
Citation: Blatnický, M.; Dižo, J.; Sága,

M.; Molnár, D.; Slíva, A. Utilizing

Dynamic Analysis in the Complex

Design of an Unconventional

Three-Wheeled Vehicle with

Enhancing Cornering Safety.

Machines 2023, 11, 842. https://

doi.org/10.3390/machines11080842

Academic Editor: Konrad Jan Waluś
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Abstract: Current trends in the transportation industry prioritize competitive rivalry, compelling
manufacturers to prioritize concepts such as quality and reliability. These concepts are closely
associated with public expectations of safety, vehicle lifespan, and trouble-free operation. However,
the public must recognize that a vehicle weighing several hundred kilograms, moving at a non-zero
speed, only contacts the road surface through a few points (depending on the number of wheels),
each no larger than a human palm. Therefore, it is imperative to operate the vehicle in a manner that
optimizes the behavior of these contact points. There are situations where drivers find themselves
requiring dynamic vehicle handling, often unpredictable with a high degree of uncertainty. Rapid
changes in direction become necessary in these cases. Such maneuvers can pose a significant risk
of rollover for three-wheeled vehicles. Hence, the vehicle itself should contribute to increased ride
safety. This paper presents key findings from the development of an unconventional three-wheeled
vehicle utilizing the delta arrangement. Rollover safety for three-wheeled vehicles is currently well-
managed, thanks to the utilization of electronic or mechatronic systems in delta-type vehicles to
enhance stability. However, these systems require additional components. In contrast, the proposed
control system operates solely on a mechanical principle, eliminating operational costs, energy
consumption, maintenance expenses, and similar factors. The study also explores the absence of
equivalent suspension and steering systems for front-wheel steering. Such designs are lacking in both
practical applications and theoretical realms. Analytical and simulation calculations are compared in
this study, highlighting the effectiveness of the newly proposed control system in enhancing stability
and safety compared to conventional front-wheel suspension systems. Simulation programs provide
more realistic results than analytical calculations due to their ability to account for dynamic effects
on vehicle components and passengers, which is practically unfeasible in analytical approaches.
Furthermore, this study focuses on investigating the fatigue life of material frames subjected to
dynamic loading, which is a crucial aspect of ensuring safety. It is essential to have various testing
devices to examine the fatigue life of materials under both uniaxial and multiaxial loading conditions.
However, obtaining experimental results for fatigue life measurements of specific materials, which can
be directly applied to one’s research, poses significant challenges. Hence, the proposed testing device
plays a vital role in measuring material fatigue life and advancing the development of unconventional
transportation methods. The information about the original testing device aligns perfectly with the
article’s emphasis on dynamic analysis. The ultimate objective of all these efforts is to put the vehicle
into practical operation for commercial utilization.
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1. Introduction

As part of its “Advancing Technology” grant scheme, the Volkswagen Foundation
has provided support for a project that focuses on the structural design of a three-wheeled
electric vehicle known as the E3-kolka. This innovative vehicle aims to improve passenger
safety during cornering by employing mechanical principles (Figure 1a). The design,
which has been patented [1], is extensively discussed in the article [2]. While its primary
application lies within the domain of road vehicles in the motorcycle industry, the design’s
benefits extend to any scenario where enhanced stability of overall structures is required
for the operation of three-wheeled vehicles.
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Figure 1. The project E3-kolka: (a) Three-wheeled vehicle with enhanced rollover safety during
cornering (E3-kolka); (b) Range of motion of the front steered wheel of the E3-kolka.

In the quest to identify an equivalent suspension and steering system for the front-
steered wheel (delta arrangement), the absence of such designs has been noted. These
designs are lacking not only in practical applications but also in theoretical discussions.
According to [3], accidents involving three-wheeled vehicles contribute to over 33% of
severe injuries and fatalities among all incidents. Moreover, when considering the pro-
portion of accidents involving three-wheeled vehicles in relation to the total number of
road vehicle accidents, this statistic becomes even more alarming [4]. This fact highlights
the significance of the current project and represents the initial step towards its successful
resolution—acknowledging the problem. Therefore, this study presents the key findings
achieved during the development of this vehicle, with a specific focus on the ongoing
modifications (optimization) of its design.

The problem of stability can be addressed from a physical perspective by considering
the balance between stabilizing and destabilizing moments in a vehicle. A comparison
between four-wheeled and three-wheeled vehicles leads to the conclusion that four-wheeled
vehicles exhibit better stability [5,6]. The reduced stability of three-wheeled vehicles, when
considering the same geometry (track width and center of gravity height), is attributed to
the lower perpendicular distance from the vehicle’s weight (mass) to the axis of rollover
(connecting the front and rear wheels) compared to a four-wheeled vehicle [7]. This
understanding led to the development of a new front-steered wheel suspension system
(Figure 1b) that allows for both wheel displacement and rotation, thus increasing the lever
arm of the gravitational force and consequently the stabilizing moment. The approach to
achieving the desired mobility capabilities was published by the authors in [2,7–9]. This
represents the second step in the process of theoretical improvement. After analyzing the
current state, it can be concluded that even the closest design solutions differ significantly
from the E3-kolka. For example, in a study by Spânu et al. [10], a design of a three-wheeled
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vehicle with a centrally located articulated joint was presented. Another contribution to
the stability study is found in the research presented in the article [11], where the authors
proposed a general integrated reconfigurable vehicle model applicable to both four-wheeled
and three-wheeled vehicles (Tadpole, Delta). This model was compared with three vehicles
using the CarSim program to verify its performance. The results demonstrated that this
proposed reconfigurable vehicle model is useful for stability studies, including aspects
such as lateral stability, improved controllability, and rollover prevention, as well as for
designing vehicle control systems with various activation systems. Furthermore, other
analyzed works exhibited significant differences [12–16].

