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Abstract: The MK circles represent a kinematic synthesis tool for the dimensional synthesis of
planar dyads. The tool is uniquely useful in its ability to both find specific dyad solutions and help
the designer visualize numerous potential dyad pivot locations in the solution space. Here, the
existing understanding of MK circles is summarized for three and four specified motion positions
and extended for additional positions. Then the technique is expanded to show its application to
MKT circles for triad synthesis, including solution space visualization, ground pivot specification,
and multi-loop synthesis of complex mechanisms. These methods are illustrated by a unifying
example that provides a sample procedure for applying the MK/MKT circles, and implements each
of the aforementioned techniques. The interchangeability of loop-based synthesis approaches is
demonstrated by comparing the new methodology to the compatibility linkages technique.
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1. Introduction

Dyads and triads are two- and three-link chains that may be viewed as the building
blocks for planar linkage mechanisms. The MK1 [1–3] circles are a useful tool for both
finding solutions to mechanism design problems and for visualizing properties of the
possible pivot location solution space. The name MK circle stems from the German words,
“Mittelpunkt” and “Kreispunkt”, which refer to the center point (ground pivot) and circle
point (moving pivot) of a dyad. This information is compiled and updated in a new
way, and then expanded to show its applications to triads in several prescribed positions.
The property of kinematic synthesis that dyad pivot location solutions settle into circles
was first observed by Loerch, who demonstrated the existence of these circles, identified
some of their properties, and found solutions for up to five prescribed positions of path
generation [1]. Mlinar expanded on these findings to include triad synthesis, but primarily
focused on the existence of forbidden regions in triad synthesis and did not lean into the
potential implications for identifying solution triads [3,4].

This paper provides an improved understanding of synthesis of dyads and triads
using MK circles by encapsulating the key ideas of both previous works and expanding
upon them. Here, we demonstrate the effectiveness of the synthesis method for motion
problems in five prescribed positions for a dyad and up to seven positions for a triad. A
geometry-inspired algorithm is developed for finding circle intersections in terms of the
free-choice variable. Further, the method is demonstrated to be effective for specifying the
ground pivot location of a triad chain for multi-loop synthesis, an approach which was not
previously considered. Finally, a practical example is provided which shows how designers
may apply the multi-loop synthesis approach advocated in this paper to real problems.
This example unifies the theory and shows how it may be practically useful, a concern
which was not addressed in the previous works. Additionally, the example proves that
other loop-based synthesis approaches for deriving dyad and triad chains are compatible
with the present method [2,5–10]. While the MK circles are effective for finding dyad and
triad solutions using either R or P joints, all figures included in the present work show
solutions comprised of pinned (R) f1 joints.
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2. Body

When performing the dimensional synthesis of a dyad (see Figure A2a), it is possible
to find a solution for the vectors representing this dyad (and therefore the pivot locations
in their first position) directly through linear algebra for up to three positions, using the
“standard form” equations shown in Equation (1). This matrix equation is generated by
vector loops–Figure A2a yields the first row in this equation.[

eiβ2 − 1 eiα2 − 1
eiβ3 − 1 eiα3 − 1

][
W
Z

]
=

[
δ2
δ3

]
(1)

In three positions of motion generation, δ2, α2, δ3, and α3 are prescribed and both
the angles β2 and β3 are free choices. If a designer holds the value of β2 constant in
Equation (1), then iterates through many values of β3, plotting the XY coordinates of either
the ground pivot (vector origin for W) or the moving pivot (vector origin for Z) will cause
a circle to emerge. Each point on this circle represents a unique pivot location which is
a solution to Equation (1). The standard form equations for a dyad in four positions are
included in Appendix A.

A designer may choose any of these pivot locations to generate one dyad, effectively
choosing the value of β3. If no satisfactory solutions exist on the circle (for example, an
acceptable ground or moving pivot location), they may choose a new value of β2, which
then generates a new circle of β3 values. One such pair of MK circles is seen in Figure 1.
Consistently throughout this paper, figures use red points to indicate ground pivot locations,
and blue points to indicate moving pivot locations.
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Burmester’s original planar synthesis theory [11–13]. The pole positions are also shown in 

Figure 1. A depiction of the MK circles for a dyad in three positions. PP1 = (0, 0). δ2 = 1.75 + 1i.
δ3 = 3.5 + 3i. α2 = −50, α3 = −90, and β2 = −110. The red circle represents potential ground pivot
locations, while the blue circle represents potential moving pivot locations.

