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Abstract: This article analyzes circulating current control in single-phase power electronic converters,
focusing on two different topologies: interleaved and parallel configurations. The study involves
a bridgeless interleaving topology with two boost converters for increased efficiency. A parallel
connection is also examined for monitoring line current, circulating currents, and power factor
control. The article widely explains all current loops, including Common Mode Circulating Currents
(CMCC) in the bridgeless interleaved topology and Differential Mode Circulating Currents (DMCC) in
parallel-connected interleaved power converters. The proposed control scheme employs voltage and
current control loops for output voltage and line current control and introduces CMCC and DMCC
compensators to eliminate all types of circulating currents. An efficient Power Factor Correction (PFC)
and output voltage control method is presented in this article. The effectiveness of the proposed
schemes is validated through comparisons with modern control systems. The results are verified
using Simulink/MATLAB and experimental setups with TI Instruments Piccolo prototypes and
C2000 (TMS320F28035 microcontroller MCU) microcontrollers in parallel configurations.

Keywords: power electronic converters control; circulating currents control; power factor correction

1. Introduction

Renewable energy sources equipped with embedded Power Electronic Converters
(PECs) have recently experienced substantial power rating advancements. Also, specific
standards have been introduced to ensure grid stability, limiting harmonic current injection
up to the 180th harmonic [1]. To comply with these standards, the power generated by
the converters requires appropriate processing. Among the converters commonly used in
power systems are voltage source converters [2], employed in single, interleaved, or parallel
topologies. The parallel topology has gathered interest due to its effective power-handling
capabilities [3].

Interleaving topologies have demonstrated superior effectiveness to non-interleaving
approaches in harmonics reduction [4]. However, interleaved connections between con-
verters give rise to undesired currents flowing between the interleaved converter modules.
These undesired currents, known as circulating currents, result from phase voltage differ-
ences. Several design and control methodologies have been proposed to mitigate these
circulating currents, as discussed below.

One method mentioned in [5] involves inserting an isolation transformer at the output
end of each converter to control open-circuited paths for undesired currents. However,
this approach incurs additional costs and utilizes space for the isolation transformers.
Another solution, proposed in [6], incorporates a Common Mode (CM) filter at each
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converter’s output to suppress circulating currents, but also comes with added costs. In
references [7–11], Coupled Inductors (CIs) are employed for their excellent performance
in reducing circulating currents. Nevertheless, these CIs may distort the current sharing
between converters during unbalanced load sharing.

The converters can also be connected in parallel to improve the power system’s
capability and reliability [12–15]. This parallel topology is also acceptable for modularized
power system design because it provides a flexible and a high-capacity system. On the
other hand, paralleling the converters also has some significant challenges to tackle due
to the control, which leads to the unsynchronized operation of the converters connected
in parallel.

Paralleling the converter device was a concept for a more reliable system with more
proper load current balancing schemes [16–19]. Based on the results in [18,19], it is con-
cluded that paralleling the converter is more reliable than non-paralleling. However, the
challenge of circulating currents is also a challenging aspect in such topologies [12–14],
which can also lead to unbalanced load current sharing between the converters, degrading
the system’s performance. Dealing with circulating currents in parallel devices can also be
done via the same isolation method. The isolation can either be in the form of installing an
isolation transformer at the input side after the AC supply source [5,20], shown in Figure 1,
or by applying separated AC sources to each parallel-connected converter [16,21], shown
in Figure 2. The approach used in previous references is not practically desirable due to the
expense and bulkiness of the whole system.
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The high impedance provided by the interphase reactor placing is also used to deal
with circulating currents in the system [16,21]. The major challenge in this approach was the
existence of low frequency circulating currents due to the little impedance from the reactor
at low frequencies. Another control approach was introduced in [15,22–26], in which all the
converters connected in parallel are taken as a single unit. This has a significant drawbacks
in terms of synchronization, as a system can have converters of different brands connected
in the system.

In both cases, circulating currents mainly occur due to improper current sharing
between the converters, whether interleaved or paralleled. The applied control schemes
primarily influence unequal current sharing in the converter’s parameters. Minimizing
these mismatches is essential to address circulating currents by ensuring proper and
balanced current sharing between the converters. Some methods have been proposed to
control circulating currents in the literature.

For instance, in [27], circulating currents are reduced by controlling the PWM signals
provided to the converters. A similar approach is presented in [7], where the average
current for each phase is calculated, and control signals are individually updated based
on these calculations to balance current sharing between phases. Likewise, common
mode circulating currents are controlled between parallel-connected modules in [28,29]
using PWM control techniques. The deadbeat control method [30] is also introduced for
circulating current control, while the concept of circulating impedance [29] is introduced
between converter modules to minimize circulating currents.

This article focuses on PWM-related methods to avoid the need for additional bulky
and costly devices specifically designed to address circulating currents. This research aims
to provide a compact PWM control scheme that effectively manages circulating currents
in two commonly practiced connection topologies: interleaved and parallel. The bridge-
less scheme approach introduced in this research further enhances the power system’s
advantages by reducing energy losses.

This research primarily targets the Texas Instruments (TI) board (details provided
later). Circuit simulations are performed explicitly on the digital replica of this TI board.
The subsequent sections of the article are organized as follows: Section 2 discusses the
applications of different connection topologies of power converters. Section 3 presents the
bridgeless interleaved boost converter circuit, while Section 4 elaborates on the circulating
current loops in the interleaved topology of the boost converter. In Section 5, two inter-
leaved boost converter modules are connected in parallel, and circulating currents between
these modules are studied. Section 6 outlines the proposed control scheme for all circulating
current types within the interleaved and paralleled schemes. A stability analysis of both
interleaved and parallel circuits is performed in Section 7. MATLAB/Simulink is used for
software verification, and the results are presented in Section 8. The control prototype is
designed for the TI prototype, and the practical results are presented in Section 9 of this
article. Finally, Section 10 concludes this article.