Currently, there exists a design proposal for a mechanism (Figure 1b) that enhances
the stability of three-wheeled vehicles while cornering. The subsequent implementation
of this mechanism into a physical vehicle model holds great importance. The authors
addressed this issue in their article [2] by devising the geometry of the vehicle frame. This
particular frame was purposefully crafted to accommodate the steering mechanism and
all other vehicle components. Since the project itself embodies the concept of a “green
vehicle” (aiming to reduce fuel consumption and CO2 emissions [17,18] and employ electric
propulsion), it was decided to utilize a commercial aluminum alloy, EN AW6063, as the
construction material for the frame. This strategic decision resulted in a weight reduction
of the frame by up to 40 kg when compared to the parameters of a similar vehicle, the
Kyburz Classic (Figure 2) as mentioned in [7]. Moreover, the lowering of the frame’s center
of gravity by 0.15 m has a positive influence on stability by reducing the destabilizing
moment caused by centrifugal force.
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Figure 2. Comparison of CAD models of welded frames: (a) Steel—Kyburz Classic; (b) Aluminum
alloy—proposed vehicle.

The final design proposal for the frame is preceded by a substantial effort invested in
determining the physical properties of the construction material. The authors addressed
this issue through extensive research described in detail in [2,7,8,19]. The yield strength of
the EN AW 6063 material was experimentally determined using a tensile test, resulting in
an average value of 247 MPa. After welding (using the TIG method), the yield strength
decreased to 110 MPa. However, by implementing welding techniques such as preheating
the material to 150 ◦C, using a filler material (AlSi5), modifying the weld surface, and
carefully controlling welding parameters, the tensile strength after welding was increased
from 110 MPa to 167 MPa [2]. Additionally, a change in hardness from 69 HVM to 50 HVM
was observed. Through welding simulation in the SysWeld program, the temperature
distribution within the material was determined by optimizing welding parameters to
achieve maximum strength. The relationship between the decrease in hardness at spe-
cific locations and the temperature reached during welding was analyzed, revealing an
exponential decline in this relationship.

The research on the material involved the construction of a unique testing device to
measure the fatigue life of the frame material under both uniaxial and multiaxial conditions.
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However, the realization of the actual construction of the testing device required an analysis
of the forces acting on the proposed vehicle. It was found that centrifugal forces come into
play when the vehicle is maneuvering through corners, and these forces are correlated with
the torsional stiffness of the vehicle frame [20–22]. Additionally, there is a significant load
acting in the vertical direction, attributed to gravitational forces exerted by the vehicle and
passengers. These forces result in a bending moment. Similar conclusions were drawn
in other studies as well [23,24]. The experimental testing device depicted in Figure 3 was
created to assess the fatigue properties of the structural material. It was specifically designed
to apply both flexural and torsional loads, as well as their combination. The authors have
previously published some information about this testing device in [2,7,8,19,25,26]. The
research conducted on the fatigue life of the welded structural material EN AW 6063
confirmed the suitability of the chosen structural material [8]. In this article, our objective is
to emphasize additional crucial aspects that should be considered during the development
of the testing device and the analysis of the results obtained from measuring the multiaxial
fatigue life of the E3-kolka frame material.
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In today’s competitive commercial world, manufacturers face a compelling need to
prioritize concepts such as quality and reliability. These terms are closely associated in
the public’s perception with attributes like safety, durability, and trouble-free operation.
Therefore, this article places significant emphasis on investigating the factors that influence
these fundamental concepts. The aim is to achieve the most accurate determination of
fatigue life under specific boundary conditions. As a result, there has been a notable
increase in attention dedicated to the development of a testing device capable of accurately
capturing multiaxial fatigue characteristics. Given the diverse combinations of loads
encountered in practical scenarios, it becomes necessary to assemble multiple multiaxial
fatigue testing devices capable of simulating these load combinations. Consequently, one
of the aims of this study, in line with the referenced works [2,7,8,19,27], is to establish a
comprehensive testing methodology for evaluating the fatigue life under the combined
cyclic loading effects of bending and torsion.

As evident from the existing literature, a considerable number of studies have been
published that have addressed the operational principles of the experimental device
(Figure 3), the adjustment of load levels, the achieved sample deformations, and stresses,
as well as the measurement methodology. However, it was equally important to approach
the device design from the perspective of its fundamental dynamic properties, as discussed
in this paper. Only after determining the material and technological properties could
numerical simulations of the vehicle frame be conducted using the Ansys program [7].
The obtained values of the equivalent von Mises stress in the frame, considering the total
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weight of the vehicle (151.5 kg) with a passenger (130 kg) subjected to twice the Earth’s
gravitational acceleration (2·g), averaged at 20 MPa. This corresponds to the fatigue life
of the experimental material being close to 107 cycles [7]. Therefore, the utilization of the
given component is considered safe.

