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Abstract: This article outlines a technology for hole-finishing in short-length cylinder lines to improve
wear resistance. The technology is based on an optimized diamond-burnishing (DB) process. The
latter was implemented on conventional and CNC lathes, milling machines, and machining centers
using a simple burnishing device with an elastic beam. The material used in this study was AISI
321 austenitic stainless steel. The governing factors used were the radius of the diamond insert,
burnishing force and feed rate. The objective functions relating to surface integrity characteristics were
selected on the basis of their functional importance relative to the wear resistance of the processed
hole surface: height and shape roughness parameters, surface microhardness, and surface residual
axial and hoop stresses. The one-factor-at-a-time method (used to reduce the factor space), a planned
experiment, and regression analyses were used. The multi-objective optimization tasks, which were
defined for three diamond insert radius values of 2, 3, and 4 mm, were solved via the Pareto-optimal
solutions approach available for a non-dominated sorting genetic algorithm (NSGA-II). Using the
optimal values of the governing factors selected from the Pareto fronts, cylinder lines were processed.
Samples were then cut from these cylinder lines for reciprocating sliding wear tests under two modes:
dry friction and boundary lubrication friction. Additionally, wear test samples were cut from the
cylinder line, which was finished with traditional grinding. A finite element simulation was then
used to select an appropriate pressing force. The results obtained from the reciprocating sliding wear
tests under both the dry and boundary lubrication friction regimes show that to minimize the wear
on cylinder lines made of AISI 321 steel, DB with a diamond insert of radius 2 mm is the optimal
finishing process.

Keywords: austenitic stainless steel; cylinder lines; diamond-burnishing; surface integrity; optimization;
sliding wear

1. Introduction

AISI 321 is a high-grade titanium-stabilized chromium–nickel austenitic stainless steel
(SS). The addition of titanium and niobium, with carbon activity significantly greater than
that of the chromium, stabilizes this steel against the formation of chromium carbide,
significantly increasing its resistance to inter-granular corrosion in the temperature range
450–850 ◦C in contrast to lower-grade 304 SS. In addition, 321 SS has high resistance even
down to cryogenic temperatures, excellent resistance to stress corrosion cracking, and
is non-magnetic. Due to its properties, AISI 321 SS is a preferred material for various
industrial applications in a wide temperature range. For instance, it is used in aircraft
components, chemical processing, and food equipment, and it is also used in medicine and
the pharmaceutical industry. These applications often use cylinder-type components with
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life cycles that are limited by the complex conditions of the surface layers around their
holes. These areas are subjected to reversible sliding, usually in the presence of oil or an
active medium (organic or inorganic substance), as a result of contact with other elements
(most often a piston). Under these conditions, sliding wear under boundary lubrication is a
crucial consideration.

To maximize wear resistance, an appropriate finishing method must be used to ensure
the required surface integrity (SI) of the hole. The development of a suitable finishing
process based on the correlation between SI and the desired operational behavior (including
high wear resistance) is a major task falling within the scope of the surface engineering
discipline [1]. Long holes are usually finished via honing due to the beneficial effect of the
resulting cross-hatched cylinder liner texture on their tribological behavior [2,3]. Such a
surface texture is particularly suitable when there is boundary lubrication friction. Grinding
is widely used for finishing short-length holes.

However, the austenitic structure of AISI 321 results in low hardness and hence poor
wear resistance. Two main approaches are effective for modifying the working surfaces
of components made of austenitic chrome–nickel steels: cold working the surface and
low-temperature thermo-chemical treatments (nitriding and carbonizing). When the goal
is to modify the surfaces of short-length cylindrical holes, static burnishing processes are
more suitable. For a finishing process based on a burnishing technique, roller burnishing
and deep rolling processes [4] are preferred. They drastically reduce the height parameters
for roughness, increase the micro-hardness, and introduce residual compressive stresses,
which increase the wear and crack resistance of the hole surface. Finishing a hole via surface
plastic deformation with rolling friction contact requires more complex and expensive tools
(for instance, a hydrostatic sphere [4]) compared to those required for diamond-burnishing
(DB) [5].

Regardless of the wide application of grinding as a finishing method, the resulting
surface’s physical–mechanical condition corresponds to that of a surface obtained via
cutting. In addition, after grinding, a hole’s micro-hardness is relatively low due to the
absence of the cold work effect. In the present study, a DB-based technology is proposed to
modify the SI of short-length holes in cylinders made of 321 SS.

Despite the wide application of burnishing technologies, research on hole burnishing
is very scarce. According to [5], only 6% of the research on slide burnishing (including DB)
is devoted to holes. Akkurt et al. [6] compared the effects of different finishing processes on
the height parameters for the roughness of a hole in a cooper-based alloy and found that
roller burnishing had a significant advantage: a significant reduction in these parameters
and a significant increase in surface micro-hardness. Przybylski [7] used DB to finish the
hole of a satellite of planet gear made of NiCrMo13 hardened steel and achieved a roughness
of Ra = 0.02 µm. A method for obtaining regular depressions in the hole surface of a bearing
sleeve via eccentric burnishing was developed by Korzynski [8]. Maximov et al. [9] used
DB to increase the crack resistance of joint bar holes, whereas Pa [10] developed a combined
finishing method for holes based on slide burnishing and electrochemical finishing. Finally,
the effects of DB on the SI and sliding wear behavior of aluminum bronze holes were
investigated by Duncheva et al. [11]. However, information is lacking on the effect of DB
on the SI of chromium–nickel austenitic SS holes.