3. Poles

Poles are linked to the MK theory in the same way the poles were a critical part of
Burmester’s original planar synthesis theory [11–13]. The pole positions are also shown
in Figure 1 along with the MK circles, and they denote special points in the plane; given
any two prescribed positions of a moving plane including their rotation angles, the pole
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represents the fixed pivot location about which a rigid link would purely rotate that plane
from one position to the other. For dyads, the location of poles of the moving plane can be
precisely found using Equations (2)–(4), which express the position of the pole relative to
the first prescribed position of the moving plane [2] (p. 119). The image poles express a
similar concept but are found by reflecting their corresponding natural pole across a line
formed by two other poles. For example, in Figure 1, pole P23′ is found by reflecting the
point P23 across the line P12P13.

In Figure 1, it is observed that although a uniform increment is used for each value of
β3, the solution density of ground and moving pivots is highest around certain poles, and
the density is the lowest at the opposite end of the circle. Notice that for the ground pivot
circle of a three-position problem, this high-density region forms around pole P13. While
the circles are continuous if an infinite number of points are plotted, this indicates that a
larger range of β3 values have their solution adjacent to the given pole.

P12 =
δ2

1− eiα2
(2)

P23 =
δ3eiα2 − δ2eiα3

eiα2 − eiα3
(3)

Other poles follow the same equation patterns, with any pole relative to position one
using Equation (2) (with the appropriate change in numbers, e.g., substitute subscript 3′s
for 2′s), and poles between any other two positions are found using Equation (3). Image
poles are found by first identifying the base pole (i.e., P23 to find P23′ ), and then using
Equation (4).

P
′
23 = 2w− real(P23) + i(2dm− imag(P23) + 2b) (4)

In which b is the y-intercept coordinate of the line passing through the points P12 and
P23, m is the slope of that same line, and d is the expression shown in Equation (5). Real()
and imag() denote the real and imaginary components of the pole [14].

w =
real(P23) + (imag(P23)− b)m

1 + m2 (5)

Poles have special significance in the dyad solution space. In Figure 1, the value of free
choice β2 has been held constant, while β3 was varied. If β2 is also varied, an interesting
pattern emerges. In Figure 2, six values of β2 are plotted with the same several hundred
values of β3 as before. Each unique value of β2 generates a new circle. What makes
this outcome so interesting, though, is that each of these circles passes through the same
two points, which happen to be the poles.

These properties observed for the MK circles are due to each pole representing a
special case of the selected free choices that will be present on every circle. For example,
P13 is a consistent ground pivot solution because of the case when β3 = α3. In this instance,
the dyad will behave similarly to a single link as it rotates from position one to three, and
therefore the only place a ground pivot could exist is P13. Similarly, P13 is a consistent
moving pivot location because of the special case where β3 = 0, in which case all motion
between positions one and three would have to stem from the rotation of the moving plane
about the pivot point K1. The poles are also useful as they mark points that the Burmester
curves pass through for the four specified positions, allowing for a rough sketch of the
shape of the curves with limited calculation [2,15].
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Figure 2. Six values of β2 are plotted with several hundred values of β3 each. β2 has an initial value
of −110 degrees, as in Figure 1, and the increment between each value of β2 is 60 degrees.

At times it may be valuable to create the circles directly. In this case, there are two
primary approaches to finding the center points and radius of the circles. Any circle may
be defined by three points which it intersects, so one process is to find three points on
each circle and then derive the circle description from these points. The other approach is
purely geometric and is derived from the pole positions: for three positions, find each of the
natural poles and the image pole P23′ using Equations (2)–(4). P13 and P23 are associated
with the M circle, and P13 and P23′ are associated with the K circle. To find the circle centers,
draw a perpendicular bisector through each of these two pairs of poles. These two lines
are the centerlines on which the center points of each circle will lie. For each unique value
of β2, use the angular relationships established in Equations (6) and (7) to find the center
points (CM and CK) of the M and K circles, respectively.

∠P13CMP23 = β2 = 2θM (6)

∠P13CKP
′
23 = α2 − β2 = 2θk (7)

These angles locate the position of the center of each circle. Once located, the radius of
each circle is given in Equations (8) and (9). For the M circle, if the value of β2 is negative,
an observer viewing pole P13 from the center of the circle would rotate clockwise by the
angle |β2| to arrive at pole P23 (as in Figure 3). If the value of β2 is positive, the observer
rotates counterclockwise from P13 to P23.

rM = P13CM =
d/2

sin(θM)
(8)

rK = P13CK =
d/2

sin(θK)
(9)
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Figure 3. A depiction of a single ground pivot circle with the key geometric parameters labeled for
the identification of the center point coordinates and radius of the circle in terms of β2.

Using this approach, the complete set of dyad solutions for a particular value of β2 is
found without using the standard form equation.