The theoretical improvement in vehicle stability was demonstrated through analytical
calculations in [8], which were then compared with a conventional three-wheeled vehicle
of the same geometry. The maximum effect, represented by the increase in cornering
speed, reached up to 19%. It is important to consider that in this case, a vehicle weighing
over 250 kg, moving at a significant non-zero speed, maintains contact with the road
surface through only three points, which are no larger than a human palm. Therefore,
it is advisable to handle the vehicle in a manner that aligns with the optimal behavior
of these three points. However, certain situations may require the driver to navigate the
vehicle more dynamically, often arising unexpectedly, such as when a child or an animal
suddenly appears on the road. In such cases, it becomes necessary to perform a driving
maneuver involving a rapid change in direction. Hence, the vehicle itself should contribute
to enhancing driving safety. Therefore, the comparison of results between the conventional
three-wheeled vehicle and the proposed vehicle with enhanced rollover safety through
MBS simulation is another aim of this article. The nonlinear MBS simulation results will
provide a more accurate description of the real vehicle’s behavior during the experiment.
This improvement is attributed to the fact that the linear analytical model did not account
for factors such as material stiffness, vehicle suspension, and others.

The ultimate goal of all steps is to bring the vehicle into practical operation, specifically
for commercial utilization.

2. Materials and Methods

According to Regulation, issued by the Ministry of Transport and Construction of
the Slovak Republic on 27 April 2018, by Section 136, Paragraph 3, Letter d) of Act No.
106/2018 Coll. on the operation of vehicles in road traffic and amendments to certain laws,
the following requirements must be met [28]:

• The design of the axle steering mechanism must prevent shocks and vibrations in the
steering system, as discussed in the publication [7].

• The steering axle must return to the straight position after completing a turn or
require less force than that needed to initiate a change in direction, as addressed in the
publication [7].

• When transitioning from a straight path to a curve with a radius of 12 m at a speed of
10 km/h, the manual force applied to the steering wheel must not exceed 250 N. The
authors further discuss the fulfillment of this requirement in the article.

2.1. Variant Solutions for Vehicle Design Modifications to Meet Roadworthiness Requirements

The requirement is to achieve a maximum steering wheel force of 250 N on the vehicle
at a defined turn radius of 12 m and a speed of 10 km/h. It is widely recognized that
turning the steering wheel is easier when the vehicle is in motion, even at a minimal
speed. Therefore, it was determined that the maximum force required to turn the steering
wheel for a stationary vehicle (with zero forward speed) would be precisely 250 N. The
vehicle’s motion at a speed of 10 km/h will result in a reduction of this force, thereby
meeting the requirement for the maximum allowable force. In the constructed prototype
(Figure 1 on the left), the steering shaft was rotated using a torque wrench. Based on
measurements taken on the constructed prototype, it was determined that a maximum
moment of Mmax = 58 N·m is required for a complete rotation of the steering wheel. The
steering wheel used has a diameter of Dv = 350 mm. Subsequently, the maximum force
Fmax required to turn the steering wheel is calculated using Equation (1):

Fmax =
Mmax

Dv
2

=
2 · Mmax

Dv
. (1)
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If the force exceeds a certain threshold, it will be necessary to integrate a transmission
system into the vehicle’s design, featuring an appropriately determined gear ratio as
defined by Equation (2):

Mv =
Mmax

i
. (2)

If it is necessary to incorporate an auxiliary gear into the vehicle, alternative designs
for the placement of the planetary gearbox are illustrated in Figure 4. Ultimately, it will be
necessary to evaluate the impacts of each proposal.
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the planetary gearbox positioned below the steering wheel.

The first option for placing the gearbox (Figure 4b) involves mounting it onto the
frame above the pinion and aligning the output shaft of the gearbox with a small gearwheel.
Subsequently, the system of cardan shafts originating from the steering wheel would be
adjusted to connect to the input shaft of the gearbox.

The second option involves considering the attachment of the gearbox to the tricycle
frame above the steering mechanism (Figure 4c). The gearbox is positioned in a manner
where the output shaft aligns coaxially with the axis of rotation of the console.



Machines 2023, 11, 842 7 of 23

The third option considers placing the gearbox underneath the steering wheel holder.
The gearbox is securely attached to the frame, aligning the axis of the output shaft with
the axis of rotation of the smaller gear wheel in the same plane, while the axis of the input
shaft is parallel to the axis of the steering wheel (Figure 4d).

2.2. The Dynamic Analysis in the Design of a Fatigue Testing Device for Combined Torsion and Bending

In addition to the results published in previous studies [2,7,8], the design of the testing
device for determining the fatigue life of the E3-kolka vehicle frame was also approached
considering its fundamental dynamic properties, specifically the natural frequencies. The
values of the natural frequencies are obtained analytically by solving the homogeneous
differential equation of motion without a right-hand side and with homogeneous boundary
conditions. From a mechanical perspective, this represents the problem of undamped free
vibration, which can be described by Equation (3) [29]:

M · ..
u(t) + K · u(t) = 0 (3)

with a solution given by Equation (4):

u(t) = y · sin(ω0 · t). (4)

By calculating ü and substituting it into (3), the basic equation for solving undamped
free vibration can be obtained (5):(

−ω2
0 · M + K

)
· y = 0. (5)

From a mathematical perspective, Equation (5) represents an eigenvalue problem for
matrices M and K. For Equation (5) to have non-trivial solutions, it is necessary to fulfill
condition (6):

det
(

K − ω2
0 · M

)
= 0. (6)

If the dimension of matrices M and K is “n × n”, it is possible to calculate n eigen cir-
cular frequencies ωi and n eigen shapes yi. The eigenfrequencies are arranged in ascending
order ω1 ≤ ω2 ≤ . . . ≤ ωn. By assembling the vectors yi into a modal matrix V (with yi
forming a column of the modal matrix) and the squares of eigenfrequencies into a diagonal
spectral matrix Ω, all solutions of Equation (5) can be summarized in a single Equation (7):(