2. Power Electronic Converter Connection Topology Applications

Power electronic converters facilitate power transfer between different energy sources,
utilizing semiconductor switches for control. In modern power systems, renewable energy
sources have gained widespread adoption, and power electronic converters (PECs) play
a vital role in interconnecting these diverse energy sources. The efficiency of such power
systems heavily relies on the efficiency of these PECs. One can focus on their different
topology connections to enhance the efficiency of power converters. The design of a
power converter in a system is directly related to the control of output and input currents
and voltages, whereas the topology of the connections between converters significantly
impacts the system’s efficiency. The main topology connections used for converters today
are series, parallel, and interleaved topology, and this section discusses some of their
modern-day applications.
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For instance, parallel-connected uninterruptible power supplies are presented in [31],
where multiple power supplies are connected in parallel to increase capacity and provide
redundancy in case of a fault. This arrangement ensures a continuous power supply, even
if one supply fails. Another contemporary example is presented in [32], where the load
current is shared among converters to reduce stress on individual converters, thereby
enhancing the system’s reliability.

Interleaved topology is another well-known arrangement employed in power con-
verters. In electric vehicle systems, these converters are used in an interleaved scheme to
increase the output power capacity of a single battery pack [33]. Similarly, the converters
are used in an interleaved scheme in server power supplies to efficiently distribute power
to the system’s components [34]. Apart from this, interleaved converters are also beneficial
in LED lighting systems. For instance, in [35], a three-leg interleaved boost converter is
utilized to achieve an efficient LED lighting power factor correction system.

The applications of these topologies mentioned above in modern work are the main
motivation for this research. The novelty of this study lies in the combination of the above-
discussed topologies within a single power system to leverage their collective advantages.
A bridgeless scheme is employed in this work, reducing power losses within the system
and positively impacting efficiency. The prototype presented in this research includes a
controller design that accommodates various models of interleaved and parallel-connected
converter modules. This design is particularly useful for charging electric vehicles, provid-
ing increased output voltage and current capacity. While the prototype is designed for a
single-phase system, it can be adapted for future use in a three-phase connected system.
To assess the effectiveness of the proposed controller, a comparison is made with some
modern control schemes, such as Energy Shaped Control (ESC) and a Fuzzy Controllers, as
described in a recent work [36]. This comparison evaluates the performance of the proposed
controller in circulating current control, harmonics reduction, and power factor correction.

3. Bridgeless Interleaved Topology of Boost Converters

In power conversion, the AC–DC converter stage immediately follows the AC supply
source to provide a DC voltage to the user. Most user appliances require a pure DC supply
at the output. To achieve this, capacitive filters and rectifiers are positioned at the end
of the circuit, sometimes leading to short-duration current spikes. These current spikes
significantly impact the total harmonic content of the circuit, especially in high-power
delivering circuits.

Two main factors are monitored for assessing the power quality of any power system:
the Power Factor (PF) and Total Harmonic Distortion (THD) of the system. PF primarily
concerns the efficient power consumption of the system. Power factor correctors (PFCs) are
introduced to compensate for the power factor. PFCs aim to shape the input supply current
with the input supply voltage, aligning them in phase and extracting the maximum input
power from the AC supply source.

For power factor compensation, a block diagram in Figure 3 is presented, which
contains the bridgeless PFC with the interleaved topology of boost converters. An input
EMI filter and inrush control relay are placed between the input supply source and the PFC
converter, while a capacitor filter and a load are at the outer end of the circuit. Two boost
converters are connected in an interleaved scheme for each half-line cycle. The circuit’s
input voltage is symmetrical in two half-line cycles, while the line current of the circuit
flows only through the two diodes of the circuit, which results in low conduction losses.
The space utilization and the thermal performance of the circuit improve due to the use
of two inductors compared to a single conventional inductor. It can help to improve the
system’s efficiency, even for higher power applications. The sum of both inductor currents,
i.e., IL1_1 and IL1_2, represents the total current from the input supply source. The ripple
currents will be out of phase in these inductors; therefore, they will cancel the effect of each
other. This will reduce the EMI filter size by mitigating the high-frequency ripple current



Machines 2023, 11, 878 5 of 27

generated due to the high-speed switching of the boost converter. The outer capacitor’s
high-frequency ripple is also reduced in this scheme.
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The detailed operation of the bridgeless interleaved buck-boost converter is performed
in two different cycles of the input voltage, i.e., the positive and the negative half cycle, as
indicated by two different colors in Figure 3. During the positive half cycle of the input
supply source, the power is transmitted from the input to the output with the help of L1_1.
The switch Q1_1 is ON, and the current path is provided between the load and the input
supply source via inductor L1_1. Similarly, for a negative half cycle, the power is supplied
through L1_2. The circuit L1_1, Q1_1, and D1_1 act as a single boost converter, switching at
a high frequency for the first positive cycle, as indicated by the blue line in Figure 3. For
the negative half cycle, a link is provided between the input supply source and the output
load with the help of inductor L1_2, as indicated by the red line in Figure 3. Here L1_2, Q1_2,
and D1_2 behave as a single boost converter, switching at high frequency for the other cycle.
The voltages Vin_L and Vin_N represent the line and the neutral voltages.

4. Circulating Current Loops in the Interleaved Topology of Boost Converters

Currents that flow in the circuit without contributing to the load current are called
circulating currents. Several circulating current loops exist in the bridgeless interleaved
topology scheme presented in the previous section. These loops are discussed in detail
in this section of the article. The source voltage Vs is in sinusoidal form, so we consider
the operation of the converter according to the two different cycles of the grid voltage, i.e.,
(1) Vs > 0 and (2) Vs < 0. For the power factor correction and output voltage regulations,
the circuits’ working, circulating current loops, and inductor current statuses are discussed
below in detail for cases (1) and (2).

