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Abstract: Reinforcement learning has been explored within the context of robot operation in different
environments. Designing the reward function in reinforcement learning is challenging for designers
because it requires specialized knowledge. To reduce the design burden, we propose a reward design
method that is independent of both specific environments and tasks in which reinforcement learning
robots evaluate and generate rewards autonomously based on sensor information received from the
environment. This method allows the robot to operate autonomously based on sensors. However,
the existing approach to adaption attempts to adapt without considering the input properties for the
strength of the sensor input, which may cause a robot to learn harmful actions from the environment.
In this study, we propose a method for changing the threshold of a sensor input while considering the
strength of the input and other properties. We also demonstrate the utility of the proposed method
by presenting the results of simulation experiments on a path-finding problem conducted in an
environment with sparse rewards.

Keywords: reinforcement learning; self-generating evaluations; self-generating of rewards; sensor-
based innate mechanism; generation of pleasure and discomfort

1. Introduction

In recent years, robots have become increasingly popular [1,2]. Unmanned robots that
can perform steadily and act decisively to reduce the risk of human injury during rescue
operations are high in demand, particularly in complex and rapidly changing environments,
such as disaster sites [3,4]. Therefore, robots must be capable of operating in complex and
changeable environments as well as in simple ones. These robots are also at risk of failure;
therefore, they must identify and select the optimal behavior in their environment to avoid
failure. Studies have been conducted on the autonomous adaptation of robots and electronic
devices to their environment [5,6]. These methods are based on the senses of organisms
operating in complex environments. Within this context, studies have explored the use of
reinforcement learning to learn more optimal behaviors through trial and error in response
to the environment. In reinforcement learning [7–9], the environment offers rewards for
the actions of the robot. A reward is a value that indicates the task accomplishment for
an action. Reinforcement learning typically requires designing appropriate rewards by
assuming the characteristics of the environment and tasks in advance [10,11]. When an
environment or task changes, the relationships between the environment, robot actions, and
rewards must also be redesigned [12]. This imposes a considerable burden on designers.
Inverse reinforcement learning and internal reward learning are traditional methods that
can reduce design burden. Inverse reinforcement learning uses learning optimization
metrics based on the behavior of skilled users [13,14]. Internal rewards are generated based
on internal changes in the robot [15–17], which are separate from the external rewards
derived from the environment.

We have explored self-generating evaluations (SGE) based on sensor trends to reduce
the burden of reward design in reinforcement learning [18]. SGE is an internal reward

Machines 2023, 11, 892. https://doi.org/10.3390/machines11090892 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11090892
https://doi.org/10.3390/machines11090892
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://doi.org/10.3390/machines11090892
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11090892?type=check_update&version=2


Machines 2023, 11, 892 2 of 13

model in which an agent generates rewards based on its sensor base. The SGE has a
value for habituation, which is considered a stimulus threshold. The SGE changes its
stimulus threshold to adapt to its environment. However, if the degree of adaptation to
the stimuli does not change appropriately, the robot may learn harmful behavior. In this
study, we propose a method for adjusting the adaptation speed of a threshold according to
the strength and degree of the input property deviations. This method reduces the degree
of adaptation to harmful stimuli and allows the robot to learn risk-averse behavior in a
risky environment. Simulation experiments were conducted in two environments, one
with path learning and the other with sparse rewards, to compare the proposed method
with an existing method [19].