K − ω2
0 · M

)
· V = 0. (7)

Equation (7) is the fundamental state equation for FEM models. The problem of eigen-
values and eigenvectors is a standard feature in software packages like ANSYS. It is crucial
to determine the eigenfrequencies and their corresponding eigenmodes of the analyzed
frame, especially when evaluating the behavior of a time-varying, force-loaded object
with significant harmonic components. The key objective is to ensure that the excitation
frequencies and the natural frequencies of the system are either different or sufficiently
separated. Otherwise, the system will exhibit self-excited vibrations, characterized by the
phenomenon known as resonance. Resonance is unacceptable in operation as it often leads
to malfunctioning and subsequent structural failure. From a mathematical perspective,
computing eigenfrequencies and eigen shapes is one of the fundamental tasks of numerical
mathematics [30].

Based on the aforementioned facts, an important aspect in the structural design of
the testing device for measuring the fatigue life of materials is the design of appropriate
profiles for the supporting component, namely the frame. According to [8], the frame
will be subjected to cyclic motion generated by eccentric components driven by an electric
motor equipped with a frequency converter ranging from 0 to 100 Hz. Therefore, it is
crucial to design a robust frame capable of withstanding all frequencies within this range.
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It has been determined that the lowest natural (resonant) frequency of the frame should be
approximately 1.2 times the excitation frequency (100 Hz). The solution involves creating
a FEM computational model using ANSYS software. Through a series of re-analyses,
the desired parameters of the frame will be determined. These FE analyses have been
performed for FE meshes with the elements size of 12 mm to 2 mm. As an optimal FE
mesh, the element size of 5 mm has been considered sufficient. In principle, this approach
represents experimental ways to determine an optimal element size together with verifying
its suitability. In this process, the weight of the frame was of secondary importance. Figure 5
illustrates the finite element model of the frame, which was constructed using tetrahedral
elements with four nodes. All components of the device, including motors, were modeled
as mass points to accurately represent their spatial distribution (Figure 6). Parameters of
the experimental device are introduced in Table 1.
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Table 1. Parameters of the experimental testing device.

Dimensions of a Specimen Unit

Length 150 mm
Diameter 10 mm

Parameters of the torsion load

Synchronous servomotor SEW-EURODRIVE
CFM71M

Max. static torque 6.5 Nm
Overload capacity 3.3 -

Revolutions 0 to 6000 min−1

Max. loading frequency 100 Hz

Parameters of the bending load

Synchronous servomotor SEW-EURODRIVE
CFM90S

Max. static moment 11 Nm
Overload capacity 3.6 -

Revolutions 0 to 6000 min−1

Max. loading frequency 100 Hz

2.3. Methodology for Measuring the Fatigue Life of the Structural Material of a Vehicle Frame

The fatigue life of the vehicle frame material was measured under multiaxial loading
conditions (Figure 7) using the specifically designed testing device. The measurement
methodology was extensively described in [2,7,8,25]. The validity of the measurement
results obtained from the testing device was verified by comparing them with the results
obtained from low cycle fatigue criteria, including B-M, F-S, Liu I and II, and SWT, us-
ing the Fatigue Calculator software. Table 2 provides a summary of all the important
measurement parameters.

Table 2. Parameters for the experimental determination of the low cycle fatigue life of the E3-kolka
frame material.

Loading method Controlled deformation amplitude
(Manson–Coffin)

Type of loading Bending, torsion, and their
combination

Deformation range in bending ε 0 to 4.3·10−3 (-)
Deformation range in torsion γ 0 to 10·10−3 (-)

Ranges of equivalent von Mises stress from Bending
deformation for base material EN AW 6063 0 to 220 MPa

Ranges of equivalent von Mises stress from Bending
deformation for welded material EN AW 6063 0 to 46 MPa

Ranges of equivalent von Mises stress from torsional
deformation for base material EN AW 6063 0 to 91 MPa

Ranges of equivalent von Mises stress from torsional
deformation for welded material EN AW 6063 0 to 32 MPa

Loading frequency f = 30 Hz
Coefficient of cycle asymmetry R = −1 R = −1

Phase shift between loadings ϕ = 0◦, 90◦
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Figure 7. Experimental measurement of fatigue of EN AW 6063 material.

2.4. Dynamic Simulation of a Designed Vehicle’s Driving

Figure 8 illustrates the comparison between the operating principles of the standard
steering system and the newly designed steering system. These figures present virtual
models of tricycles created using SIMPACK software. In Figure 8a, a three-wheeled vehicle
is depicted in the standard delta configuration with front-wheel steering while navigating
a left-hand turn. Figure 8b showcases the model of the proposed E3-kolka equipped with
a novel front-wheel steering system. It is observed that the suspension system of the
E3-kolka fork allows it to lean towards the outer side of the traversed curve, aligning with
the centrifugal force direction.
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Figure 8. Comparison of the driving of a three-wheeled electric vehicle in a curve: (a) With the
standard steering system; (b) The newly designed steering system.

The SIMPACK software enables the modeling and analysis of diverse vehicle types,
including various tire–road contact models. To achieve a highly accurate virtual represen-
tation of the real-world scenario, CAD models of each component in both versions of the
tricycle were generated. These models serve as the basis for deriving essential mass and
inertia parameters crucial for dynamic analysis. As illustrated in the figures, the dynamic
analysis also considers the influence of the driver.