If the motion generation problem requires four precision positions, a linear solution is
no longer possible, which at first glance seems to render the MK circles useless, as plotting
them relies on a linear solver technique. However, there still is a practical application for
them. As an example, consider first finding a possible ground pivot (M location) for the
four-position problem; it is impossible to make a single circle that spans the four positions,
but the solution can be reimagined as an intersection of two sets of M circles, with each
set drawn from three of the four positions. Typically, the first circle is taken from precision
positions 1, 2, and 3, while the second is created using positions 1, 2, and 4. Where these
circles intersect represents a pivot location that fulfills both the first three positions, and
positions 1, 2, and 4. For any given value of β2, iterating through values of β3 will generate
the 123 circle, and iterating through values of β4 will generate the 124 circle. The pairs
of circles will intersect zero, one (if the circles are tangent to one another), or two times,
indicating the number of solutions available for the given value of β2. These intersecting
circle pairs for both M and K circles can be seen in Figure 4.

For a motion-generation dyad, the maximum number of prescribed positions with
an exact solution is five (See Table 1). There are no free choices in this case. An example
figure of the MK circles for a dyad in five prescribed positions is shown in Appendix B. The
geometric formulation introduced in Equations (2)–(9) allows for the formulation of a new
algorithm which may be used to identify intersections between these sets of circles in terms
of the free choice variable β2. The procedure is as follows.
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Figure 4. Sample view of the MK circles for a dyad in four precision positions, with the poles,
W, and Z vectors shown. Here, PP1 = 0 + 0i, PP2 = 1.75 + 1i, PP3 = 3.5 + 2i, PP4 = 5.5 + 1i. α2 = −50,
α3 = −90, α4 = −110. Pictured circles are for β2 = −110. W = 0.514 + 0.382i, Z = −3.141 + 1.245i.
W* = 1.232 + 0.894i, Z* = −4.895 + 1.036i.

Table 1. A classification of the prescribed data and maximum number of potential solutions for each
number of prescribed positions of a dyad.

Number
of Positions

Prescribed
Values Unknowns Free Choices Number

of Solutions

2 δ2, α2 5 *—W, Z, β2 3—β2, W or Z ∞ 3

3 δ2−3, α2–3 6—W, Z, β2–3 2—β2–3 ∞ 2

4 δ2−4, α2–4 7—W, Z, β2–4 1—β2 ∞ 1

5 δ2−5, α2–5 8—W, Z, β2–5 0 Finite
* Because W and Z are both vector quantities, they account for two unknowns each. Table shows the number of
free choices available for a dyad based on the number of prescribed positions. Notice that for three positions
(Equation (1)) there are two free choices, which are represented by the MK circles as β2 and β3 are varied. For
the cases of four and five positions, this paper shows how multiple sets of MK circles are combined to yield
dyad solutions.

First, find the coordinates and radius of each circle in terms of β2 using Equations (6)–(9).
If the inter-center distance between any two circles is greater than rM1 + rM2, the circles do
not intersect, and no solutions exist for that given value of β2. Second, the distance from
each circle center to the radical line must be found. For any two non-congruent circles, the
radical line is the line passing through their intersection points [16,17]. These distances are
given in Equation (10), where d is the distance between the circle’s center-points.

a =
r2

M1 − r2
M2 + d2

2d
(10)
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Using this term, a, the distance along the radical line between the intersection point
and the line between the circle centers is calculated using Equation (11).

y1 =
√

r2
1 − a2 (11)

With the variables a, d, and y1 determined, all the required information is known to
identify the intersection points. The last step is to adjust the coordinate system to align the
local system with the global coordinate system. This is achieved by multiplying by unit vec-
tors set in the proper directions. The two vectors are given in Equations (12) and (13) [18].

e1 =
1
d
∗
(

CM2x − CM1x
CM2y − CM1y

)
(12)

e2 =
1
d
∗
(

0 −1
1 0

)
(13)

These vectors are utilized in the following expression, which locates the one or
two intersection points between two circles relative to the center of the first circle.

Int1,2 = CM1 + a ∗ e1 ± y ∗ e2 (14)

This function is determined entirely by the value of β2 and the pole positions, which
are set by the problem definition. The simplest way to implement this expression for the
five-position case is to identify the intersection points between the first two circles, and
then find the intersections between the third circle and either of the first two. A viable
value of β2 is determined in any case where a matching intersection point is found.

4. Triad MKT Circles

The MK circle concepts can be expanded to apply to triads as well, with many of the
core concepts above having parallels in triad synthesis. The shorthand ‘MKT’ will be used
in this paper, with the T representing the third, triad circle. Each point on this circle is the
second moving pivot of a triad chain; this can also be thought of as the end of Z or the tail
of V which extends out to the precision point. Figure A2b shows a triad in two positions
with the appropriate labeling.