2. Existing Method on SGE

SGE is based on the learning process of an organism in a real environment [20].
Organisms can independently determine whether their current state is good or bad based
on external stimuli, even if they cannot receive evaluations or rewards from the outside
world. Sensations to stimuli such as pain are particularly unpleasant because they threaten
vital activities [21]. Therefore, the organisms continue to work by learning to avoid such
stimuli and dangers. In view of the above requirements, the robots must remain active while
performing many tasks. Further, the robots must avoid dangerous stimuli. Therefore, we
considered robots that can adapt to a wide variety of environments by generating rewards
for environmental stimuli using their onboard sensors. SGE differs slightly from internal
rewards, which are rewards generated based on the internal state of the agent [22], such
as curiosity, whereas SGE generates rewards based on inputs from the sensors. Therefore,
SGE does not depend on specific environments or tasks. The robot is instructed to generate
a reward for reinforcement based on the SGE-generated evaluation values. This reduces the
burden on designers because they no longer need to redesign the reward function according
to the environment and tasks. Currently, SGE has three evaluation indices that are unique
and versatile and are used in different environments based on the sense of discomfort of an
organism. Sensor evaluation is based on “strength of input”, “predictability of input”, and
“time with no input”. For each sensor input, each of these indicators is calculated as a value
between zero and one. Firstly, we explain the first index, namely, the strength of the input.
An organism responds to a stimulus that is larger than a certain threshold. The larger the
stimulus, the greater the potential threat, and consequently, the more pain or discomfort
the organism experiences. Robots are particularly susceptible to failure when they are
subjected to strong forces. Therefore, we assume that the robot experiences discomfort
due to its large input. Next, we explain the second index, namely, the predictability of the
input. The robot predicts the next sensor input it receives and provides a lower evaluation
when the deviation from the predicted input is greater. For example, when the sensory
input is stable after being touched, an animal, such as a housecat, may not feel dissatisfied.
However, if the input is unstable, it can behave in a difficult or unpredictable manner.
Conversely, when a person is unexpectedly verbally addressed from behind, they may feel
surprised or stressed because they are momentarily unable to predict the next stimulus
they anticipate. We consider the possibility that unpredictable inputs and environmental
changes, even in robots, can lead to harmful situations because the robot may be unable to
adequately process the input. Therefore, it is assumed that the robot experiences discomfort
when exposed to unpredictable inputs. Finally, we explain the third index, namely, the
time with no input, which denotes the state when the external input is so small that it
cannot be sensed or when the sensors fail, causing the system to be unable to pick up
any input. Organisms are exposed to environmental stimuli. Studies have shown that
living organisms typically experience mental disorders after several days in environments
in which they are deprived of sensory input [23,24]. Because a robot cannot distinguish
between sensor failure and lack of input from the environment, we believe that a prolonged
period without sensor input is harmful to the robot because it continues to be unaware of
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its current environment. Therefore, we consider a robot that experiences discomfort due to
the absence of input over a long period of time.

2.1. Evaluation Indices

We now explain the calculation of each evaluation index in SGE. First, we describe
the evaluation frequency of SGE. SGE evaluates each input using evaluation indices. In
addition, SGE considers the fact that a sensor receives multiple inputs within a single
action at time t. Therefore, if the sensor receives n inputs within one action at time t, SGE
evaluates the input n times.

Next, the evaluation value ES i(tn) for the strength of the nth input to sensor i at time
t is defined by Equation (1). It is represented by a sigmoid function in terms of the mean
of the input values µi(tn), the maximum value of the input variate maxi, the constant Ni,
and the variable δi(tn). The size of the constant Ni determines the change in the evaluation
value ES i(tn). A sensor with an appropriate range was mounted on the robot. This sensor
was deemed an appropriate one because it fully considers the threat to the recognition
and action abilities of the robot. Therefore, the maximum value of the selected sensor was
assumed to be maxi. The constant Ni was also designed in advance because the appropriate
value varies depending on the sensor and device.

ES i(tn) =

1 + exp

µi(tn)−
(

maxi+δi(tn)
2

)
Ni(maxi − δi(tn))


−1

(1)

The mean of the input values µi(tn) and variable δi(tn) are used in Equation (1). As
SGE is designed for real machines, multiple inputs are received within a single action.
Equation (2) yields the mean value µi(tn) of the nth input to sensor i at time t. The value
µi(tn) is used to treat multiple input information simultaneously as inputs in a single action.
In addition, averaging is performed to reduce the effect of noise on each input.

µi(tn) =
1
n

n
∑

j=1
inputi

(
tj
)

(2)

The variable δi(tn) is the threshold value for the strength of the input, which changes
with the sensor inputs from the environment and denotes the adaptation of the senses in
organisms. Habituation in organisms is the process of adapting to stimuli by gradually
becoming unresponsive to repeated stimuli through repeated exposure. However, for
salient stimuli, habituation is likely to make the response stronger rather than slower.
In other words, the threshold δi(tn) on which the evaluation is based changes with the
input from the environment, allowing for an autonomous evaluation appropriate to the
environment. We define the threshold δi(tn) as an adaptation. Equation (3) describes the
adaptation δi(tn) for each time step wherein data are received from the sensor. βi is the
speed of adaptation to the input. Because βi is constant, δi(tn) changes at the same speed
for all inputs.