The effects of DB on the holes in cylindrical components can be maximized via the
multi-objective optimization of the process parameters where the vector optimization cri-
terion consists of suitably selected SI features of the hole surface. Therefore, the selected
characteristics of SI must be maximally function-relevant in terms of surface contact in the
presence of oil or another active medium, friction, and wear. For a given material, two
sets of SI characteristics are of primary importance: geometric (surface texture parameters)
and physical–mechanical characteristics. Currently, there are a large number of 2D and 3D
parameters to consider for the surface texture that are classified into the following groups:
height, spatial, hybrid, functional, and other [12,13]. Some parameters describe similar
surface properties, while other parameters are correlated. Therefore, in addition to being
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function-relevant, the selected roughness parameters should be limited in number, statis-
tically independent, and have low sensitivity to measurement errors. The measurement
of a 2D parameter is simpler and requires less time; therefore, 2D parameters were used
in the present study. A number of studies were devoted to the functional significance of
the height (amplitude) parameters of the surface texture for the tribological behavior of
cylinder liners. The 2D parameters R3z and Rtm have been used to characterize roughness
profiles [14,15], while Rp(Sp) and Rv(Sv) have been used as wear indicators [16–18]. The
behavior observed under different friction regimes depends on the magnitudes of the
height parameters. Under fluid friction, a cylinder with a smoothly polished surface is
exposed to seizure and even adhesion [19,20] due to the more difficult retention of oil, while
a rougher SS hole surface increases seizure resistance [21]. In general, smooth surfaces are
prone to seizure, while rough surfaces lead to more intense friction and wear [13]. The
2D (3D) height parameters Ra(Sa) and Rq(Sq) provide an integral picture of the roughness
profile (surface). Minimizing these parameters reduces friction and decreases wear. The
arithmetic mean deviation Ra is used most often in the production process, as it provides
a very good general description of height variations; however, it is not sensitive to small
changes in the profile [22]. The root mean square deviation (RMS) Rq(Sq) of the profile
(surface) heights is more sensitive to the deviations than Ra(Sa), and according to some
authors [23], it is one of the parameters of determining functional importance for crack
resistance under dynamic loads: a lower RMS value corresponds to a lower tendency
towards fatigue. At the same time, deep valleys are more function-relevant in terms of
fatigue behavior than peaks. A larger value of Rv(Sv) is an indicator of local surface stress
concentrators, making this parameter relevant for crack detection [13]. Although Ra(Sa) and
Rq(Sq) have similar variation trends, there is no known relationship between their relative
variation magnitudes [13]. Therefore, the height parameters Ra, Rq, and Rv are important
geometric indicators for the tribological behavior and crack resistance of a hole surface.
The Rk family functional parameters, which are related to the material ratio curve, provide
information concerning the influence of surface amplitudes on friction and wear [13]. In
particular, Rpk, Rk, and Rvk correspond to the heights of the peak, core, and valley sections
of the surface profile. It has been assumed that Rpk is responsible for the running-in stage,
Rk is responsible for the steady state, and Rvk is associated with oil retention. However,
these assumptions have not been proven experimentally [13].

The functional significance of the shape parameters Rsk(Ssk) (skewness) and Rku(Sku)
(kurtosis) for friction and wear is known [22]. A surface texture characterized by deep
valleys and sharp peaks (Rsk(Ssk) < 0 and Rku(Sku) > 3) and relatively low values of the pa-
rameters Ra(Sa) and Rq(Sq) significantly improves lubrication under boundary lubrication
friction conditions [11,22,24]. The importance of negative Rsk(Ssk) values for improving
contact on rough surfaces [25–27], as well as for reducing friction and wear on smooth
surfaces under dry and lubrication sliding conditions [11,28,29], has been confirmed. Shape
parameters have been found to be sensitive to hydrostatic ball burnishing parameters [30].
Given that textured surfaces are skewed, this finding confirms the effect of surface tex-
turing due to static burnishing processes. In general, improving the tribological behavior
of sliding components through appropriate surface texturing has considerable potential.
Taking into considering the sliding friction contact, it can be assumed that this effect is
more pronounced after DB [11] than after static burnishing processes employing rolling
friction contact. The orientation of an anisotropic one-directional surface to the sliding
direction is also of significant importance to tribological behavior. The transverse orien-
tation of the asperities typically leads to lower friction under the boundary lubrication
friction condition than their longitudinal orientation [31,32]. DB kinematics and a low
feed rate produce a sliding direction with an almost transversely oriented texture. Thus,
it is of interest to evaluate the effect of the DB process on the sliding wear resistance of
the hole surface. To evaluate the cold work effect and beneficial compressive residual
stresses inherent in burnishing processes, particularly DB, it is appropriate to measure
surface micro-hardness and surface hoop and axial residual stresses. In order to select
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an appropriate combination of the governing factor magnitudes for the DB of holes in
AISI 321 SS, a multi-objective optimization was carried out in the present study. Based
on the above rationale, the vector optimization criterion was composed of the following
SI characteristics: (1) the geometric characteristics Ra, Rq, Rv, Rsk, and Rku (2D roughness
parameters); (2) the physical–mechanical characteristics of surface micro-hardness HV, plus
the surface axial (σres

a ) and hoop (σres
t ) residual stresses.