4.1. Case (1): Vs > 0

As discussed in the previous section, the load is supplied by the first converter with
interleaved topology for the positive half cycle. During this positive cycle, a circulating
current loop originates from the source, circling back to the source without going to the
load. When the switch Q1_1 is switched ON, the circulating current follows the loop path
(Figure 4: green loop) back to the voltage source via the following loop.

Status A : Q1_1 = ON : V+
s → L1_1 → Q1_1 → Q1_2 → L1_2 → V−s
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In this case, the inductor voltage status will continue increasing as the input supply
voltage positive half cycle is considered; therefore, applying KVL to this loop gives:

Vs = VL1_1 + VL1_2 (1)

Vs − L11 ·
diL11

dt
− L12 ·

diL12

dt
= 0 (2)

For the same case 1, we have a circuit condition in which both switches are off, and
the current flows directly to the load (Figure 4: red loop). Therefore, the loop of the current
will be:

Status B : Q1_1 = OFF & Q12 = OFF : V+
s → L1_1 → D1_1 → VDC → Q1_2 → L1_2 → V−s

As the supply current is now supplied to the output load, the status of the inductor
voltage will decrease. Applying KVL to the loop in Figure 4 yields:

Vs = VL1_1 + VDC + VL1_2 (3)

Vs − L1_1·
diL1_1

dt
−VDC − L1_2·

diL1_2

dt
= 0 (4)

4.2. Case (2): Vs < 0

We consider the second case for the negative half cycle of the input supply source. In
this case, the alternate switch Q1_2 remains ON, while the inductor voltage status remains
low compared to the positive half cycle. The loop of the circulating current flowing in this
case 2 (Figure 5: Green Loop) is as follows:

Status C : Q1_2 = ON : V+
s → L1_1 → Q1_1 → Q1_2 → L1_2 → V−s

In this case, applying KVL will generate the same equation:

Vs − L1_1·
diL1_1

dt
− L1_2·

diL1_2

dt
= 0 (5)
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Similarly, for the same case, when we have both switches OFF, the current will go to
the load via the following loop (Figure 5: red loop):

Status D : Q1_1 = OFF & Q12 = OFF : V+
s → L1_1 → Q1_1 → VDC → D1_2 → L1_2 → V−s

The current passes through the load, increasing the status of inductor voltage in this
case. Therefore, by applying KVL, we obtain the following:

Vs = VL1_1 −VDC + VL1_2 (6)

Vs − L1_1·
diL1_1

dt
+ VDC − L1_2·

diL1_2

dt
= 0 (7)

We can summarize the two cases with four different statuses in Table 1. Status A of
case 1 and status D of case 2 have increasing statuses for the voltages across the inductors,
while status B of case 1 and status C of case 2 have low inductor voltage statuses.

Table 1. Case studies and Statuses for interleaved topology of boost converters.

Case Status Q1_1 Q1_2 Inductor Voltage Status

1
A ON OFF VL1-1, VL1-2 > 0
B OFF OFF VL1-1, VL1-2 < 0

2
C OFF ON VL1-1, VL1-2 < 0
D OFF OFF VL1-1, VL1-2 > 0

5. Two Parallel-Connected Setups of Interleaved Boost Converters

In Figure 6, two identical setups of Figure 3 are considered for parallel connections.
They are connected across the same supply AC source at the input, and the load is at the
output end. Here again, we are dividing the operation of the circuit into two prominent
cases depending upon the status of the input supply voltage, i.e., (1) Vs > 0 and (2) Vs < 0.
The converter operation in both cases, the circulating currents path, and the inductor
voltage statuses are discussed below in detail.



Machines 2023, 11, 878 8 of 27Machines 2023, 11, x FOR PEER REVIEW 8 of 29 
 

 

 
Figure 6. Parallel topology of two interleaved connected boost converter setups (Case 1: status A is 
the loop in green, status B is the loop in red, and status C is loop in blue). 

5.1. Case (1): Vs > 0 
In the parallel topology, we come across the possibility of the circulating currents 

moving from one setup to the other. Discussing these circulating paths, we consider dif-
ferent statuses according to the ON and OFF states of the switches. In case 1, the switch 
Q1_1 is switched ON, and the circulating current follows the path inside the circuit from 
one module to the other and back to the voltage source via the following loop (Figure 6: 
green loop): 𝑺𝒕𝒂𝒕𝒖𝒔 𝑨:  𝑄ଵ_ଵ ൌ 𝑂𝑁: 𝑉௦ା →  𝐿ଵ_ଵ  →  𝑄ଵ_ଵ  →  𝑄ଶ_ଶ  →  𝐿ଶ_ଶ  →  𝑉௦ି  

For the same case, when the switch Q2_1 is switched ON (Figure 6: red loop), the loop 
of circulating current is: 𝑺𝒕𝒂𝒕𝒖𝒔 𝑩:  𝑄ଶ_ଵ ൌ 𝑂𝑁: 𝑉௦ା →  𝐿ଶ_ଵ  →  𝑄ଶ_ଵ  →  𝑄ଵ_ଶ  →  𝐿ଵ_ଶ  →  𝑉௦ି   

The voltages for the inductors remain increasing for the above statuses (A and B) in 
case 1. Now, considering status C, in which all the switches are OFF, and the current flows 
directly towards the load (Figure 6: Blue Loop), the loop of the current will be: 𝑺𝒕𝒂𝒕𝒖𝒔 𝑪: 𝑄ଵ_ଵ ൌ 𝑄ଵ_ଶ ൌ 𝑄ଶ_ଵ ൌ 𝑄ଶ_ଶ ൌ 𝑂𝐹𝐹: 𝑉௦ା → 𝐿ଵ_ଵ → 𝐷ଵ_ଵ → 𝑉஽஼ → 𝑄ଶ_ଶ → 𝐿ଶ_ଶ → 𝑉௦ି   

5.2. Case (2): Vs < 0 
In this case, the circuit is considered for the negative half cycle of the input supply 

source. The circulating current loop when switch Q2_2 is considered to be ON (Figure 7: 
green loop) is: 𝑺𝒕𝒂𝒕𝒖𝒔 𝑫:  𝑄ଶ_ଶ ൌ 𝑂𝑁: 𝑉௦ା →  𝐿ଵ_ଵ  →  𝑄ଵ_ଵ  →  𝑄ଶ_ଶ  →  𝐿ଶ_ଶ  →  𝑉௦ି   

Figure 6. Parallel topology of two interleaved connected boost converter setups (Case 1: status A is
the loop in green, status B is the loop in red, and status C is loop in blue).