δi(tn) = δi(tn−1) + βi{µi(tn)− δi(tn−1)} (3)

Next, we explain how to calculate the evaluated values for the predictability of the
input are defined in Equations (4)–(6). The prediction equation (Equation (4)) by gen-
erating prediction using support vector regression (SVR) [25,26] is used to generate the
nth predictability fi(tn) during an action at time tn. The input value of SVR is a constant
number of input up to just before time t, which is t1, t2, . . ., tn−1 of sensor i. Calculating
the prediction errors over the entire time series allows agents to consider stimuli based on
their experiences in the environment. Therefore, when the environment does not change
significantly, the prediction error can be reduced, and high ratings can be calculated. In
Equation (4), ω is a one-dimensional coefficient vector, φ is the mapping function, and b is
a bias term. Next, the prediction error Di(tn) between the predicted and input values at
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time tn is calculated using Equation (5). Finally, the prediction error Di(tn) and constant
Si are used to calculate the evaluation value EP i(tn), as expreesed in Equation (6). The
evaluation value EP i(tn) is higher for smaller prediction errors Di(tn) and lower for larger
prediction errors Di(tn).

fi(tn) = ωTφ(tn) + b (4)

Di(tn) = |inputi − fi(tn)| (5)

EP i(tn) = exp
{
−Di(tn)

2

Si

}
(6)

Finally, we describe the calculation of the evaluation index for a time step without
any sensor input. The evaluation is performed using Equation (7) when the agent does
not clearly know whether the sensor is malfunctioning or inactive with no stimulus. The
evaluation value ET i(tn) for the nth input value to sensor i at time t is calculated using the
variable di(tn) and constant ki, as shown below.

ET i(tn) = exp
{
−di(tn)

ki

}
(7)

Equation (8) defines the variable di(tn) when no input is detected. By setting γi, the
variable di(tn) is set to decay with time. The evaluation value ET i(tn) decreases as the
condition of no input persists, that is, as di(tn) increases.

di(tn) =

{
γidi(tn−1) (inputi(tn) 6= 0)
di(tn−1)− 1 (inputi(tn) = 0)

(8)

2.2. Integration of Evaluation

This section describes the integration of the evaluations. The sensor inputs are eval-
uated using the three evaluation indices. Only a single value can be used for sensor i at
a given time because that value corresponds to the evaluation value of sensor i. Hence,
the evaluation values calculated using the three types of evaluation indices should be
integrated. Additionally, evaluation indicators that calculate high evaluation values are
actively excluded to emphasize the danger from the sensor information. Equation (9) de-
fines the evaluated value of Ei(tn) using the values calculated in Equations (1), (6) and (7).
Equation (10) defines ωS, ωP, and ωT , which are the weights of the values of the evaluation
indices. The weight of the evaluation indicator x is 0 if its value is higher than 0.5 and 1 if its
value is lower than 0. Therefore, Equation (10) excludes the higher values when calculating
the danger-weighted assessment. Equation (11) yields the sum of the weights and values of
the power roots in Equation (9). When the value of the power root is m 6= 0, the evaluation
is performed using Equation (9). In the condition m = 0, in which the evaluation values for
all three indices are higher than the reference value, sensor evaluation is not used because
it emphasizes danger.

Ei(tn) =

 m
√

ES i(tn)
ωs + m

√
EP i(tn)

ωP + m
√

ET i(tn)
ωT (m 6= 0)

0 (m = 0)
(9)

ωx =

{
1(Ex i < 0.5)
0(Ex i ≥ 0.5)

(10)

m = ωS + ωP + ωT (11)

2.3. Reward Generation

SGE considers that a sensor receives multiple inputs within a single action; therefore,
the condition under which a single action occurs differs from that under which a single
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input is received. Hence, sensor i must be evaluated to generate a reward for a single
action. The rating Ei for an action is updated as the rating MEi , and a rating for that action
is generated, as expressed in Equation (12). The values are updated using the discount
factor γe for a single input. The updated evaluation value MEi is initialized as zero at the
start of the action.