In this article, a technology for processing holes in cylinder lines made of AISI 321 SS
is presented. The technology, which is based on DB, was developed to improve the sliding
wear on these cylinders. First, experimental research and the multi-objective optimization
of the DB process were carried out. Second, an experimental study of the tribological
behavior of samples processed under the optimized DB process was conducted. Finally, a
comparison of the sliding wear behavior of these samples was made with that of samples
processed by grinding. The comparison proves the advantage of the developed technology.
Figure 1 shows the flow chart of the present study, which was conducted using seven
main steps.
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Figure 1. Flow chart of the present study.

2. Materials and Methods

A pipe of chromium–nickel AISI 321 austenitic SS with an outer diameter of
42 mm and a wall thickness of 4 mm was obtained. An optical emission spectrome-
ter was then used to determine its chemical composition in weight percentages. The
tube’s basic mechanical characteristics were established at room temperature via tensile
tests conducted on a Zwick/Roell Vibrophore 100 testing machine, where all values were
determined as arithmetic means of three test results. Specimens were cut from the tube
along its axis (Figure 2). Because the specimens’ centers of gravity for their working-part
cross-sections did not lie in the tensile load direction, their loadings were, in fact, eccentric
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tension (superposition of tension and constant bending). However, due to the negligible
eccentricity, it was assumed that tests were for pure tension. The hardness was measured
via a ZWICK/Indentec–ZHVµ-S tester using a spherical-ended indenter with a diame-
ter of 2.5 mm, loading of 63 kg, and holding time of 10 s. A Bruker D8 Advance X-ray
Diffractometer was used to conduct the phase analysis. The peak positions were deter-
mined by the Crystallography Open Database. The strain-induced α’-martensite contents
in the surface layers were determined with Bruker’s DIFFRAC.DQuant V1.5 specialized
software [33]. The microstructures in the cross-sectional areas of the pipe were observed
via optical microscopy (OM, NEOPHOT 2) with “Aqua regia” (HNO3:HCl = 1:3).
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DB was implemented on a C11 conventional lathe equipped with a specially developed
device featuring an elastic beam and spherical-ended polycrystalline diamond insert (see
Figure 1, step 2). The governing factors were the sphere radius r, burnishing force Fb, and
feed rate f. The burnishing velocity v was 80 m/min. Hacut 795-H lubricant was used for
the single-pass DB process. Consequently, the one-factor-at-a-time method and planned
experiment were applied.

The roughness parameters were measured via a Mitutoyo Surftest SJ-210 surface
roughness tester. The final values of the roughness parameters were the arithmetic averages
obtained from the measurements on six equally spaced generatrixes.

A ZHVµ Zwick/Roell micro-hardness tester with a 10 s holding time and 0.05 kgf
load was used to measure surface micro-hardness. Ten measurements were carried out for
each specimen. The group median was then chosen as the final surface micro-hardness
magnitude for each corresponding sample.

The residual surface stresses were measured using the sin2ψ method and a least-
squares fitting procedure in conjunction with a Bruker D8 Advance X-ray Diffractometer.
The effective penetration depth of the CrKα radiation was approximately 6 − 7 µm.

Multi-objective optimization was conducted using the NGSA-II non-dominated sort-
ing genetic algorithm [34,35].

The sliding wear resistance of a treated surface (as a pair with a spherical counter-body
of diameter 10 mm and made of hardened bearing steel) was assessed via the reciprocating
sliding wear test. The tribological tests were conducted under the same conditions for all
specimens across two friction regimes: (1) dry friction and (2) boundary lubrication under
which the oil was supplied at a flow rate of 2 drops per minute. The samples were cut from
the corresponding cylinders, as shown in Figure 1, step 7. The specimen sizes are shown in
Figure 3. The mass wear on each specimen for a given friction path was determined using
the following methodology:
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• Before friction, the specimen’s initial mass m0 was measured with an accuracy of
0.1 mg by means of a WPS 180/C/2 electronic balance. To prevent electrostatic effects,
each specimen was cleaned with ethyl alcohol to remove mechanical and organic
particles.

• The specimen mass mi was measured for a set friction path Li. The mass wear ∆mi
was calculated with the formula: ∆mi = mo −mi, mg.

• The average wear rate γi was calculated with the formula γi =
mi
Li

, mg/m.
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The experimental setup used to conduct the reciprocating sliding wear tests is shown
in Figure 3. In this setup, the counter-body performs a reciprocating motion along the
generatrix from the cylindrical surface in the specimen’s plane of symmetry. This scheme
replicates the loading present during cylinder line operation. In fact, this tribo-system is a
modification of the well-known pin-on-disc scheme, in which rotary motion is replaced by a
reciprocating motion. The pressing force P is set by means of two screw pairs symmetrically
located with respect to the specimen and two screw springs. The movement of the counter-
body is accomplished with a pneumatic cylinder.