5. Triad Circles

One key difference in finding a single circle set for the triad versus the dyad, is the
size of the matrices, and consequently, the number of positions considered. The standard
form equations of a triad are shown in Equation (15), for four positions.eiβ2 − 1 eiα2 − 1 eiγ2 − 1

eiβ3 − 1 eiα3 − 1 eiγ3 − 1
eiβ4 − 1 eiα4 − 1 eiγ4 − 1

W
Z
V

 =

δ2
δ3
δ4

 (15)

See Table 2 for a list of prescribed positions of motion generation of a triad along with
the corresponding free choices. This table and Equation (8) reveal that the solution to these
standard form equations is linear through four motion generation prescribed positions,
where the dyad was only linear in up to three positions. This results in the basic case of the
triad MKT circle representing four positions, rather than three, e.g., for the dyad. The MKT
circles for a typical triad case are shown in Figure 5.
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Table 2. A classification of the prescribed data and maximum number of solutions for each number
of prescribed positions of a triad.

Number of Positions Prescribed Values Unknowns Free Choices Number of Solutions

2 δ2, α2, γ2 7 *—W, Z, V, β2 5—β2, W and Z ∞ 5

3 δ2−3, α2–3, γ2–3 8—W, Z, V, β2–3 4—β2–3, W ∞ 4

4 δ2−4, α2–4, γ2–4 9—W, Z, V, β2–4 3—β2–4 ∞ 3

5 δ2−5, α2–5, γ2–5 10—W, Z, V, β2–5 2—β2–3 ∞ 2

6 δ2−6, α2–6, γ2–6 11—W, Z, V, β2–6 1—β2 ∞ 1

7 δ2−7, α2–7, γ2–7 12—W, Z, V, β2–7 0 Finite

* Because W and Z are both vector quantities, they account for two unknowns each.
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One additional difference to note is just how many more variables are at play in triad 

synthesis for the linear solution case (Table 2). There is a whole additional set of rotational 

angles—the gamma values which represent the angular displacements of the third link—

and one more rotational angle in each set (e.g., β2, β3, and β4, as opposed to β2 and β3 for 

the dyad). An example of varying multiple free choice variables is shown in Figure 6. In 

this Figure, α2 and α3 are free choices that locate the center point location of the circles. 

Figure 5. A depiction of the MKT circles of a triad in four precision positions. In this example, the
γj and βj angles are prescribed in the problem, indicating the base triad case is a motion generation
problem with prescribed timing, and making the αj angles the free choices. However, any of the three
sets of angles can be taken as a free choice by defining the problem differently. Here, PP1 = 0 + 4.0i,
PP2 = 2.552 + 3.329i, PP3 = 5.023 + 1.957i, PP4 = 8.564 + 6.014i, α2 = 60. γ2 = 30, γ3 = 90, γ4 = 145,
β2 = 10, β3 = 70, β4 = 140.

One additional difference to note is just how many more variables are at play in
triad synthesis for the linear solution case (Table 2). There is a whole additional set of
rotational angles—the gamma values which represent the angular displacements of the
third link—and one more rotational angle in each set (e.g., β2, β3, and β4, as opposed to
β2 and β3 for the dyad). An example of varying multiple free choice variables is shown in
Figure 6. In this Figure, α2 and α3 are free choices that locate the center point location of
the circles. For each new value of α2 or α3 that is plotted, an additional circle emerges. The
points on these pivot circles are found by varying the value of α4 from 0 to 360◦. Figure 6
shows six circles of each type (M ground, K1 moving pivot, T1 moving pivot).
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Figure 6. A triad in four positions. Testing six values of α3 (resulting in six circles in each M, K
and T set) and numerous values of α4 (creating each unique point on the circles). PP1 = 0 + 4i,
PP2 = 2.553 + 3.329i, PP3 = 5.023 + 1.957i, PP4 = 8.564 + 6.014i. β2 = 60, β3 = 70, β4 = 140, α2 = 40,
γ2 = 30, γ3 = 90, γ4 = 145.

An astute observer may notice that in Figure 6 it appears as though the circles are
quite close to portraying the pole behavior visible in Figure 2 for a dyad, with every unique
circle in each color-coded set passing through the same two points—revealed in that case to
be the poles. However, in this case, there are a few outliers, and not every circle coalesces
at the same two points. It seems intuitive that an analogous structure to the dyad poles
would exist for the triad, as many similar special cases exist. For instance, if βj = αj, or
αj = γj, the triad simplifies to a dyad as Z rotates congruently to W or V, further indicating
the existence of special pivot points. A full investigation into the position and properties of
these hypothetical triad poles is left for future work, but the concept shows promise for a
more complete understanding of the triad solution space.