MEi ← (1− γe)MEi + γeEi(tn) (12)

The rewards generated by SGE are for a single action, which is similar to conventional
reinforcement learning. Therefore, the reward generated by SGE is calculated based on
the valuation MEi of one action at time t. Thus, the range of the evaluation value is 0 ∼ 1.
However, to accurately calculate the reward for the evaluation value, the reward range is
normalized to −1 ∼ 1. Equation (13) is used to calculate the reward as follows:

r = 2MEi − 1 (13)

3. Adaptation by Considering the Input Properties

This study proposes a method that considers the properties of the input for the value
of adaptation in the evaluation index of the input strength to update the adaptation speed
of the input strength. We used the danger of strength and the degree of deviation as the
input properties. We define the danger of strength as the degree of failure caused by the
input and the degree of deviation as the difference between the values of adaptation. The
stronger the sensor input, the higher the danger. This is because it is more likely to cause
the robot to malfunction. Thus, the more harmful the sensor input, the more carefully it
must adapt to it to avoid danger. The extent to which the received sensor input values
should be considered must also be determined. The adaptation value in SGE approaches
the mean value of the inputs from the environment obtained through the sensor. The
greater the difference between the sensor input and adaptation value, the more likely it is
that the sensor input received is an infrequent input from the environment. Therefore, the
adaptation value is updated in a manner that minimizes the impact of sensor inputs that
are rarely received.

Figure 1 shows a flowchart depicting the calculation of the input strength using this
method. First, the robot receives a stimulus from the environment at sensor i. The output
values of sensor i are input to evaluate the strength, adaptation, and adaptation speed.
Next, the adaptation speed υi is calculated using the input value of sensor i. Subsequently,
the value of adaptation δi is calculated using the input value of sensor i and the adaptation
speed. Finally, the strength evaluation value of the sensor input ES i(tn) is calculated using
the input value of sensor i and the adaptation value. This process is performed each time
an input is received.
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The same weighted mean as that used in the adaptation formula of the previous
method is used in Equation (14). As depicted in Equation (14), the adaptation time for an
input value varies with the adaptation speed υi. The adaptation speed υi is updated using
Equation (15) each time the sensor receives an input. The adaptation speed is calculated
using the mean value of the sensor input µi and the difference between the mean value
of the sensor input µi and adaptation value δi. The adaptation speed υi is smaller when
the difference between the mean value of the sensor input µi and the adaptation value δi
is higher. Therefore, according to Equation (14), the smaller the adaptation speed υi, the
smaller the change in the adaptation value δi. Thus, careful adaptation can be applied to
the sensor input.

δi(tn) = δi(tn−1) + υi(tn){µi(tn)− δi(tn−1)} (14)

The c is the maximum value calculated by Equation (15). The properties pertaining
to the adaptation of the robot transform depending on the value of c. Therefore, when
its value is high, becoming accustomed to the strength of the sensor input is relatively
easy, and vice versa. The maximum value of the input variate maxi and the mean value
of the sensor input µi are associated with the strength of the sensor input. The higher the
mean value of the sensor input µi, the smaller the parameter representing the strength
of the sensor input. The strength of the sensor input varies for each sensor. For a typical
evaluation, we normalize the value in the range 0–1. The values corresponding to the
variables maxi, µi(ti), and δi(tn−1) represent the rarity of the sensor input. Sensor rarity is
an input with a high probability of being an outlier with a significant deviation from the
adaptation. The value decreases as the difference between the mean of the sensor input
µi and adaptation value δi increases. In other words, the narrower the sensor input in
the environment, the smaller the value. This value is also normalized to 0–1 because the
strength of the sensor input varies for each sensor.