3. Results and Discussion
3.1. Chemical Composition, Main Mechanical Characteristics, and Initial Microstructure

The chemical composition (in weight percentages) of the 321 SS is shown in Table 1.
Figure 4 shows the results from the tensile tests: yield limit 300 MPa, tensile strength
596 MPa, and elongation 50%. The surface fractures of all specimens show typical tough-
plastic destruction under the main tangential stresses acting in planes located at an angle of
45◦ from the tensile load direction. The hardness was established as 196 HB.

Table 1. Chemical composition (in wt%) of the tested 321 austenitic stainless steel.

Fe C Si Mn P S Cr Ni Ti Nb Mo Cu Co V Others

69.1 0.023 0.286 1.92 0.04 0.027 17.7 9.35 0.538 0.058 0.27 0.353 0.103 0.102 balance
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The phase analysis results for the as-received pipe are shown in Figure 5. The phase
analysis was conducted in two areas of the pipe, namely the hole surface and front plane.
The resulting diffractograms show no significant difference in the phase distribution across
the two zones. An increased intensity for the austenite peaks (111) and (200) in the front
plane was observed, which could have been due to the texturing of the steel immediately
around the hole, a consequence of the pipe fabrication process.
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The steel’s microstructure is shown in Figure 6. Of interest are the surface around the
hole and the subsurface layers around it at a depth of approximately 240 µm. At depths
down to 60 µm, the structure is relatively homogeneous and includes columnar austenite
grains with strongly pronounced carbide precipitates on their boundaries. The significant
segregation of these carbides along grain boundaries in the surface layer is probably due to
plastic deformation during the production process, which would have led to the dynamic
aging of the material. At depths between 60 and 240 µm, the structure becomes rather
inhomogeneous. Dispersed precipitates of titanium and niobium carbides are observed not
only on the boundaries but also in the austenite grains themselves. Well-defined slip lines
with significant precipitates along them blur the visible austenite grain boundaries.
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3.2. Effect of DB on the Surface Roughness Ra Height Parameter: One-Factor-at-a-Time Method
3.2.1. Influence of the Burnishing Force and Diamond Insert Radius

The average value of the initial roughness parameter Ra (after fine turning) was
Rinit

a = 0.49 µm and was achieved using a TCMX110204WP carbide cutting insert with the
following turning parameters: feed rate f = 0.05 mm/tr, depth of cutting ap = 0.2 mm, and
cutting velocity (40− 60) m/min. Figure 7 shows the dependence of Ra on the burnishing
force and diamond insert radius. The minimum radius (r = 2 mm) in combination with the
minimum (below 50 N) and maximum (above 250 N) burnishing forces increases the initial
roughness Ra, as does a combination of the mean radius (r = 3 mm) and a burnishing
force under 50 N. All other combinations decrease the roughness. This improvement is
significant, except for combinations of the minimum radius and a burnishing force in the
range of (50− 75) N.
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3.2.2. Influence of the Feed Rate for Different Radius Values

Figure 8 shows the dependence of Ra on the feed rate and diamond insert radius. All
combinations improve the roughness. The improvement is significant, except for some com-
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binations containing the minimum (f = 0.044 mm/rev) and maximum (f = 0.128 mm/rev)
feed rates.
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3.3. Effect of DB on the Surface Integrity: Planned Experiment and Optimization

Based on the one-factor-at-a-time experiment (see Figures 7 and 8), the following
restrictions were used for the governing factors: the radius r was limited to 2, 3, and 4 mm,
the burnishing force Fb was limited to the interval 80 ≤ Fb ≤ 240 N, and the feed rate f
had to be a value from the interval 0.05 ≤ f ≤ 0.1 mm/rev. Table 2 contains the governing
factor levels. The transformation from natural x̃i into coded xi coordinates was carried out
according to the formula:

xi =
2(x̃i − x̃0,i)

x̃max,i − x̃min,i
, (1)

where x̃max,i, x̃0,i, and x̃min,i are the upper, middle, and lower levels of the i-th factor in
natural coordinates, respectively.

Table 2. Governing factor levels.

Governing Factors Levels
Natural Codded Natural Coded

Diamond radius, mm r x1 2 3 4
−1 0 1Burnishing force, N Fb x2 80 160 240

Feed rate, mm/rev f x3 0.05 0.075 0.1

Based on the justification made in Section 1, the objective functions are: YRa , YRq ,
YRv , YRsk , YRku , YHV, Yσres

a
, and Yσres

t
. As the governing factors change on three levels, an

optimal compositional plan of the second order was chosen for the planned experiment
(Table 3).

Because the strain-induced α′-martensite content in the surface layer was below
5%, the measurement of the surface residual stresses was carried out for the γ-Fe phase.
The measured diffraction profiles, as determined by the Pearson VII method, of the γ-
Fe {220} plane exhibited a maximum at 2θ ≈ 128.8

◦
for the filtered VKα radiation used.

The Winholtz and Cohen method with X-ray elastic constants s1 = −1.352 TPa−1 and
1
2 s2 = 6.182 TPa−1 was applied (γ-phase). A 2θ range of 124◦–133◦ for γ-Fe was used, with
2θ steps of 0.5◦ and a tilt defined by sin2ψ = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 for both positive
and negative ψ angle values.
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Table 3. Experimental design and results.