As with the dyad, the triad can be expanded beyond its linear solution case of four
positions: all the way up to seven prescribed positions. Solutions are found by identify-
ing intersections between the respective circles. Figure 7 shows a sample triad for five
prescribed positions. Figures depicting the six- and seven-position cases are included in
Appendix B.

Although the dyad in five prescribed positions similarly required a three-way intersec-
tion and did not allow any free choices, the triad in six prescribed poses does still allow one
free choice. Typically, this is chosen as either β2 or α2. The solution is found at the three-
way intersection of circles formed from positions 1,2,3,4, 1,2,3,5 and 1,2,3,6. A designer
may make a free choice for the value of β2, then solve for the value of β3 which produces a
triple intersection point (if indeed any exist, not all values of β2 are guaranteed to produce
a valid solution) [5] (p. 43). Figure A5 depicts a triple intersection point for a triad solved
for six prescribed positions. In Figure A6, a solution triad is shown for a problem defined
by seven precision positions. In the seven-position case, four circles must intersect at a
single point, and the designer has no free choices. This makes the seven-position case quite
difficult to implement practically, as solutions are extremely limited.
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inets and boxes is how to implement the hinges to open the container lid. Perhaps the 
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ternal hinges have their drawbacks. They are difficult to conceal, potentially hampering 

the aesthetics of the container, and they take up space on the outside. Oftentimes kitchen 
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Figure 7. The triad MKT circles are shown in five prescribed positions, with one possible solution
triad highlighted. PP1 = 0 + 0.0i, PP2 = 1.552 + 1.329i, PP3 = 3.023 + 2.957i, PP4 = 4.564 + 2.014i,
PP5 = 6.564 + 1.014i. β2 = 30, β3 = 70, β4 = 140, β5 = 150, α2 = 60, γ2 = −30, γ3 = −60, γ4 = −65,
γ5 = −90. The highlighted solution is W = −1.634 + 0.695i, Z = 1.694 + 0.901i, V = −5.351 + 2.733i.

6. Example

To demonstrate the kinematic synthesis solution procedure for a mechanism made up
of dyads and triads, the MK and MKT circle methodology presented above is applied to a
practical mechanism example. One common aesthetic and practical challenge in cabinets
and boxes is how to implement the hinges to open the container lid. Perhaps the most used
and inexpensive solution is a simple external single-axis hinge. However, external hinges
have their drawbacks. They are difficult to conceal, potentially hampering the aesthetics
of the container, and they take up space on the outside. Oftentimes kitchen cabinets will
use external hinges, but the cabinet doors then need to be spaced far enough apart to allow
space for these hinges. To solve this issue, internal hinges may be used. However, due to
the thickness of the cabinet doors, single-axis hinges need to be inset into the cabinet door,
or else they will be physically impossible to open. Moving beyond simple hinges, a linkage
mechanism can resolve these challenges, as a mechanism allows for both translational and
rotational motion. Here, a lid/door opening mechanism will be synthesized which first
pushes the lid laterally away from the container, and then rotates the lid open, allowing the
mechanism to reside fully inside the container.

Solution: first, a basic linkage topology must be selected. Based on observation and
experience it is doubtful whether a basic four-bar linkage would be able to achieve the
desired translation and rotation while still fitting inside a reasonably small space. The
Watt 1 six-bar mechanism is known for producing complex motions, so that is the linkage
topology selected. This mechanism is shown with its dyad and triad loops highlighted in
Figure 8.
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Figure 8. (a) The Watt 1 topology is shown, with the individual loops highlighted. (b) The loops are
separated to show the individual synthesis chains more clearly. Loop one and loop three are dyads
shown in black and blue, respectively, while loop two is a triad shown in red.

This problem will be solved using four prescribed positions of the motion generation
link, here chosen as the third link in the triad. The first two positions will guide the
translation of the lid away from the container, while the next two focus on rotating the lid
away from the opening, as shown in Figure 9.

To synthesize the Watt 1 mechanism, first, the dyad identified as loop one in Figure 8b
is synthesized. Then, the triad (loop two) is designed; note that the triad loop shares a
ground pivot and the rotation angle β of its first link with the loop one dyad. Finally, the
third loop (another dyad) is synthesized. This dyad’s ground pivot location is completely
free of the other two, but its second link shares its rotation angles with the second link of
the triad. The key synthesis process details are summarized in Table 3.

Table 3. Summary of known and unknown quantities for Watt 1 topology.

Loop # Prescribed Values Unknowns Connection

Loop 1 δ2−4 Oa, β2–4, α2–4 -

Loop 2 δ2−4, β2–4, Oa α2–4 β2–4, Oa from Loop 1

Loop 3 δ
′
2−4, α2–4 β2–4 δ

′
2−4, α2–4 from Loop 2 *

* δ
′
j is calculated from PPj minus Vj, as shown in Equation (9).