After creating dynamic vehicle models, it became possible to accurately determine the
total weight (vehicle + driver = 281.5 kg), inertia parameters, and the position of the center
of gravity for precise analytical calculations. Figure 9 visually presents a schematic view of
the aforementioned three-wheeled vehicles, featuring two rear wheels, as observed from
both top and rear perspectives. The O axis represents the tilt axis of the vehicle during
left-hand turns. It is worth noting that the newly designed steering system allows for a
flexible configuration of the front wheel. In the most extreme scenario observed in the
physical vehicle, depicted in Figure 9b, maximum steering wheel rotation was employed to
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achieve this configuration. As a result, the vehicle follows a circular path with a radius of
1.5 m.
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The investigation of driving characteristics focuses primarily on evaluating variables
that influence the improvement of the driving stability of the E3-kolka. Therefore, a specific
driving maneuver has been chosen, involving driving in a counter-directional S curve with
a relatively small radius of R = 1.5 m.

After conducting a series of driving analyses at various speeds, the critical speed
at which both vehicles experience stability failure, particularly in terms of rollover, was
determined. The evaluative comparison criterion was defined as the magnitude of the force
acting on the contact point of the rear inner wheel (which is unloaded during the curve).
The critical case represents a force value of zero. Analytical calculations presented in [8]
revealed that the stability of both three-wheeled vehicles is independent of their weight.
The crucial parameters are the position of the center of gravity and the design parameters of
both vehicles, including the wheelbase and track width. The construction parameters of the
actual vehicle used in the simulations were as follows: a vehicle wheelbase of L = 1.3 m and
a rear wheel track width of B = 0.727 m. The position of the center of gravity is determined
by two parameters: its height above the road surface (h = 0.5279 m) and the distance from
the front wheel (lF = 0.85 m). These parameters apply to both versions of the simulated
three-wheeled vehicle. The parameters of the E3-kolka vehicle are listed in Table 3.

Table 3. A list of parameters of the E3-kolka vehicle.

Parameter Value Unit

Vehicle base L 1.300 m
Rear wheel track width B 0.727 m

CoG from the front wheel lF 0.850 m
CoG above the road h 0.5279 m

Total weight mt 281.5 kg
Curb weight mc 151.5 kg

Max. weight of a passenger mp 130 kg
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3. Results

This section presents further results derived from the development of the innovative
E3-kolka, the unconventional vehicle. The results encompass two key areas:

• Experimental domain:
• Pertinent details regarding the design of the testing device used to measure the fatigue

life of materials;
• Measurements of the fatigue life of the frame material employed in the proposed vehicle;
• Theoretical domain:
• Insights into potential structural modifications aimed at enhancing the vehicle’s road-

worthiness;
• Numerical results comparing the effect of the suspension mechanism of the front

steering wheel in both conventional and non-conventional designs.

3.1. Vehicle Design Modification to Fulfil Roadworthiness

By substituting the corresponding values into Equation (1), it was found that a force
of Fmax = 331.5 N is necessary to turn the steering wheel. This value surpasses the limit
specified by regulation [28]. The current steering system of the E3-kolka employs a gear
ratio of ik = 3 achieved through a set of spur gears (Figure 4a) [2,7,8,19]. If this gear ratio is
eliminated, the moment applied to the steering axis will triple, i.e.,

Mmax = Mv · ik = 58 · 3 = 174 Nm. (8)

The required value of the gear ratio can be determined using Equations (1) and (2)
as follows:

ip ≥ 2 · Mmax

Dv · Fmax
=

2 · 174
0.35 · 250

= 3.98. (9)

To enhance safety and ensure that the force exerted on the steering wheel remains sig-
nificantly below the 250 N threshold, it is essential to integrate a transmission system with
a gear ratio of ip = 5 (-) into the system. Subsequently, by employing Equations (1) and (2),
the precise force value exerted on the steering wheel can be determined as follows:

F =
2 · Mmax

Dv · ip
=

2 · 174
0.35 · 5

= 199 N. (10)

The conducted calculation represents the scenario if the structural modification ac-
cording to Figure 4c was chosen.

3.2. Research Findings on Dynamic Characteristics of a Fatigue Testing Device

The results of the analyses, specifically the first three natural frequencies and their
corresponding mode shapes, are presented in Figure 10a–c. Figure 10d provides additional
quantifications of the natural frequencies. The lowest natural frequency of the frame design
presented is 118 Hz, which meets the requirement of 1.2 times the natural frequency.

The frame is robust and can serve as a supportive structure for the testing device,
enabling the experimental determination of fatigue characteristics. Currently, the testing
device provides a significant volume of valuable data concerning the fatigue life of diverse
materials [7,8,11,25].

We performed a total of six sets of analyses (Table 4) of the dimensions of the tetrahe-
dral linear mesh in the range of 2–12 mm to determine the sensitivity to the change in the
size of the mesh (Figure 11). The goal was to choose the appropriate size of the network in
terms of the accuracy of the results achieved, but also the difficulty in terms of the value of
the computing time.



Machines 2023, 11, 842 13 of 23Machines 2023, 11, x FOR PEER REVIEW 14 of 24 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 10. Custom shape of the frame determined by simulation in Ansys software corresponding 
to: (a) The first natural frequency; (b) The second natural frequency; (c) The third natural frequency; 
(d) Values of additional natural frequencies. 