Exp.
Point x1 x2 x3 Ra, µm YRa ,

µm Rq, µm YRq ,
µm Rv, µm YRv ,

µm Rsk YRsk

1 −1 −1 −1 0.266 0.2621 0.319 0.3134 0.595 0.5579 0.104 0.1060
2 1 −1 −1 0.175 0.1853 0.245 0.2560 0.825 0.8849 −0.468 −0.5498
3 −1 1 −1 0.252 0.2432 0.299 0.2943 0.667 0.7122 0.070 0.0824
4 1 1 −1 0.071 0.055 0.094 0.0703 0.400 0.3852 −0.489 −0.5734
5 −1 −1 1 0.189 0.1958 0.232 0.2401 0.742 0.8204 −0.322 −0.3822
6 1 −1 1 0.252 0.2516 0.340 0.3292 1.249 1.1474 −1.136 −1.0380
7 −1 1 1 0.178 0.1769 0.219 0.2210 0.446 0.4497 0.530 0.5706
8 1 1 1 0.108 0.1212 0.125 0.1436 0.142 0.1227 −0.090 −0.0852
9 −1 0 0 0.119 0.1376 0.157 0.1644 0.296 0.2863 0.089 0.0942

10 1 0 0 0.067 0.0714 0.085 0.0970 0.291 0.2863 −0.625 −0.5616
11 0 −1 0 0.166 0.1418 0.197 0.1819 0.801 0.8158 −0.872 −0.9135
12 0 1 0 0.066 0.0672 0.084 0.0795 0.381 0.3806 −0.392 −0.4489
13 0 0 −1 0.169 0.1864 0.220 0.2335 0.889 0.9468 −0.797 −0.6812
14 0 0 1 0.204 0.1864 0.242 0.2335 1.019 0.9468 −0.664 −0.6812

Exp.
point Rku YRku Hv Hv

scattering YHV
σres

a ,
MPa

σres
a

meas.
error,
MPa

Yσres
a ,

MPa
σres

t ,
MPa

σres
t

meas.
error,
MPa

Yσres
t

,
MPa

1 2.817 2.8816 467 ±24.5 470.67 −428.5 50.3 −454.7 −79.1 25.5 −53.6
2 4.571 4.7756 457 ±31 464.32 −244.0 59.7 −251.6 19.2 20.8 −9.4
3 2.213 2.0266 490 ±43 494.92 −431.5 57.1 −436.8 117.3 76.9 119.4
4 3.651 3.9206 441 ±21 440.07 −325.8 62.8 −305.7 82.9 39.4 101.4
5 2.737 2.8816 451 ±38 451.47 −415.9 37.4 −435.9 −29.0 44.5 −46.5
6 5.271 4.7756 452 ±24.5 445.12 −155.7 50.4 −150.3 101.7 48 100.4
7 2.165 2.0266 481 ±26.5 475.72 −489.5 83.8 −481.9 −20.1 60.8 9.5
8 3.693 3.9206 424 ±37 420.87 −294.4 61 −268.2 118.8 59 94.3
9 2.950 3.16.72 477 ±26 473.20 −577.0 38.3 −532.9 28.5 61.7 −11.2

10 5.166 5.0612 439 ±36 442.60 −280.5 30.7 −324.5 17.4 46.7 53.2
11 3.747 3.8286 410 ±36.5 410.25 −198.0 78.7 −149.4 −0.6 32.4 21.3
12 3.146 2.9736 400 ±39.5 410.25 −151.0 50.2 −199.5 130.7 39.7 104.8
13 4.340 4.1142 440 ±27 419.85 −197.0 28 −177.9 63.6 21.8 44.6
14 4.001 4.1142 391 ±43 400.65 −130.7 67.7 −149.7 21.9 35.6 44.6

The experimental results for the chosen roughness parameters, surface micro-hardness,
surface residual hoop, and axial stresses are shown in Table 3.

Regression analyses were also carried out. The significance of the regression coeffi-
cients was determined at the p = 0.05 level. Given the chosen experimental design (three
levels for each factor), the approximating polynomials were of second order:

Yk({X}) = b0 +
m

∑
i=1

bixi +
m−1

∑
i=1

m

∑
j=i−1

bijxixj +
m

∑
i=1

biix2
i , k = 1, 2, . . . q, (2)

where {X} is the vector of the governing factors, m is the number of governing factors, and
q is the number of objective functions.

QStatLab software was used to conduct the analyses [34]. The regression coefficients
are shown in Table 4. The values of the objective functions calculated using Equation (2)
for the experimental points of the plan are shown in Table 3. The comparison between
the experimental results and those predicted by the models (at the experimental points)
indicates good agreement.
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Table 4. Coefficients of regression.