6.1. Loop One

The first dyad has additional free choices that are not afforded to the other loops. In
the topology shown in Figure 8a, the displacement angles of the first link are the same
as the first link of the triad. This means that both the βj and αj angles are initially free
selections for this dyad, but their values have great implications for the other two chains.
Thus, even for four prescribed positions, there are many more possible solutions for this
dyad than can be represented by a single selection of input parameters. In Figure 10, the
MK circles for the selected four-precision position dyad problem are shown.
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Figure 10. The MK circles for the loop one dyad of the final mechanism, with a dyad solution shown.
W = 0.786 − 0.208i, and Z = −0.230 + 0.644i. The βj angles were set as β2 = −18.582, β3 = −21.767,
β4 = −12.517. The free choice was chosen as α2 = 5.862.



Machines 2023, 11, 841 13 of 22

6.2. Loop Two

The synthesis procedure becomes a bit more complex with the introduction of the
second synthesis loop, the triad. Here, to affirm the Watt 1 topology, the ground pivot
location must be specified to match the dyad formed in loop one. Additionally, all the β

and γ angle values are specified, as γ1–4 are given in the problem definition, and β1–4 must
match the β values of the dyad calculated in loop one or else they cannot combine into the
single ternary link 2 in Figure 8a. This means that only the α angles remain unprescribed.
Any of these three αj angles may be chosen as a free choice, but the other two must be
solved for. One way to do this with the MKT circles is to iterate through many values
of α3 and α4 for a given value of α2, then pick out the set of pivots based on whichever
set produces a matching ground pivot to loop one. While inexact, designers should be
able to quickly find matching solutions within four or five decimal point accuracy by
increasing the number of selections considered for α3 and α4. This procedure is applied in
Figure 11. Only the ground pivot circles are shown, with 50 circles plotted comprised of
200 points each.
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circles are hidden to simplify the figure. The matching ground pivot location is highlighted.

Many designers will find it informative to generate and examine Figure 11 prior to syn-
thesizing the loop one dyad, due to its ability to reveal so-called ‘forbidden regions’ [1–4].
These are areas in the plane where no viable ground pivot solutions exist, despite a high
solution density elsewhere. Figure 11 shows two of these pockets, with one centered around
(0.55, −0.1) and the other just above the selected ground pivot around (0.3, 0.05). Varying
the value of α2 will cause these regions to shift, but if a particular value of α2 is desired
for the triad, it may be necessary to reassign the free choice values of the loop one dyad to
make finding a viable solution possible.

Once again, each circle represents a unique angle value of α3, and each pivot point on
the circles is plotted via a unique value of α4 (or vice versa). So, once the matching ground
pivot point is identified, the values of α3 and α4 are inherently known—they are whichever
two values were used to create that point. In this example, the solution is found when
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α3 = 90.062 and α4 = 132.141 degrees, based on a free-choice value of α2 = 24.919 de-
grees. This value of α2 was selected after some trial and error with the final mechanism
construction, as the value appeared to produce favorable motion results.

6.3. Loop Three

The second dyad may be synthesized in the same manner as the first dyad—finding
the intersection of two sets of MK circles. Now that the triad chain has been identified, the
αj angles for the loop three dyad are prescribed, as they must match with the αj values of
the triad to form link five, shown in Figure 8. It is also important to note that the precision
positions are no longer those specified in the first two loops, but rather the distal precision
position minus the V vector of the triad at this position. This new distal displacement is
symbolized by δ

′
j , determined as shown in Equation (16).

δ
′
j = δj + V

(
eiγj − 1

)
(16)

This is due to the chosen loop configuration for the Watt 1 topology shown in Figure 8,
which requires that the second dyad extend up to the end of the second link of the triad.
This also means that rather than using the γj angles to define the motion, the αj angles of
the triad define the motion.