The frame is robust and can serve as a supportive structure for the testing device, 
enabling the experimental determination of fatigue characteristics. Currently, the testing 
device provides a significant volume of valuable data concerning the fatigue life of diverse 
materials [7,8,11,25]. 

We performed a total of six sets of analyses (Table 4) of the dimensions of the 
tetrahedral linear mesh in the range of 2–12 mm to determine the sensitivity to the change 
in the size of the mesh (Figure 11). The goal was to choose the appropriate size of the 
network in terms of the accuracy of the results achieved, but also the difficulty in terms of 
the value of the computing time. 

From the point of view of the obtained first three natural frequencies, we reached the 
following conclusions. In the case of the first natural frequency, the frequency increases 
when the elements are enlarged. This is 0.95 Hz/mm between 2–5 mm and 0.97 Hz/mm 
between 5–12 mm. This change is acceptable in the case of such mesh size ranges and 
constitutes a total increase in natural frequency of approx. 0.83%/1 mm of the mesh, i.e., 
the difference between 2 mm and 12 mm is an increase of 8.3%. This difference is generally 
acceptable, considering the deviations caused by the real distribution of the weights of the 
additional devices and the clamping of the device. 

Figure 10. Custom shape of the frame determined by simulation in Ansys software corresponding
to: (a) The first natural frequency; (b) The second natural frequency; (c) The third natural frequency;
(d) Values of additional natural frequencies.

Table 4. Comparison of theoretically obtained maximum speeds of vehicles while driving through
curves of selected radii.

Element Size (mm)

2 3.5 5 7 10 12

Eigenfrequency
(Hz)

1st 115.3982 117.0407 118.2500 120.4065 123.8831 125.0067
2nd 116.4068 117.8287 118.9700 120.9625 124.0867 125.2183
3rd 195.5372 197.8613 199.6800 202.9454 208.1457 210.069

From the point of view of the obtained first three natural frequencies, we reached the
following conclusions. In the case of the first natural frequency, the frequency increases
when the elements are enlarged. This is 0.95 Hz/mm between 2–5 mm and 0.97 Hz/mm
between 5–12 mm. This change is acceptable in the case of such mesh size ranges and
constitutes a total increase in natural frequency of approx. 0.83%/1 mm of the mesh, i.e.,
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the difference between 2 mm and 12 mm is an increase of 8.3%. This difference is generally
acceptable, considering the deviations caused by the real distribution of the weights of the
additional devices and the clamping of the device.

In our case, the time required for the calculation of the task was also an important
evaluation parameter for the selection, which is shown in the graph, where you can see
that from the value of 5 mm, there is a significant increase in the size of the task. And
that between 5 mm and 2 mm 6.6 times and between 5 mm and 3.5 mm twice. Therefore,
we chose the size of 5 mm as the resulting mesh, where the computational complexity is
6.6 times smaller and the difference from the 2 mm mesh is 2.85%.
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3.3. Research Findings on Multiaxial Fatigue Life Measurement of Structural Material in Vehicle Frame

The fatigue life measurement was conducted using the experimental device shown in
Figures 3, 6, 7 and 10, following the methodology outlined in [7,8,11,19,25] and utilizing
the parameters specified in Section 2.3. Figure 12 depicts the spatial relationship derived
from multiaxial fatigue life measurements, considering the combined effects of bending
(deformation ε) and torsion (deformation gamma) at various load levels for the welded
material EN AW 6063 (used in the E3-kolka frame). The phase shift between bending and
torsional loads was set at ϕ = 0◦. A notable inverse correlation is observed between the
decreasing tendency of the number of cycles to fail and the increase in either loading mode.
Similarly, Figure 13 presents a comparable graph, highlighting the results of multiaxial
fatigue life measurements for the base material EN AW 6063 (used in the E3-kolka frame)
under combined bending (deformation epsilon) and torsion (deformation gamma) at
different load levels, also with a phase shift of ϕ = 0◦. By comparing Figures 12 and 13, it
becomes apparent that lower deformation amplitudes result in slightly higher fatigue life
for the welded material. Detailed numerical measurement values were published in [8].

In the case of a 90◦ phase shift between the loads (Figures 14 and 15), a similar trend
was observed, where combinations of small deformation amplitudes resulted in higher
fatigue life for the welded samples. By comparing the results in terms of the influence
of the phase shift ϕ, it was noted that there is a slight increase in fatigue life with a 90◦

phase shift.
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3.4. Research Findings on Dynamic Simulations of a Designed Vehicle’s Driving

The article [31] analyzed the maximum vehicle speed analytically as a function of
the curve radius. This section presents the results obtained for the same configurations
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using numerical simulation in the SIMPACK program. The numerical analysis outputs
are presented in Figures 16 and 17. These figures illustrate the simulation results for a
three-wheeled vehicle with standard steering (Figure 16) and the E3-kolka (Figure 17).
Additionally, the figures provide visual representations and values of the vertical wheel
forces at the contact patch in the curve for the unladen wheel and the road surface.
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Figure 17. Results of numerical analyses of the E3-kolka.

By comparing the results of the analytical calculation with those of the numerical
analyses, it can be concluded that the maximum driving speed for stability against rollover
of the three-wheeled vehicle is accurately determined (Table 5). The small discrepancies are
due to the fact that during the maneuver in the curve, the passenger’s body, in the case of
numerical simulations, undergoes lateral movement caused by the centripetal acceleration.
As a result, the overall center of gravity of the vehicle–driver system also shifts in the
same direction.
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Table 5. Comparison of theoretically obtained maximum speeds of vehicles while driving through
curves of selected radii.