Yk b0 b1 b2 b3 b11 b22 b33 b12 b13 b23

YRa 0.1045 −0.0331 −0.0373 0 0 0 0.0819 −0.0279 0.03312 0
YRq 0.13075 −0.0337 −0.0512 0 0 0 0.10275 −0.0416 0.03662 0
YRv 0.59815 0 −0.2176 0 −0.3118 0 0.34869 −0.1635 0 −0.1312
YRsk −0.6812 −0.3279 0.2323 0 0.4475 0 0 0 0 0.2441
YRku 4.11425 0.947 −0.4275 0 0 −0.7131 0 0 0 0
YHV 410.25 −15.3 0 −9.6 47.65 0 0 −12.125 0 0
Yσres

a
−209.47 104.2 −25.01 14.06 −219.28 34.9687 45.6187 −17.987 20.637 −15.937

Yσres
t

44.6846 32.24 41.74 0 −23.669 18.4308 0 −15.562 25.7125 −29.262

The optimization task was set as follows. The vector of the objective functions was:{→
Y({X})

}
=
[
YRa YRq YRv YRsk YRku YHV Yσres

a
Yσres

t

]T
, (3)

where: {
YRa → min, YRq → min, YRv → max, YRsk → min,
YRku → max, YHV → max, Yσres

a
→ min, Yσres

t
→ max

, (4)

{X} = [x1 x2 x3]
T ∈ Γx, (5)

and Γx is the space of the governing factors xi.
The governing factor limitations are shown in Table 2. Constraints are imposed on two

of the objective functions, namely skewness YSsk and kurtosis YSku , for which limitations
arise from the functional purpose of the treated surface; that is, the desire for maximum
wear resistance in the presence of a lubricant [22,24]:

YSsk < 0 and YSku > 3. (6)

The vector {X∗}must be found so that the objective function magnitudes Yk({X∗})
satisfy (4) and (6), and

{X∗} = [x∗1 x∗2 x∗3 ]
T ∈ Γx,

where x∗1 , x∗2 , and x∗3 are the governing factor-compromised optimal values.
The defined multi-objective optimization task was solved via the Pareto-optimal

solutions approach. Decisions were made with a non-dominated sorting genetic algorithm
(NSGA-II) [35] available in QstatLab. Because the nominal radius sizes of the diamond
insert were integers (2, 3, and 4 mm), additional restrictions on the governing factor x1
were imposed. Taking into account both Equation (1) and the fact that the deviation from
the nominal size of the radius is usually ±0.1 mm, these restrictions were: for r =2 mm,
x1 was confined to the interval −1 ≤ x1 ≤ −0.9; for r =3 mm, x1 was limited to the
interval −0.1 ≤ x1 ≤ 0.1; for r =4 mm, x1 was restricted to 0.9 ≤ x1 ≤ 1. In this manner,
three Pareto-optimal solution sets (for each of the three radius sizes) were obtained, each
containing 50 solutions proposed by QStatLab. From these sets, one solution was selected
for each radius (Table 5). Specimen holes (three specimens for each of the three radii) with
a length of 60 mm were then diamond-burnished using the compromise optimal values of
the governing factors. The measured values of the selected parameters, namely roughness,
microhardness, and residual stresses, are shown in Table 6, where each value was obtained
as the arithmetic mean of the values for the three specimens at a specified radius. The
comparison with Table 5 shows a good agreement of the measured values with those of the
optimization.
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Table 5. Selected solutions from the Pareto fronts.

№ r, mm Fb, N f,
mm/tr Ra, µm Rq, µm Rv, µm Rsk Rku HV σres

t ,
MPa

σres
a ,

MPa

1 2 80 0.088 0.163 0.197 0.601 −0.314 2.893 453.8 46.8 −458.9
2 3 221 0.078 0.077 0.093 0.426 −0.485 3.372 409.3 −84.9 −207.7
3 4 218 0.054 0.057 0.0752 0.355 −0.549 4.379 408.3 77.9 −321.5

Table 6. Surface hole characteristics of specimens treated via optimized DB and grinding.

Group
№ Finishing Ra, µm Rq, µm Rv, µm Rsk Rku HV σres

t ,
MPa

σres
a ,

MPa

1 DB with r = 2 mm 0.228 0.304 0.891 −0.193 3.574 470.1 26.2 −588.1
2 DB with r = 3 mm 0.147 0.197 0.769 −0.870 5.088 425.7 −80.3 −178.3
3 DB with r = 4 mm 0.102 0.125 0.286 −0.010 2.640 420.9 88.3 −420.3
4 grinding 0.387 0.351 2.262 −1.442 5.633 417.9 46.1 −329.7

3.4. Reciprocating Sliding Wear Resistance of the Treated Surfaces
3.4.1. Specimen Treatments and Designations

To prove the effectiveness of DB as a finishing method, a comparison of DB with the
traditionally used grinding method was made. The holes of three samples were ground
on a STUDER S33 grinding machine, utilizing a tool made of cubic boron nitride. The
tool diameter was 30 mm. The rotational frequencies of the workpiece and the tool were
200 min−1 and 35,000 min−1, respectively, whereas the depth of cut and the feed rate were
0.01 mm and 1000 mm/min, respectively.