5.1. Case (1): Vs > 0

In the parallel topology, we come across the possibility of the circulating currents
moving from one setup to the other. Discussing these circulating paths, we consider
different statuses according to the ON and OFF states of the switches. In case 1, the switch
Q1_1 is switched ON, and the circulating current follows the path inside the circuit from
one module to the other and back to the voltage source via the following loop (Figure 6:
green loop):

Status A : Q1_1 = ON : V+
s → L1_1 → Q1_1 → Q2_2 → L2_2 → V−s

For the same case, when the switch Q2_1 is switched ON (Figure 6: red loop), the loop
of circulating current is:

Status B : Q2_1 = ON : V+
s → L2_1 → Q2_1 → Q1_2 → L1_2 → V−s

The voltages for the inductors remain increasing for the above statuses (A and B) in
case 1. Now, considering status C, in which all the switches are OFF, and the current flows
directly towards the load (Figure 6: Blue Loop), the loop of the current will be:

Status C : Q1_1 = Q1_2 = Q2_1 = Q2_2 = OFF : V+
s → L1_1 → D1_1 → VDC → Q2_2 → L2_2 → V−s

5.2. Case (2): Vs < 0

In this case, the circuit is considered for the negative half cycle of the input supply
source. The circulating current loop when switch Q2_2 is considered to be ON (Figure 7:
green loop) is:

Status D : Q2_2 = ON : V+
s → L1_1 → Q1_1 → Q2_2 → L2_2 → V−s
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When switch Q1_2 is switched ON (Figure 7: red loop), the circulating current loop for
the same case 2 is

Status E : Q1_2 = ON : V+
s → L2_1 → Q2_1 → Q1_2 → L1_2 → V−s

The voltage status for the inductors remains decreasing in case 2. When all the switches
of the converter are considered to be switched OFF, as in this case, the current will flow
towards the load (Figure 7: blue loop)

Status F : Q1_1 = Q1_2 = Q2_1 = Q2_2 = OFF : V+
s → L2_1 → Q2_1 → VDC → D1_2 → L1_2 → V−s

All the cases and statuses of this scheme are summarized in Table 2.

Table 2. Case Studies and Statuses for parallel connections of two setups of interleaved topology of
boost converters.

Case Status Q1_1 Q1_2 Q2_1 Q2_2 Inductor Voltage Status

1
A ON OFF OFF OFF

>0B OFF OFF ON OFF

C OFF OFF OFF OFF <0

2
D OFF OFF OFF ON

<0E OFF ON OFF OFF

F OFF OFF OFF OFF >0
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6. Proposed Control Scheme

The proposed controller will be described in three steps to facilitate a better under-
standing of the concept behind it. First, the partial proposed controller will be introduced,
which is responsible for the voltage and current control of a combined case involving inter-
leaved and parallel-connected converters. In this step, no control mechanism for circulating
currents will be included.

Next, a Common Mode Circulating Current (CMCC) controller will be integrated into
the partial proposed controller. This step will focus solely on the circulating current loops
associated with the interleaved case in a single-board interleaved converter.

Finally, the full form of the proposed controller will be presented, encompassing
a combined case of interleaved and parallel connected converters. This comprehensive
controller will consist of two separate controllers, namely the CMCC and Differential
Mode Circulating Current (DMCC) controllers. The full controller will be designed to
simultaneously manage the output voltage, line current, and all the circulating current
control loops.

The basic design of the proposed controller is partially shown in Figure 8, which
contains the cases of interleaved and parallel connected converters. The term ‘partially’
is given for Figure 8 because it generally contains the output voltage control and inner
current control loops without any control for the circulating current loops described above.
In total, seven feedback signals are sensed from the circuit, which latterly takes part in
the controller. These signals are an output voltage Vdc, the four inductor currents (IL1_1,
IL1_2, IL2_1, IL2_2), and the line (Vin_L) and neutral voltage (Vin_N) signals. We have two
control loops in the controller: the outer voltage control loop and the inner current control
loop. As we are dealing with two parallel devices, we have four sub-loops of the current
control loops (due to the total four boost converters), which will be adjusted according to
the number of parallel connected devices.

Inside the voltage control loop, the output DC voltage is sensed and compared with
a reference voltage (Vdc_ref) specified by us. The difference is minimized using a voltage
compensator. The output from this voltage control loop is taken as a reference value
for the inner current control loops. Before providing it to the inner loop, this reference
signal is multiplied by the rectified form of the input supply voltage for the addition of
phase and shape. The reference signal is ready to be provided to the current control loops,
where the inductor currents are subtracted from them in each loop. Again, to remove their
difference, the current compensators are used. The output from these current compensators
is provided to the PWM generator, which will provide the gating signals for the switches
of each boost converter. At this step, this proposed controller has no control over the
circulating currents.