For this second dyad, there is no ground pivot specification required, meaning any
candidate solutions that meet the overall design parameters will be sufficient. The problem
can be quickly solved using the standard MK circle approach, as shown in Figure 12. To
show that loop-based approaches to assembling multi-chain mechanisms are interchange-
able, this second dyad was also synthesized using the previously developed compatibility
linkage approach [5]; a sample calculation is shown in Appendix A.
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Figure 12. A depiction of the MK circles for the loop three dyad. PP1 = 0 + 0i, PP2 = 0.130 + 0.274i
PP3 = −0.246 + 0.396i, PP4 = −0.586 + 0.167i. α2 = 24.919, α3 = 90.062, α4 = 132.141. Solution found
for β2 = −45.508, β3 = −90.331, β4 = −95.758.
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All the required synthesis information for the Watt 1 mechanism is now compiled.
The final step is to combine the necessary segments from different loops and assemble the
completed mechanism. It is important to note that this solution procedure does not have
built-in checks for circuit, branch, or other types of motion defects that could prevent a
mechanism from operating as intended. Identifying and eliminating these defects will re-
quire some additional work after the initial synthesis process has been completed. Finding
and eliminating defects has been a field of extensive study in kinematic synthesis [19–24].
Balli and Chand wrote an effective review of these topics which can be found in refer-
ence [25]. An image of the completed mechanism in its four prescribed positions is shown
in Figure 13. For this prototype, the mechanism was scaled up by a factor of 10 to increase
the ease of prototype construction and to make the motion more visible. The key unscaled
linkage parameters are summarized in Table 4.
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Table 4. Solution vector chains for each loop.

Loop W 1 Z V

1 −0.725 + 0.369i 0.617 − 0.296i -

2 −0.504 + 0.603i 0.369 + 0.129i 0.017 − 0.651i

3 −0.164 + 0.239i 0.562 + 0.090i -
1 All values are for the mechanism in its first position and rounded to the third decimal point.

7. Conclusions

The methods presented in this paper, including advancement in MK circle usage,
and the expansion to MKT circles for triads, is demonstrably an effective technique for
creating dyad and triad chains, as well as for gaining information about the solution
space for pivot locations for planar synthesis problems. Triad MKT circles are shown to
be useful for achieving ground pivot specification, a practice which is often essential for
multi-loop synthesis. Finally, a geometry-based approach to identifying circle intersection
points with respect to the free choice variable is shown, making it possible to identify
solutions rapidly and precisely. The discussed techniques are used to synthesize a Watt
1 mechanism by dividing the mechanism into three distinct loops which may be solved
independently. Additionally, the present method is shown to be interchangeable with
the compatibility linkage method, another technique for multi-loop mechanism synthesis.
New understandings have been introduced for extending the MK circles solution method
beyond three prescribed positions for motion generation.

There remain opportunities to develop these methods further. In triad synthesis, our
findings in Figure 6 seem to indicate that an equivalent structure to the pole observed in
dyads may exist for triads as well. A few special cases are known, e.g., βj = αj, but the
majority of these potential pole locations are left for future work. Additionally, the theory
should be equally applicable to solving quadriad chains; after reworking the standard form
equations, the rest of the procedure should follow in the same fashion as the dyad and
triad forms.
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Appendix A

Here, a numerical example of the compatibility linkage method is shown to demon-
strate that the MK/MKT circles and other loop-based synthesis methodologies are in-
terchangeable. The standard form equations for a dyad in four positions are shown in
Equation (A1). eiβ2 − 1 eiα2 − 1

eiβ3 − 1 eiα3 − 1
eiβ4 − 1 eiα4 − 1

[W
Z

]
=

δ2
δ3
δ4

 (A1)

The parameters used to define this problem are identical to those laid out for the loop
three dyad in the example in the main text. They are summarized in Table A1.
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Table A1. Summary of known and unknown quantities for Watt 1 topology.

Position # Position Coordinates β α

1 0 + 0i 1 0 0

2 0.130 + 0.274i −44.775◦ 2 24.919◦

3 −0.246 + 0.396i Unknown 90.062◦

4 −0.586 + 0.167i Unknown 132.141◦

1 The position coordinates are uniformly adjusted to have PP1 as (0, 0). 2 The value of the free choice β2 used in
the MK solution for loop three was −45.508. The value was modified by 0.733◦ for this example to account for
rounding errors within the solution software and to produce an identical dyad solution.

The solution procedure is only briefly described here. Consider references [2,5],
for more information on how the compatibility linkage method is derived and its many
applications. Equations (A2)–(A10) show the general form of the key equations used for a
dyad in four prescribed positions. From the problem definition, all the values in (A2)–(A4)
are known, and in (A6) β2 is a free choice.

