synchronous coefficient matrix β* is also selected similarly to the PD control
and SPD control.

In addition, to better demonstrate the effectiveness of the proposed controller, the
modeling error and actuator faults are put into the experimental process. The model-
ing error exists in the N

(
q,

.
q,

..
q
)

term of the Formula (10). Actuator faults or the loss
of efficiency faults of the motors will occur during the operation, and this is expressed
via the coefficient α in Formula (9). In summary, there are three case studies conducted
in this study. In case study 1, the robot operates normally, and there no losses of ef-
ficiency faults α = diag

([
1 1 1 1

])
. In case study 2, the robot operates with 2 kg

load with α = diag
([

1 1 1 1
])

. In case study 3, the robot operates under the af-
fected with a loss of efficiency of the motors during the operation according to the
following scenarios: at the 10th second, the efficiency of motor 1 is reduced by 15%
α = diag

([
0.85 1 1 1

])
; at the 15th second, the efficiency of motor 3 is reduced by 20%

α = diag
([

0.85 1 0.8 1
])

; at the 20th second the efficiency of the motor 2 reduce by
25% α = diag

([
0.85 0.75 0.8 1

])
; and at the 30th second, the efficiency of the motor 4 is

reduced by 30% α = diag
([

0.85 0.75 0.8 0.7
])

.
Finally, a well-known method to evaluate the standard deviation of the errors is called

the root-mean-square error (RMSE), and the mathematical expressions are presented as
Formula (39). In this study, the RMSE is used to evaluate the errors in case studies 1, 2, and
3 and to prove most clearly the effectiveness of the proposed method.

RMSE =

√
1
n

n

∑
i=1

(si − oi)
2 (39)

where n is samples of modeling errors, si is the desired value, oi is the response value, and
i is a variable.

4.3. Experiment Results

Case Study 1:



Machines 2023, 11, 831 12 of 21

During the experiment of the robot, data, such as the response of the joint angle,
tracking error, synchronous error, and the control signal of three controllers, PD, SPD, and
SPD-TDE, were collected to visually describe the state of the robot corresponding to each
controller. Firstly, the joint angle response relative to the desired signal is presented in
Figure 7.
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The desired and response signals at the four joint angles relative to the reference signal
corresponding to each controller are described in Figure 7. The solid black line is the
reference signal, and the dashed black line is the response signal of the joint angles when
using the PD control. Likewise, the dashed blue line is for the SPD control, and the dashed
red line is for the SPD-TDE control. Based on Figure 7, we can see that the response of the
joint angles of the three controllers compared to the desired signal is very good. Therefore,
to see more clearly the effectiveness of the proposed method or the difference between
the response signal and the desired signal, the tracking error at each joint angle of the
three controllers is shown in the following figure.

Figure 8 shows the tracking error at each active joint of the robot according to time.
The dashed black line shows the tracking error of the joint angles when using the PD
control, the dashed blue line shows the tracking error of the SPD control, and the dashed
red line shows the tracking error of the SPD-TDE control. Based on Figure 8, we can
see that the tracking error of the SPD control and SPD-TDE control is better than the
asynchronous PD control. In there, the SPD-TDE control is designed based on TDE; thanks
to this combination, the nonlinear and uncertain components of the system are eliminated.
Therefore, the tracking error of the SPD-TDE control gives the best tracking error compared
to the other controllers. Next, to demonstrate the necessity of the synchronous method for
robots with closed-loop structures that have many constraints on the fixed base and the
movable base, the synchronous error is presented, as shown in the figure below.
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Figure 9 displays the synchronous error between the joints as well as the difference in
the position error between two adjacent joints. The dashed black line is the synchronous
error of the PD control. The dashed blue line is the synchronous error of the SPD controller.
The dashed red line is the synchronous error of the SPD-TDE control. Based on the data in
Figure 9, we can see that the synchronous error of the asynchronous PD control is larger
than the two controls combined with the synchronous algorithm: SPD and SPD-TDE. With
the synchronous interest, the tracking and synchronous errors are proportional to each other.
Specifically, asynchronous controllers will have large synchronous errors leading to large
tracking errors and contrast. Besides that, the synchronous error of the proposed control
still gives the best results. Thereby, the robustness of the TDE method when combined with
the synchronous method in this study is confirmed. Next, the control signal at each joint of
the robot is presented in Figure 10 below.