Depending upon the topologies followed in Figure 8, there are two main types of
circulating currents inside proposed modules: the Common Mode (CMCCs) and Differ-
ential Mode Circulating Currents (DMCCs). Suppose the converter module for a single
setup is considered, where the converters are connected in an interleaved topology. In this
case, there is a CMCC, and if two modules of such interleaved converters are connected in
parallel then the circulating current will be CMCC along with DMCC.
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6.1. Common Mode Circulating Current CMCC with a Controller

CMCC refers to the types of circulating currents existing inside the interleaved topol-
ogy scheme. CMCC is the difference between the inductor currents of the two legs of the
interleaved topology [37], i.e.,

icmcc_a = iLa_1 − iLa_2; a ε { 1, 2, 3, . . . , n} (8)

To better understand the CMCC controller, the single board of interleaved converter
(Figure 3) is considered for a control, where we only deal with two interleaved connected
converters. Therefore, the control part (only) of this single board interleaved case is shown
in Figure 9, which contains five feedback signals from the circuit. These signals are the
output voltage signal Vdc, the two inductor currents (IL1_1, IL1_2), and the line (Vin_L) and
neutral voltage (Vin_N) signals. For the full form of the proposed controller for a single
interleaved module for controlling the output voltage, line current, and circulating currents,
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a separate CMCC controller is added to the control part of Figure 8 to minimize the common
mode currents from the interleaved topology (shown by the dotted red lines in Figure 9).
In Figure 9, a single current control loop is taken, whereas inside the CMCC controller, the
inductor currents are subtracted from each other, while there difference is minimized by
using a PI current controller. The output from this CMCC controller is then subtracted
from the reference current in the current control loop. The rest of the control will remain
the same for the voltage control loop. This CMCC aims to ensure equal current sharing
between the two legs of the interleaved converters. Figure 9 is now the full form of the
proposed controller used for a single case of an interleaved connected board. A Differential
Controller is added for parallel connected boards, which is discussed below.
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6.2. Differential Mode Circulating Current DMCC Controller

The DMCCs are mainly part of the parallel-connected topologies. DMCC is the differ-
ence between the inductor currents of the first leg of each parallel-connected module, i.e.,

idmcc_jk = δj·iLk_1 − δk·iLj_1 ; j, k ε { 1, 2, 3, . . . , n}, j 6= k (9)

Here, δx represents the distribution factor, and its value should be between 0 and 1:
(0 < δx > 1). This distribution factor is given by the following:

δx =
Px

Ptotal
; x ε { 1, 2, 3, . . . , n} (10)

where Px represents the power of the individual converter and Ptotal represents the system’s
total power.

In this section of the controller, the full and final version of the proposed controller is
presented (Figure 10) for utilization in both parallel and interleaved connected converters
(Figure 6). This versatile controller is not only applicable for circulating current controls
in both topologies, but also proves valuable in the control of the output voltage and inner
line current. The controller comprises five distinct loops: an outer voltage control loop,
two inner current control loops, and two loops of the Common Mode Circulating Current
(CMCC) controller, along with the addition of the distribution factor δx. The value of this
distribution factor can be adjusted to enable control of the Differential Mode Circulating
Current (DMCC) for parallel-connected modules of both the same and different ratings.
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7. Interleaved and Parallel Circuit Stability Analysis
7.1. Interleaved Connected Boost Converters

In a control system, a stability analysis is performed to define the stability of a system
with the help of a mathematical model. For performing the stability analysis of the proposed
model of the interleaved connected system (Figure 3), Kirchhoff’s law of voltage is applied
to obtain the equations for the charging and discharging of the inductors:

Vs − L1_1·
d
dt

iL − R1_1·iL −Vdc − L1_2·
d
dt

iL − R1_2·iL = 0 (11)

Vs − L1_1·
d
dt

iL − R1_1·iL − 0− L1_2·
d
dt

iL − R1_2·iL = 0 (12)

In the above equations, L and R denote the circuit’s inductance and Series Equivalent
Resistance (SER). Applying the above equation with the average state-space technique
and introducing the duty cycle ratio function D will result in an equation for input supply
voltage as follows:

Vs = (d·L1_1 + R1_1 + d·L1_2 + R1_2)iL + D·Vdc (13)

The term d in the above equation represents a differential operator. Therefore, the above
equation is the input supply voltage equation for the inductor’s charging and discharging
phases. Now we can extend this equation to the parallel-connected converter circuits.

7.2. Parallel Connected Boost Converters

For the parallel-connected scheme (Figure 6), the generic representation for each
interleaved converter circuit’s first and second leg is done by x and y, extending the above
input supply voltage equation for both parallel-connected circuits, i.e., for the converter
circuits 1 and 2 in Figure 11. This is given by the below equations.

Vs =
(
d·Lx + Rx + d·Ly + Ry

)
iL1 + D1·Vdc (14)

Vs =
(
d·Lx + Rx + d·Ly + Ry

)
iL2 + D2·Vdc (15)
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Circulating currents can be the reason for the circuit’s performance degradation and
stability problems. They can cause power losses inside the circuit, create voltage imbalances
between the converters, and induce EMI into the circuit, resulting in noise induction in
the connected circuit. Moreover, circulating currents can generate stability problems by
interacting with attached devices, control loops, and feedback loops. Considering Figure 11,
the circulating currents of any converter are represented by subtracting the assigned total
current reference from the actual current of that converter [15]:

Ck = iLK − δk·IT (16)

Considering k = 1 for finding the circulating current equation from converter 1 towards
the converter 2 circuit, the above equation in terms of Equations (14) and (15) can be written
as follows:

C1 =
Vs(1− 2δ1)

d
(

Lx + Ly
)
+ Rx + Ry

+
Vdc(D2·δ1 − D1(1− δ1)

d
(

Lx + Ly
)
+ Rx + Ry

(17)

The above equation interprets two conditions of the circuit operation, i.e., if both
converters have equal rating operations, only the output DC voltage Vdc contributes
to the circulating current C1. Nevertheless, if the operating rating conditions differ for
both parallel-connected converters, the AC supply input voltage Vac is added to Vdc
for the circulating current C1. For a circulating current circuit, the stability problem is
checked with the help of pole = −(Ra + Rb)/(La + Lb). This means that if the SER (Ra + Rb)
summation is decreased, the stability margin also decreases. The system will have the
lowest stability margin if the SER’s value reaches zero (which normally does not occur
because the transmission lines always have some SER available). This means that the
system’s stability is confirmed, as is always the case inside the left half plane. Instability
occurs only when both converters operate at different power ratings. The above equation
shows that the stability analysis directly correlates with SER and is inversely related to
the inductance.