Curve Radius
Rc (m)

Maximum Speed of a Conventional Vehicle
(km/h)

Maximum Speed of the E3-kolka
(km/h)

Analytically SIMPACK Analytically SIMPACK

1.5 11.100 10.685 13.690 13.263
5 20.300 19.844 24.500 24.215
10 28.660 27.700 33.830 33.100
15 35.100 34.258 40.340 39.853
20 40.530 39.950 45.210 44.807
25 45.300 44.795 48.800 48.003
30 49.600 47.990 51.620 50.700

By comparing the results presented in Figures 16 and 17, it is evident that the sug-
gested steering solution significantly improves the stability of the E3-kolka in curves. The
validity of this claim is supported by the observed pattern of the vertical wheel force at the
contact patch between the unladen wheel and the road surface during curve traversal. The
consistently high values of the vertical wheel force for the unladen wheel throughout the
entire simulated maneuver provide further evidence of reliable and secure vehicle control
in terms of mitigating the risk of rollover (Figure 17).

Figure 18 presents the simulation results for the driving stability of both a three-
wheeled vehicle with standard steering (Figure 18a) and the E3-kolka (Figure 18b) in the
graphical interface of the SIMPACK program. Analyzing the numerical data obtained
from Figure 16, Figure 17, and Figure 18, it is evident that when driving at the identical
velocity of v = 10.685 km/h through a curve with a radius of Rz = 1.5 m, the three-wheeled
vehicle equipped with standard steering loses stability and experiences rollover. However,
E3-kolka maintains continuous contact between its rear inner wheel and the road surface.
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4. Discussion

The mechanism of the E3-kolka can be defined as a system designed to enhance
stability and prevent rollover of three-wheeled vehicles during cornering, based on a
mechanical principle. However, its design encountered challenges, which were addressed
in previous works [2,7,8,19]. With each subsequent modification, it has been necessary to
validate the theoretical effectiveness of improving the current state. As evidenced by the
research conducted so far, this issue of designing an unconventional vehicle and ensuring
its operational viability for commercial use is highly complex. It is important to note that
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no vehicle can be considered suitable unless its roadworthiness complies with the specific
regulations of each country.

As mentioned earlier, the maximum allowable force applied to the vehicle’s steering
wheel is 250 N within specific boundary conditions. This issue was addressed under
static vehicle conditions, during which steering was identified as the most strenuous task.
Measurement results revealed that the E3-kolka system failed to meet this requirement,
with a force of 331.5 N exceeding the limit of 250 N. Consequently, this article presents
design modifications aimed at resolving this problem. In analyzing the current state of the
matter, it was observed that there is a lack of theoretical studies discussing nonconventional
steering mechanisms for three-wheeled delta-configured vehicles. The closest relevant
work [32] explores the tadpole configuration in comparison to the delta configuration of
the E3-kolka.

The proposed mechanism enables differential steering of the front wheels, allowing
for varying radii in curves. However, it lacks the capability for wheel tilt and displacement,
which is present in the E3-kolka. Additionally, the vehicle frame of the proposed mechanism
is tubular with a circular cross-section, while the E3-kolka features a shaped profile. In the
study [10], a delta-configured three-wheeled vehicle is discussed; however, the proposed
mechanism does not allow for the articulated movement of the steered wheel, like the
E3-kolka. Moreover, the study does not provide calculations or information regarding the
required steering force on the steering wheel. Some of the analyzed works share a common
feature of electronically controlled tilting mechanisms [13,14].

Other analyzed works often address the issue of steering forces in applications for four-
wheeled vehicles [33] or focus on the design of electronically controlled power steering [34].
In contrast, the E3-kolka system operates exclusively on a mechanical principle. This is the
main advantage of the E3-kolka system compared to the analyzed solutions mentioned in
the literature. The necessary design modification, in terms of complying with the legislation
of the country where the vehicle will be sold, is relatively simple: implementing a planetary
gearbox into the vehicle’s steering system.

Based on the design modification depicted in Figure 4b, it is evident that this alteration
will impose considerable constraints on the rotation of the steering console. Consequently,
the maximum steering angle of the front wheel will be diminished during left turns,
leading to an asymmetry in the wheel’s range of motion. Therefore, this solution cannot be
considered suitable.

The variant shown in Figure 4c eliminates the possibility of using the current front
gear mechanism. As a result, there is a requirement to incorporate a transmission that can
reverse the direction of rotation. A bevel gear serves as a suitable additional component to
the gearbox.

The advantage of the variant with the gearbox mounted under the steering wheel
(Figure 4d) is the reduced number of required cardan shafts. However, it is important to
note that in each of the mentioned variants, a gearbox bracket needs to be manufactured
and securely attached to the vehicle frame. This modification can be considered minor in
terms of the existing frame structure of the vehicle (Figure 2b). Based on the aforementioned
findings, the last design appears to be the most suitable option. It does not restrict the
range of motion of the steering console (in comparison to the first design) and does not
necessitate any additional supplementary components (in comparison to the second design).
An appropriate gearbox, for instance, is available from the manufacturer PHT VERTEX
PRECISION Components Corporation.

From a safety perspective, this study also provides information on the lifespan re-
search of the vehicle frame material. It is desirable to have various devices available for
investigating the fatigue life of materials subjected to both uniaxial and multiaxial load-
ing. These devices are often commercially manufactured, but there are also cases where
proposed designs are tailored to specific workplace requirements [35–38].