Generally, the evaluation of the effectiveness of the proposed method by observing
the graph is only the objective of the observer. Therefore, to increase persuasion, the RMSE
method calculates the root-mean-square error of the tracking error and the synchronous
error in this case. The calculation results are presented in Tables 3 and 4.

Table 3. Root-mean-square error of the tracking error at each joint.

Controllers Joint 1 Joint 2 Joint 3 Joint 4

PD 0.2493 0.2590 0.2393 0.2357

SPD 0.2397 0.2537 0.2333 0.2355

SPD-TDE 0.0216 0.0207 0.0218 0.0270
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Table 4. Root-mean-square error of the synchronous error among two adjacent joints.

Controllers Joints 1 and 2 Joints 2 and 3 Joints 3 and 4 Joints 4 and 1

PD 0.1781 0.1834 0.1233 0.1437

SPD 0.1328 0.1530 0.1100 0.1342

SPD-TDE 0.0264 0.0275 0.0271 0.0297

Based on Tables 3 and 4, we can conclude that the proposed method SPD-TDE has the
best error quality compared to the remaining controllers. Next, to see the effectiveness of
the synchronous and TDE method applied to a 4-DOF parallel robot. In case study 2, we
carried out the robot carrying a load of 2 kg during the operation process.

Case Study 2:
In this case, the robot is loaded with a mass of 2 kg. Then, the tracking error at each

joint of the robot is presented in Figure 11.
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Based on Figure 11, when the robot is loaded, the tracking performance of the con-
trollers decreases. However, thanks to the compensation of uncertainty components in the
system of the TDE method, the tracking quality of the SPD-TDE method is still better than
the other controllers. Moreover, carrying the load also makes the robot deviation larger
between the joints of the robot, and the synchronous method also overcomes this problem.
Therefore, the tracking quality of the SPD is better than the asynchronous PD control. Next,
the synchronous error of the robot is shown in Figure 12.
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Figure 12 shows the synchronous error between two adjacent joints of the robot.
Thanks to the characteristics of the closed-loop structure, the load will be equally shared for
each kinematic chain of the robot. However, the reduction in the synchronous performance
of the robot still occurs. But the application of the synchronous algorithm has significantly
improved the tracking quality of the SPD and SPD-TDE controllers. In particular, the
SPD-TDE controller gives much better synchronous error results than other controllers
thanks to the compensation of dynamic components in the system.

In addition, the root-mean-square error of the tracking error and synchronous error
are also calculated and shown in Tables 5 and 6.

Table 5. Root-mean-square error of the tracking error at each joint.

Controllers Joint 1 Joint 2 Joint 3 Joint 4

PD 0.3590 0.3525 0.3062 0.3618

SPD 0.3400 0.3452 0.3032 0.3602

SPD-TDE 0.0271 0.0253 0.0260 0.0285

Table 6. Root-mean-square error of the synchronous error among two adjacent joints.

Controllers Joints 1 and 2 Joints 2 and 3 Joints 3 and 4 Joints 4 and 1

PD 0.2308 0.2408 0.1512 0.1767

SPD 0.1837 0.1975 0.1310 0.1704

SPD-TDE 0.0337 0.0305 0.0324 0.0364
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From Tables 5 and 6, we can see that the error quality of the synchronous control is
better than the asynchronous control. Moreover, the ability to estimate and eliminate the
uncertainty term in the system. So, the control method SPD-TDE obtains the smallest error.

Next, to see the robustness of combining the SPD control method with the TDE method,
in case study 3, actuator faults in the system are established on the real model, as mentioned
in the experiment index.

Case study 3:
In this case, the loss of efficiency of the motors during the operation will be introduced

into the system to demonstrate the effectiveness of the proposed method. Firstly, the
tracking error at each joint is shown in Figure 13.
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Figure 13 shows the tracking error at each joint in the case of the influence of modeling
error and actuator faults. Based on the figure, we can see that although there are adverse
effects on the system, the sustainability of the proposed method is still strongly shown.
Specifically, the tracking error of the SPD-TDE control is much better than the tracking
error of the PD control and the SPD control. Next, the synchronous error, in this case, is
shown in Figure 14.