8. Simulation Results

Our proposed scheme has been thoroughly verified using MATLAB/Simulink. In
Simulink, the proposed control scheme is demonstrated for two modules of the bridgeless
boost interleaved converters connected in parallel, with the flexibility to extend it to
accommodate multiple parallel modules (n numbers). For comparison, the default control
method (input voltage feed-forward control scheme) of the Texas Instruments (TI) board is
applied to this power system. The resulting CMCC and DMCC profiles of the system, along
with their respective inductor currents, are depicted in Figures 12 and 13, respectively.

The obtained results indicate that the feed-forward control scheme on the TI board ex-
hibits a noticeable presence of CMCCs (Figure 12) and DMCCs inside the system (Figure 13).
Moreover, the profile for input supply voltage and currents (Figure 14) shows that they are
in phase, but the current waveform is not sinusoidal. Consequently, this scheme leads to a
higher Total Harmonic Distortion (THD) system profile.



Machines 2023, 11, 878 15 of 27

Machines 2023, 11, x FOR PEER REVIEW 15 of 29 
 

 

along with their respective inductor currents, are depicted in Figure 12 and Figure 13, 
respectively. 

The obtained results indicate that the feed-forward control scheme on the TI board 
exhibits a noticeable presence of CMCCs (Figure 12) and DMCCs inside the system (Fig-
ure 13). Moreover, the profile for input supply voltage and currents (Figure 14) shows that 
they are in phase, but the current waveform is not sinusoidal. Consequently, this scheme 
leads to a higher Total Harmonic Distortion (THD) system profile. 

 
Figure 12. CMCC profile (along with inductor currents) for the Texas Instruments (input voltage 
feed-forward) control scheme. 

 
Figure 13. DMCC profile (along with inductor currents) for the Texas Instruments (input voltage 
feed-forward) scheme. 

Figure 12. CMCC profile (along with inductor currents) for the Texas Instruments (input voltage
feed-forward) control scheme.

Machines 2023, 11, x FOR PEER REVIEW 15 of 29 
 

 

along with their respective inductor currents, are depicted in Figure 12 and Figure 13, 
respectively. 

The obtained results indicate that the feed-forward control scheme on the TI board 
exhibits a noticeable presence of CMCCs (Figure 12) and DMCCs inside the system (Fig-
ure 13). Moreover, the profile for input supply voltage and currents (Figure 14) shows that 
they are in phase, but the current waveform is not sinusoidal. Consequently, this scheme 
leads to a higher Total Harmonic Distortion (THD) system profile. 

 
Figure 12. CMCC profile (along with inductor currents) for the Texas Instruments (input voltage 
feed-forward) control scheme. 

 
Figure 13. DMCC profile (along with inductor currents) for the Texas Instruments (input voltage 
feed-forward) scheme. 

Figure 13. DMCC profile (along with inductor currents) for the Texas Instruments (input voltage
feed-forward) scheme.

Machines 2023, 11, x FOR PEER REVIEW 16 of 29 
 

 

 
Figure 14. Supply voltage and current profile for the Texas Instruments (input voltage feed-for-
ward) scheme. 

Our proposed controller has been partially applied to the system, meaning that the 
CMCC and DMCC controllers have not yet been implemented. The CMCC profile (with-
out the CMCC controller) is depicted in Figure 15, while the DMCC profile (without the 
DMCC controller) is shown in Figure 16, along with their corresponding inductor cur-
rents. Both figures illustrate the CMCC and DMCC profiles obtained by subtracting the 
respective inductor currents. For the CMCC, the inductor currents of the first module’s 
converters are considered to demonstrate the CMCC profile. For the DMCC, the first in-
ductor currents of the first and second modules are considered to display the DMCC pro-
file. 

 
Figure 15. CMCC profile (along with inductor currents) for a single module without applying the 
CMCC controller. 

Figure 14. Supply voltage and current profile for the Texas Instruments (input voltage feed-forward) scheme.

Our proposed controller has been partially applied to the system, meaning that the
CMCC and DMCC controllers have not yet been implemented. The CMCC profile (without
the CMCC controller) is depicted in Figure 15, while the DMCC profile (without the DMCC
controller) is shown in Figure 16, along with their corresponding inductor currents. Both
figures illustrate the CMCC and DMCC profiles obtained by subtracting the respective
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inductor currents. For the CMCC, the inductor currents of the first module’s converters are
considered to demonstrate the CMCC profile. For the DMCC, the first inductor currents of
the first and second modules are considered to display the DMCC profile.
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Next, the full proposed controller system, incorporating both CMCC and DMCC
controllers, is introduced. Figure 17 presents the circulating current profile in a single
interleaved topology module, i.e., the CMCC profile, while Figure 18 represents the cir-
culating current profile of the two parallel-connected modules, i.e., the DMCC profile,
alongside their respective inductor currents. The results demonstrate that our proposed
control scheme exerts proper control over CMCCs and DMCCs, effectively reducing them
from the system. Figure 19 illustrates the input supply voltage and current profiles, which
are purely sinusoidal and perfectly in phase.