∆2 =

∣∣∣∣eiα3 − 1 δ3
eiα4 − 1 δ4

∣∣∣∣ (A2)

∆3 = −
∣∣∣∣eiα2 − 1 δ2
eiα4 − 1 δ4

∣∣∣∣ (A3)

∆4 =

∣∣∣∣eiα2 − 1 δ2
eiα3 − 1 δ3

∣∣∣∣ (A4)

∆1 = −∆2 − ∆3 − ∆4 (A5)

∆ = ∆1 + ∆2eiβ2 (A6)

By the law of cosines,

x =
|∆4|2 − |∆3|2 − |∆|2

2|∆3||∆|
(A7)

β3 = angle(∆) + acos(x)− angle(∆3) (A8)

Note that for the angle of β3 shown in Equation (A8), and for β4 in Equation (A10), it
is required that

∣∣xj
∣∣ < 1. If x is outside this range, it is outside the domain of inverse cosine,

and therefore will produce complex answers when a scaler angle is desired. In this case, a
special procedure using the atan2(x,y) function is implemented. See reference [2] (p. 182)
for more details. The β4 angles are evaluated in the same manner as β3, with slight
modifications to accommodate the distinct geometry.

x2 =
|∆3|2 − |∆4|2 − |∆|2

2|∆4||∆|
(A9)

β4 = angle(∆) + acos(x2)− angle(∆4) (A10)

Evaluating Equations (A2)–(A10) using the values provided in Table A1 results in
β3 = 269.067, and β4 = −96.572. Either of these values may be chosen and plugged into
Equation (1) to solve for the values of W and Z. The compatibility linkage method ensures
that the values of β3 and β4 will be compatible with all four positions, not just the first
three. The resultant dyad is shown in its four positions in Figure A1 and is identical to the
loop three dyad shown in Figures 12 and 13.
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Figure A1. The resultant dyad synthesized using the compatibility linkage approach, matching the
dyad found in Figures 12 and 13.

Appendix B

Figure A2a depicts a dyad, while Figure A2b depicts a triad in two prescribed positions.
These constructions yield the standard form equations shown in Equations (1) and (8).
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Figure A2. (a). A dyad shown in two prescribed positions, with key vectors and angular dis-
placements labeled. (b). A triad shown in two prescribed positions, with key vectors and angular
displacements labeled. Note that this triad notation assigns the vector link “V” to the third link of the
triad chain, as opposed to the intermediate link where it has classically been assigned. We feel this
updated nomenclature is more intuitive for designers who are well acquainted with dyads and hope
to incorporate triads into their designs [5,26,27].
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Five Prescribed Position Synthesis for Dyads:

The strategy using MK circles to find possible dyad solutions for five positions contin-
ues from four position synthesis with the addition of one more set of circles. Typically, this
additional circle set will represent positions one, two, and five. For a solution to exist, all
three of these circle sets (123, 124, and 125) must intersect at a single point. While there can
be zero, one, or even two such triple intersections, these solutions are few and far between.
There are zero free choices in this case, as shown in Table 1. Therefore, rather than choosing
the value of β2, the quest is for a value of β2 that yields a motion generation dyad for all
five positions. This requires a nonlinear solution or an optional search [2,5]. Figure A3
shows one triple intersection and the resulting dyad.
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Figure A3. A depiction of a triple intersection point for the MK circles of a dyad in five positions.
PP1 = 0 + 0.0i, PP2 = 1 + 2i, PP3 = 2.5 + 4i, PP4 = 4 + 3.5i, and PP5 = 4.6865 + 3.0306i. Note that when
a solution point exists on the K circle, a matching solution will exist on the M circle as well. Here,
W = 2.67 − 2.59i, and Z = −0.64 − 2.19i, α2 = 0, α3 = 45, α4 = 70, and α5 = 85. The solution is found
when β2 = 35.002. It is possible but not guaranteed that other values of β2 may also produce solutions.

Recall that each of the points on the circles represents a unique solution to the motion
problem. Reducing the number of plotted points and revealing the vectors in between these
circles makes it much more apparent how each of the points on these circles represents a
complete triad solution to the problem, as seen in Figure A4, which stems from the same
problem definition shown in Figure 5.
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the circles are shown, demonstrating how each point on the circles represents a unique triad chain.
PP1 = 0 + 4i, PP2 = 2.553 + 3.329i, PP3 = 5.023 + 1.957i, PP4 = 8.564 + 6.014i. β2 = 10, β3 = 70, β4 = 140,
α2 = 60, γ2 = 30, γ3 = 90, γ4 = 145.
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Figure A5. The triad MKT circles are shown in six prescribed positions, with one possible solution
triad highlighted. The solution requires three circles intersecting at a single point to find solutions.
PP1 = 0 + 0.0i, PP2 = 1.553 + 1.329i, PP3 = 3.023 + 2.957i, PP4 = 4.564 + 2.014i,
PP5 = 7.432 + 2.016i, PP6 = 8.670 + 0.737, β2 = 30, β3 = 70, β4 = 140, β5 = 150, β6 = 130, γ2 = −30,
γ3 = −60, γ4 =−65, γ5 = −90, γ6 =−110. A solution vector is found for α2 = −15. W = 1.651 + 1.567i,
Z =−2.134 + 0.998i, V =−6.326 + 1.137i.



Machines 2023, 11, 841 21 of 22

Seven Position Case:
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