Figure 14 shows the synchronous error between the joints of the robot. When modeling
errors and actuator faults, the errors are impacted at different times, and the deviation
between joints occurs, leading to asynchrony between joints. At that time, the robustness of
the synchronous method is promoted. As a result, the synchronous error of the SPD control
and the SPD-TDE control is better than the asynchronous PD control, and the error of the
SPD-TDE control is the smallest.

In this case, the root-mean-square error is calculated and expressed in Tables 7 and 8.
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Table 7. Root-mean-square error of the tracking error at each joint.

Controllers Joint 1 Joint 2 Joint 3 Joint 4

PD 0.3590 0.3525 0.3062 0.3618

SPD 0.3400 0.3452 0.3032 0.3602

SPD-TDE 0.0271 0.0253 0.0260 0.0285

Table 8. Root-mean-square error of the synchronous error among two adjacent joints.

Controllers Joints 1 and 2 Joints 2 and 3 Joints 3 and 4 Joints 4 and 1

PD 0.2308 0.2408 0.1512 0.1767

SPD 0.1837 0.1975 0.1310 0.1704

SPD-TDE 0.0337 0.0305 0.0324 0.0364

From Tables 7 and 8, we can realize that the error quality of the SPD-TDE control is
much smaller than the other controllers, and the SPD control has an error quality better
than the PD control. From that, the effectiveness of the proposed method is revealed when
applied to a 4-DOF parallel robot. The operating performance of the system, as well as the
capability trajectory tracking of the end-effector, has improved significantly.

5. Conclusions

This paper proposed the SPD-TDE control for a 4-DOF parallel manipulator under
the existence of nonlinear and uncertain components in the system, including modeling
error and actuator faults. The proposed control is built based on the combination of SPD
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control with the TDE method. The 4-DOF parallel robot system has a closed-loop structure,
and the binding occurs between the fixed base and the movable base via the identical
kinematic sequences. At that time, the synchronous method solved the asynchronous
problem between the joints of the robot by designing a synchronous algorithm based on
the cross-coupling error. When the cross-coupling error converges to zero or when both the
tracking and synchronous errors converge to zero simultaneously, the synchronous aim
has been accomplished. In addition, the TDE method provided a simple control structure
and eliminated the nonlinear and uncertain components in the system using time-delayed
information. As a result, the operating performance of the robot and trajectory tracking
quality are significantly improved. The experimental process is divided into three different
case studies, and the results of the proposed control are compared with the PD control and
SPD control to demonstrate the sustainability and effectiveness of the proposed method.
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Appendix A

For the first arm, the formula of E1, F1, and G1 is presented as follows:

E1 = 2L1Z
F1 = 2L1r− 2L1X cos α1 − L1d cos α1 − 2L1d1 cos α1 − 2L1Y sin α1 − 2L1h1 sin α1 + 2L1h cos α1 sin θ

−2L1h sin α1 cos θ

G1 = −E1 sin q1 − F1 cos q1

For the second arm, the formula of E2, F2, and G2 is presented as follows:

E2 = 2L1Z
F2 = 2L1r− 2L1X cos α2 + L1d cos α2 + 2L1d2 cos α2 − 2L1Y sin α2 − 2L1h2 sin α2 + 2L1h cos α2 sin θ

−2L1h sin α2 cos θ

G2 = −E2 sin q2 − F2 cos q2

For the third arm, the formula of E3, F3, and G3 is presented as follows:

E3 = 2L3Z
F3 = 2L1r− 2L1X cos α3 + L1d cos α3 + 2L1d3 cos α3 − 2L1Y sin α3 + 2L1h3 sin α3

G3 = −E3 sin q3 − F3 cos q3

For the fourth arm, the formula of E4, F4 and G4 is presented as follows:

E4 = 2L4Z
F4 = 2L1r− 2L1X cos α4 − L1d cos α4 − 2L1d4 cos α3 − 2L1Y sin α4 + 2L1h4 sin α4

G4 = −E4 sin q4 − F3 cos q4
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