The measured values of the selected parameters for the roughness, micro-hardness,
and residual stresses are shown in Table 6, where each value was obtained as an arithmetic
mean of the values obtained for three samples under a specific finishing type, namely grind-
ing or optimized DB, for r = 2 mm, r = 3 mm, and r = 4 mm. The amplitude parameters
for the roughness (Ra, Rq, and Rv) for all groups of diamond-burnished specimens are
lower than those of the ground specimen. These parameters decrease as the diamond insert
radius increases. All finishing processes result in negative skewness with a relatively high
kurtosis parameter. Obviously, the grinding leads to the lowest surface micro-hardness, a
consequence of the small amount of coldwork inherent in cutting finishing processes. DB,
implemented with radius r = 2 mm, provides the largest surface compressive axial residual
stresses. Despite the fact that the grinding introduces relatively large axial compressive
residual stresses in the surface layer, the depth of the compression zone is significantly
smaller than that for DB (Figure 9).
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Samples were cut from the machined cylinders to reciprocate sliding wear tests (see
Figure 1, step 7). The samples were classified into four groups: DB1, DB2, DB3, and G4.
The samples in DB1, DB2, and DB3 were diamond-burnished using diamond insert radii
2, 3, and 4 mm, respectively. The samples in G4 were ground. Each group contained six
specimens: three for the dry friction mode and three for the boundary lubrication regime.
For each group, the final result for the mass wear ∆mi for a given friction path Li was
calculated as the arithmetic mean of the mass wear values for the three relevant samples.

3.4.2. Reciprocating Sliding Wear Tests

The pressing force P for the sliding wear tests was chosen based on the following
condition: the maximum contact equivalent stress at the point on the surface of the specimen
in contact with the spherical surface of the counter-body should be equal to the yield
strength (see Figure 4) of the base material. The finite element method (FEM) in Abaqus
Standard software v. 6.12-1 and implicit analysis were used to pinpoint P. The FE model
is shown in Figure 10. Using the experimental setup (see Figure 3), a quarter of the
counter body–specimen–fixture–support system was modeled (due to the double symmetry,
the counter body was positioned in the middle of the specimen). Elastic behavior of
hardened carbon steel was assumed for the fixture and support. The spherical counter
body was modeled as an analytical rigid body, and the specimen was modeled as an
elastic-plastic body with a material constitutive model (according to Figure 4) and isotropic
strain hardening because the yield surface was not going to move in the stress space. The
roughness and residual stresses in the surface layer of the specimen were neglected. A total
of three master–slave contacts were defined. Displacement of the rigid body reference point
(RP) along the x-axis was assigned, varying linearly in pseudo-time. P was then measured
as the reaction (in x direction) of the RP. First, linear finite elements of the type C3D8R
were selected. It was then determined that the sizes of the finite elements contacting the
rigid body along the three directions were approximately 0.08 mm. Finally, the maximum
equivalent stress of 300 MPa at the contact point between the rigid body and the specimen
was obtained for a pressing force of approximately 12 N. Therefore, the reciprocating sliding
wear tests were conducted with a P of 12 N.
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The kinetic curves of mass wear values for all groups of specimens in the dry friction
regime are depicted in Figure 11. For all values of the friction path, the mass wear is least
for the diamond-burnished specimens in group DB1, followed by the specimens in group
G4, with ground holes. The mass wear found for the other two groups was greater despite
their roughness amplitude parameters being lower than those for group DB1 (see Table 6).
At the same time, the most favorable combination of the shape parameters Rsk and Rku in
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terms of friction was measured for specimens from group DB2. However, these parameters
were of decisive importance to retain the lubricant in the boundary and mixed friction
modes, respectively [11,22,24]. In the dry friction mode, the abrasive wear mechanism
generally dominates, which, to the greatest extent, depends on the physical-mechanical
characteristics of SI: surface micro-hardness HV, plus the surface axial (σres

a ) and hoop
(σres

t ) residual stresses [11]. The highest micro-hardness (470 HV) and maximum surface
compressive axial residual stresses were measured (σres