To further evaluate the effectiveness of the proposed control scheme, a THD analysis
is conducted for this case study. Figure 20 displays the THD profile with the proposed con-
troller, showcasing a lower THD and better harmonics elimination compared to Figure 21,
where the THD profile is without the proposed controller.

The THD calculations in Figures 20 and 21 are performed for grid current harmonics.
For comparison, a parallel interleaved scheme is considered in [36], where the modern-day
control systems, i.e., ESC and Fuzzy Controllers, are considered for circulating current
control. ESC is a type of non-linear control system that is used for the management of
energy. The system’s stability is maintained by shaping the system’s energy with the help
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of this ESC control system. This control scheme is primarily used in power electronics, and
a motor drives the system to achieve better performance goals. On the other hand, the
Fuzzy controller work is based on logic. The working scenario of this Fuzzy Controller is
to provide control for the power electronics system by processing the feedback signals with
mathematical logic.
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These controllers and our proposed controller provide better results regarding reduc-
ing the circulating currents between the interleaved and parallel connected converters. A
comparison is provided between the proposed controller and the controllers in [36] for
the grid current harmonics reduction profiles, leading to high power factor corrections.
Therefore, the ESC grid’s current THD profile is 13.51%, while for the Fuzzy controller, it is
7.62% [36]. Comparing these THD values with the THD of 6.20% in Figure 20 shows that
the proposed control scheme provides better results regarding harmonic reductions and
power factor corrections for the converters’ parallel and interleaved topology connections.

9. Experimental Results

A prototype shown in Figure 22 was constructed to validate our proposed control
scheme. Two separate TI boards with Piccolo C2000 (TMS320F28035 microcontroller MCU)
controllers were utilized for the experiments. The generic model of this prototype of the
TI board is consistent with the one considered for our simulations, as depicted in Figure 6.
These boards are equipped with boost converters for Power Factor Correction (PFC) pur-
poses, with each panel containing two boost converters connected in the interleaved scheme.
The block diagram of the complete power system along with control board are depicted in
Figure 23.
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Figure 23. Block diagram of the complete power system with control and interface boards.

Two PFC boards from Texas Instruments (TMDSHVBLPFCKIT) were connected to a
common control board via an interface with the PCBs which fit in the connector in which the
original microcontroller used to be mounted. These interface PCBs fed the analog signals
(inductor currents, line voltages, and DC bus voltage) to the control board via coaxial
cables. This control board routed the signals to the ADC pins of the LAUNCHXL-F28379D
microcontroller. After executing the control algorithm, the PWM signals were generated
and sent to the PFCs. The schematic diagram and PCB layout of the control board and
interface boards are shown in Figures 24 and 25, respectively.
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The PFC boards do not feature line current sensing; therefore, a custom-made line
current sensing board was used. This board contained LEM LTS 6-NP Hall-effect cur-
rent sensors and a voltage divider to scale the signal to the voltage range of the ADCs.
The control algorithm was implemented using the Embedded Coder Support Package in
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Simulink, which allows for more convenient and faster prototyping compared to low-level
programming in C/C++.

The experimental setup was conducted in multiple stages. Initially, the CMCC and
DMCC were monitored using the default TI control of these boards, which is based on the
input voltage feed-forward control. Subsequently, our proposed controller was introduced
into the experiments without applying the CMCC and DMCC controllers. Finally, the com-
plete proposed controller was implemented, encompassing CMCC and DMCC controllers.
The experimental results from Figures 26–33 were compared to demonstrate the differences
and validate the effectiveness of our proposed control scheme.

For TI default control, the experimental results are shown in Figures 26–28. Figure 26
shows the CMCC profile. It can be seen that both the line currents (the first and second leg
of first TI board) are in phase and have the same amplitude. Still, distortion occurred in
their shape, affecting the system’s power factor (Figure 28). The DMCC profile (first line
current of both parallel-connected TI boards) for the TI boards is shown in Figure 27. The
difference in the shape of each line current resulted in influential circulating currents from
one board to another.

Now our proposed controller is applied partially to control these boards so that only
the voltage and current control loops are used without introducing the CMCC and DMCC
loops. The result for this scheme follows the same pattern: Figure 29 shows the CMCC
profile, while Figure 30 shows the DMCC profile of the system. It is again demonstrated
that the current waveforms did not have the same amplitude, providing the paths for
the circulating currents inside the same board and between the parallel-connected boards.
These circulating currents are dangerous for the MOSFET switches and can damage the
entire board. To reduce these currents, the CMCC and DMCC control loops were introduced
to the controller to obtain the complete form of our proposed controller.

Machines 2023, 11, x FOR PEER REVIEW 22 of 29 
 

 

control algorithm was implemented using the Embedded Coder Support Package in Sim-
ulink, which allows for more convenient and faster prototyping compared to low-level 
programming in C/C++. 

The experimental setup was conducted in multiple stages. Initially, the CMCC and 
DMCC were monitored using the default TI control of these boards, which is based on the 
input voltage feed-forward control. Subsequently, our proposed controller was intro-
duced into the experiments without applying the CMCC and DMCC controllers. Finally, 
the complete proposed controller was implemented, encompassing CMCC and DMCC 
controllers. The experimental results from Figures 26–33 were compared to demonstrate 
the differences and validate the effectiveness of our proposed control scheme. 

For TI default control, the experimental results are shown in Figures 26–28. Figure 26 
shows the CMCC profile. It can be seen that both the line currents (the first and second 
leg of first TI board) are in phase and have the same amplitude. Still, distortion occurred 
in their shape, affecting the system’s power factor (Figure 28). The DMCC profile (first 
line current of both parallel-connected TI boards) for the TI boards is shown in Figure 27. 
The difference in the shape of each line current resulted in influential circulating currents 
from one board to another. 

 
Figure 26. CMCC profile of the system with TI controllers (IL1_1 in brown, IL1_2 in dark green, and 
their subtraction math function in blue). 