The construction of testing devices is currently well-managed. However, a challenge
arises when retrieving experimental results from fatigue life measurements of specific
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tested materials for direct implementation in one’s research. Therefore, the proposed
testing device (Figure 3) makes a valuable contribution to the field of fatigue life mea-
surements of materials. It provides relevant results for further applied research in the
workplace. This study, along with [7,8,19,25], offers comprehensive technical information
on the operational principle, safety, reliability, measurement methodology, construction,
and verification of the testing device. Based on the measurement results obtained from the
testing device (Figures 12–15), it was determined that the tested material has a satisfactory
lifespan for constructing a non-conventional means of transportation at relatively low costs
(although there are more expensive and stronger aluminum alloys available for achieving a
lightweight design). The measurement results were discussed in [7,8], while Figures 12–15
provide an additional interpretation of the results in the form of 3D graphs. These graphs
simplify the demonstration of the fatigue life cycle comparison between the base material
and the welded material EN AW6063 under combined loading of bending and torsion.

As mentioned earlier, three-wheeled vehicles have specific characteristics compared to
their four-wheeled counterparts. When it comes to the delta arrangement, the drawbacks
of this three-wheeled configuration become apparent during cornering. To address these
issues, a front-wheel steering system was developed to mitigate the limitations of the delta
arrangement. The effectiveness of this steering system was validated through analytical
calculations, which demonstrated that the displacement of the front wheel in the three-
wheeled vehicle equipped with the newly designed steering system contributes to enhanced
stability. Additionally, multibody vehicle models were created, incorporating both the
standard steering system and the newly designed one, to conduct simulation calculations
that provide more realistic results. These dynamic vehicle models, implemented in the
SIMPACK program, enabled comprehensive evaluation of the driving characteristics of both
three-wheeled vehicles—those equipped with the standard steering system and those with
the newly designed steering system. The comparisons presented in Table 2 indicate that the
newly designed steering system fulfills its purpose by enhancing stability and, consequently,
improving driving safety compared to the conventional front-wheel suspension system.
Moreover, it was observed that simulation programs provide more accurate results than
analytical calculations, primarily due to their ability to account for the dynamic effects of
vehicle components and passengers, a practical limitation in analytical calculations.

Based on an analysis of the current state of the issue, it can be concluded that there
are technical solutions aimed at enhancing the safety of three-wheeled vehicles. However,
these systems employ different steering and front-wheel suspension methods to achieve
this objective. An illustrative example of such a solution involves the utilization of an
actuator with a servo motor to actively tilt the vehicle frame [39], effectively mitigating the
effects of centrifugal forces during cornering. This system has undergone testing on an
electric vehicle, albeit one with a shorter wheelbase and narrower track width, commonly
referred to as a “narrow vehicle.”

An intriguing study is presented in the paper by [40]. The author explores the use of
engine torque to improve driving safety and prevent rollovers by effectively distributing it
among the wheels. The system incorporates a controller that mitigates the negative effects
of cornering when combined with a braking threshold or encountering road irregularities.
However, it is important to note that in this case, the utilization does not involve a front-
wheel steering system.

The research paper [41] presents a modification to the front-wheel steering system.
The authors propose an actively controlled system for steering the front wheels. This
system aims to actively manage the weight distribution and its impact to improve the
safety of three-wheeled vehicles while cornering. Once again, this modification involves
the implementation of a complex mechatronic system.

In the article [42], the researchers introduce a method aimed at enhancing the ma-
neuverability and tilt control of a three-wheeled vehicle. The authors present a direct tilt
control system that relies on an active steering amplification curve. Although the proposed
design signifies a notable advancement in tilt control and effectively reduces perceived
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lateral acceleration, further experimental examination of the system is necessary under
diverse operating conditions.

Similarly, other proposals for steering systems in delta-type three-wheeled vehicles
employ electronic or mechatronic systems to improve rollover stability [43–45]. However,
a disadvantage of these systems is their dependence on additional components. In con-
trast, the newly proposed steering system presented by the authors operates solely on a
mechanical principle. This implies that operating costs, energy consumption, maintenance
expenses, and similar factors are eliminated. As evident from the presented results and
analyses, the system demonstrates significant potential for future applications in delta-type
three-wheeled vehicles.

5. Conclusions

During the process of addressing the utilization of dynamic analysis in the complex
design of an unconventional three-wheeled vehicle aimed at improving safety during
cornering, the following proposals have been put forward:

• Three alternative design solutions were presented to ensure compliance with the
maximum steering force requirement on the steering wheel (below 250 N) and facilitate
the selection of the optimal solution;

• The structurally robust frame was developed for a fatigue life testing device, which
underwent dynamic analysis to ensure safety;

• The original methodology for measuring multiaxial fatigue life was summarized;
• Dynamic models were created for both conventional and unconventional vehicles,

incorporating parameters that correspond to real-world conditions;
• The vehicle design, featuring a patented front-wheel suspension system, exerts a

significant influence on safety and ride comfort;
• The proposed vehicle meets the legislative requirements for roadworthiness in Slovakia;
• The safety of the proposed vehicle’s frame is guaranteed in terms of its fatigue life;
• The proposed vehicle enhances the maximum safe cornering speed compared to

conventional three-wheeled vehicles;
• Most importantly, the achievement of all the aforementioned findings is based on a

more cost-effective mechanical principle.
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