a = −588.1 MPa) for the DB1 group
samples (Table 6). The axial residual stress profile (Figure 9a) confirms the presence of
a compressive zone with a depth greater than 0.25 mm and maximum stress at a depth
of approximately 0.05 mm. The surface residual hoop stress is relatively small tensile
(26.2 MPa), but at a depth of approximately 0.05 mm, it reaches −200 MPa (Figure 9b).
These results confirm the importance of a greater amount of cold work on the surface layer
in reducing the wear in the dry friction mode [11].
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In order to predict wear over time, it is necessary to determine the wear rate trends for
the corresponding sliding wear specimens. The average wear rate and the corresponding
trend lines are shown in Figure 12. For the researched friction path, the samples from
group DB1 show the lowest wear rate. However, the trend lines for all groups of diamond-
burnished specimens (DB1, DB2, and DB3) and the trend line for the ground specimens (G4)
are opposite in character. The wear rates of the diamond-burnished specimens increase
smoothly up the friction path for approximately 540 m, after which they also smoothly
decrease. For the ground samples in G4, the opposite is true: up to 180 m along the
friction path, the wear rate is maximum, then it smoothly decreases until approximately
540 m along the friction path, at which point it starts to increase. It can be assumed that
for diamond-burnished specimens, the running-in stage ends along the friction path of
approximately 540 m, after which the specimens reach an equilibrium surface texture. The
increasing wear rate after 540 m of friction path for the ground samples (G4) is an indication
that their running-in stage has not ended. The observed phenomenon confirms Korzynski
et al.’s [24] finding that DB provides a surface texture close to the equilibrium one obtained
at the end of the running-in stage on surfaces treated by cutting only.
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The kinetic curves of mass wear for all groups of specimens in the boundary lubrication
friction regime are depicted in Figure 13. Under this friction mode, mass wear is the least
for the diamond-burnished specimens in group DB1. At the end of the friction path
(1000 m), the mass wear of the ground samples in G4 is greatest. For the other two groups
of diamond-burnished specimens (DB1 and DB3), the wear develops at a changing rate
depending on the friction path. The average wear rate and the corresponding trend lines of
the sample groups are shown in Figure 14. The trend lines for the wear rates of the samples
from group DB1 increase smoothly until reaching 750 m along the friction path, after which
they maintain almost constant values. The wear rate trend lines for the diamond-burnished
specimens from groups DB2 and DB3 have a variable character (Figure 14). For group DB2,
the wear rate markedly decreases in the interval 750–1000 m. As a result, the DB2 group
specimens come in second by the friction path end (Figure 13). The relatively high wear
resistance in the boundary friction mode of the specimens in this group can be explained
by their more favorable combination of shape parameters (Rsk = −0.87, Rku = 5.088)
compared to the other two groups of diamond-burnished specimens (see Table 6). This
combination describes a micro-roughness profile dominated by deep valleys and sharp
peaks, which improves lubricant retention and reduces friction. As found in other studies
on sliding wear [11], in the boundary friction regime, the functional importance of the
SI geometric characteristics exceeds that of these characteristics under the dry friction
regime. On the other hand, the smaller amount of wear at the end of the investigated
friction paths of all groups of diamond-burnished specimens confirms the beneficial effect
of cold work and the importance of lower values for the roughness amplitude parameters.
Despite the fact that grinding provides the most favorable combination of shape parameters
(Rsk = −1.442, Rku = 5.633; see Table 6), the wear rate of the ground samples increases
throughout the friction path. Although it remains relatively weak until reaching 500 m
along the friction path, the wear rate increases significantly after this point.
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The results obtained for the reciprocating sliding wear tests for both the dry and
boundary lubrication friction regimes show that from the point of view of minimizing the
wear on cylinder lines made of AISI 321 SS, the most suitable finishing process is that used
for group DB1.

The morphology of the worn surfaces permits the evaluation of the wear mechanism.
Figure 15 shows the worn surfaces created under the dry friction mode on the DB1 and
G4 specimens. Abrasive scratches, oxidized zones, and adhesive pits are observed on
these surfaces. This set of morphological characteristics indicates a mixed-wear mechanism
for both surfaces featuring abrasive and adhesive wear. In general, larger oxidized areas
and more pronounced adhesive pits are observed on the ground surface of the specimen
from group G4 (Figure 15b). The lower surface hardness and higher roughness of these
ground surfaces result in greater frictional forces; hence, a greater amount of generated
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heat favoring oxidation and adhesion. Thus, the adhesion mechanism of wear is more
pronounced for group G4.
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Figure 15. Worn surface under dry friction regime: (a) specimen DB1 and (b) specimen G4.

Figure 16 shows the DB1 and G4 specimen surfaces after sliding wear under the
boundary lubrication friction mode. The morphology of the worn surfaces is mainly
characterized by abrasive scratches, which are deeper for the ground surface (G4). The
observed pits for both types of surfaces have a different genesis than those obtained under
the dry friction condition. The reciprocating movement of the spherical counter-body in
the presence of the lubricant causes contact fatigue on the surface layers of the samples.
This phenomenon is manifested by the appearance of cracks into which lubricant falls: as a
result of the increased pressure in the cracks, particles are released from the surface layer.
The contact fatigue is more pronounced in the ground sample (G4). In general, in both
types of specimens, abrasive wear predominates.
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4. Conclusions

When processing the holes of cylinder lines made of austenitic SS, material removal
finishing processes are usually used: honing (for long holes) or grinding (for short-length
holes). These processes require specialized machines and equipment. A new cold-working
technology for finishing the holes of short-length cylinder lines exhibiting improved wear
resistance was developed in this study. The proposed technology is based on the multi-
objective optimization of the DB process. DB was implemented via a simple burnishing
device for the same machine tool on which preliminary treatments were carried out. Thus,
this technology increases productivity and reduces the cost of the product. The major new
findings concerning the nature of the proposed technology of this study are:

• The DB of holes in AISI 321 SS, performed with a diamond insert radius r = 2 mm,
burnishing force Fb = 80 N, and feed rate f = 0.088 mm/rev, significantly improves
wear resistance. This optimal DB process maximizes the reciprocating sliding wear
resistance of the hole surface in both dry friction and boundary lubrication friction
modes.

• The wear rate trend line for sample holes processed with the optimal DB process
decreased at the end of the friction path under both friction modes. The wear rate
trend line for ground samples showed an opposite trend for both modes of friction.
These experimental results show that to minimize the wear of holes in AISI 321 SS, a
more pronounced cold work effect and minimum values of the roughness amplitude
parameters are required.

• The developed DB device with elastic beam is applicable for holes with a wide range
of variation in their diameters.
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