Figure 26. CMCC profile of the system with TI controllers (IL1_1 in brown, IL1_2 in dark green, and
their subtraction math function in blue).



Machines 2023, 11, 878 22 of 27Machines 2023, 11, x FOR PEER REVIEW 23 of 29 
 

 

 
Figure 27. DMCC profile of the system with TI controllers (IL1_1 in brown, IL2_1 in dark green, and 
their subtraction math function in blue). 

 
Figure 28. Input supply voltage (in blue) and current (in red) waveforms with TI controllers. 

Now our proposed controller is applied partially to control these boards so that only 
the voltage and current control loops are used without introducing the CMCC and DMCC 

Figure 27. DMCC profile of the system with TI controllers (IL1_1 in brown, IL2_1 in dark green, and
their subtraction math function in blue).

Machines 2023, 11, x FOR PEER REVIEW 23 of 29 
 

 

 
Figure 27. DMCC profile of the system with TI controllers (IL1_1 in brown, IL2_1 in dark green, and 
their subtraction math function in blue). 

 
Figure 28. Input supply voltage (in blue) and current (in red) waveforms with TI controllers. 

Now our proposed controller is applied partially to control these boards so that only 
the voltage and current control loops are used without introducing the CMCC and DMCC 

Figure 28. Input supply voltage (in blue) and current (in red) waveforms with TI controllers.



Machines 2023, 11, 878 23 of 27

Machines 2023, 11, x FOR PEER REVIEW 24 of 29 
 

 

loops. The result for this scheme follows the same pattern: Figure 29 shows the CMCC 
profile, while Figure 30 shows the DMCC profile of the system. It is again demonstrated 
that the current waveforms did not have the same amplitude, providing the paths for the 
circulating currents inside the same board and between the parallel-connected boards. 
These circulating currents are dangerous for the MOSFET switches and can damage the 
entire board. To reduce these currents, the CMCC and DMCC control loops were intro-
duced to the controller to obtain the complete form of our proposed controller. 

The CMCC profile for the fully applied proposed controller is given in Figure 31, 
which shows that both legs of the single TI boards were equal in phase and amplitude and 
reduced the circulating currents inside a single board. The DMCC profile given in Figure 
32 shows that having nearly the same currents in the first leg of each TI board results in 
reduced circulating currents between the parallel-connected boards. This proposed con-
troller will nearly provide a unity power factor of the system, as both the input supply 
voltage and the currents are in phase (Figure 33). 

 
Figure 29. CMCC profile with a partial proposed controller, i.e., without CMCC and DMCC control 
loops (IL1_1 in brown, IL1_2 in dark green, and their subtraction math function in blue). 

Figure 29. CMCC profile with a partial proposed controller, i.e., without CMCC and DMCC control
loops (IL1_1 in brown, IL1_2 in dark green, and their subtraction math function in blue).

Machines 2023, 11, x FOR PEER REVIEW 25 of 29 
 

 

 
Figure 30. DMCC profile with a partial proposed controller, i.e., without CMCC and DMCC control 
loops (IL1_1 in brown, IL2_1 in dark green, and their subtraction math function in blue). 

 
Figure 31. CMCC profile of the system with the proposed controllers (IL1_1 in brown, IL1_2 in dark 
green, and their subtraction math function in blue). 

Figure 30. DMCC profile with a partial proposed controller, i.e., without CMCC and DMCC control
loops (IL1_1 in brown, IL2_1 in dark green, and their subtraction math function in blue).



Machines 2023, 11, 878 24 of 27

Machines 2023, 11, x FOR PEER REVIEW 25 of 29 
 

 

 
Figure 30. DMCC profile with a partial proposed controller, i.e., without CMCC and DMCC control 
loops (IL1_1 in brown, IL2_1 in dark green, and their subtraction math function in blue). 

 
Figure 31. CMCC profile of the system with the proposed controllers (IL1_1 in brown, IL1_2 in dark 
green, and their subtraction math function in blue). 
Figure 31. CMCC profile of the system with the proposed controllers (IL1_1 in brown, IL1_2 in dark
green, and their subtraction math function in blue).

Machines 2023, 11, x FOR PEER REVIEW 26 of 29 
 

 

 
Figure 32. DMCC profile of the system with the proposed controllers (IL1_1 in brown, IL2_1 in dark 
green, and their subtraction math function in blue). 

 
Figure 33. Input supply voltage (in blue) and input supply current (in red) waveforms of the system 
with the proposed controllers. 
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Figure 33. Input supply voltage (in blue) and input supply current (in red) waveforms of the system
with the proposed controllers.

The CMCC profile for the fully applied proposed controller is given in Figure 31,
which shows that both legs of the single TI boards were equal in phase and amplitude
and reduced the circulating currents inside a single board. The DMCC profile given in
Figure 32 shows that having nearly the same currents in the first leg of each TI board results
in reduced circulating currents between the parallel-connected boards. This proposed
controller will nearly provide a unity power factor of the system, as both the input supply
voltage and the currents are in phase (Figure 33).

10. Conclusions

This article introduces the bridgeless interleaved topology module to demonstrate
CMCC control, and these modules were connected in parallel to study and control the
DMCC. This article provides a comprehensive analysis of all the possible circulating current
loops for both interleaved and parallel topologies. To effectively manage these circulating
currents, CMCC and DMCC controllers were introduced. For software verification, MAT-
LAB simulations were conducted to evaluate the proposed control scheme. Additionally,
a TI prototype and control boards were designed and utilized for experimental valida-
tion. The proposed control scheme was compared with the input voltage feed-forward
control method, ESC, and Fuzzy Controllers regarding the harmonic elimination factor.
The results demonstrate the superiority of our proposed method in effectively controlling
CMCCs and DMCCs. The simulation and experimental results were thoroughly discussed
to demonstrate the significant difference our proposed control method made.
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