υi(tn) = c
{maxi − µi(tn)}{maxi − |µi(tn)− δi(tn−1)|}

maxi
2 (15)

4. Experiments
4.1. Simulation Experiments with Path Learning

The purpose of this experiment was to verify whether the proposed method could be
used to recognize and avoid dangers more effectively. We compared the results obtained
using the previous and proposed methods. The learning paths of each robot and the
transition of the evaluation index for the strength of the sensor input for each robot were
compared.

4.1.1. Experimental Setup

In this experiment, we performed a simulation to learn a path on a grid map, as shown
in Figure 2. The robot was asked to learn a path from the starting point to the goal point.
The robot can move one square per action and perform four types of actions: up, down,
left, and right motions. The time and energy required for all actions performed by the
robot were the same. The robot was equipped with a temperature sensor to detect the
temperature, a collision sensor to identify wall collisions, and a position sensor to identify
its position. If a robot performs an action that causes a wall collision, it returns to its original
square. A high-temperature area is harmful because it increases the internal temperature
of the robot, causing an internal breakdown. In this experiment, we set the temperature
above 70 ◦C as dangerous. Therefore, the robot must learn paths to avoid hazardous/hot
areas. The experiment was conducted ten times in the same setting for each of the previous
and proposed methods.
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Table 1 lists the environmental settings for this experiment, and Table 2 lists the
experimental settings of the robot. The temperature sensor received seven different inputs
corresponding to the outside temperature from 20 ◦C (lower bound) to 80 ◦C (upper bound)
every 10 ◦C.

Table 1. Environmental settings for the experiment 1.

The number of trials 1000
The number of actions per trial 200

Learning method Q-learning
Learning rate in Q-learning α 0.3
Discount rate in Q-learning γ 0.99
The action selection method ε-greedy
ε in the ε-greedy method 0.01

Goal reward 1
Reward for goal failure per trial −1
Reward for colliding with a wall −1

Reward per action −0.005

Table 2. Experimental settings of the robot for the experiment 1.

The maximum value of the temperature sensor 100
The minimum value of the temperature sensor 0

Parameter N 0.08
ki in the evaluation for the time with no input 250
γi in the evaluation for the time with no input 0.99

Parameter of the proposed method c 0.001
Parameter of the proposed method β 0.001

Input for every action taken 100

4.1.2. Experimental Results and Discussion

We determined the mean values and standard errors of the evaluation index for the
strength of the sensor input in the experiment. The results of the previous and proposed
methods for the 1000th trial of the experiment are shown in Figure 3. The learning paths of
the agents obtained using the previous and proposed methods are shown in Figures 4 and 5,
respectively. The paths shown are learning paths for which the greedy algorithm is run after
completing all the trials and are representative of the learning paths for each method. In the
case of the previous method, the agent learned the path through the high-temperature area
(Figure 4a) eight out of ten times and through the area of normal-temperature (Figure 4b)
two out of ten times. In the case of the proposed method, the agent learned the path
through the normal temperature area (Figure 5) ten out of ten times.
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In the previous method, the robots exhibited a high probability with respect to passing
through the high-temperature areas (80 ◦C), although high-temperature areas were harmful
to the robots. This is because it is difficult for the robot to identify the areas as dangerous
due to the high value of adaptation to high temperatures in the danger area. Although
the paths through the areas with high and normal temperatures (20 ◦C) are learned for
evaluating strength of the sensor input, the small standard error for the previous method
suggests that the same evaluations are made in the danger and safe areas corresponding to
high and normal-temperatures, respectively. Thus, the robot learns two distinct paths.
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The robot in the proposed method exhibited a slower adaptation to inputs from high-
temperature areas. Therefore, the value of the evaluation index for the strength of the
sensor input from the high-temperature area is low, and the robot continues to identify
danger. The values of the evaluation index differ between the high-temperature and
normal-temperature areas. We believe that the robot can learn a safer route with a higher
evaluation. In addition, the standard error of the robot for the proposed method is high
because the correct behavior for approaching the goal varies between the experiments.
Therefore, the standard error increases because the input strengths are evaluated differently.
Thus, the robot can learn a safer path rather than the safest path.

4.2. Simulation Experiments with Sparse External Rewards

The purpose of the experiment described in this section was to verify that the proposed
method improved the ability to identify harmful areas, even in an environment with few
external rewards. The proposed method allows the adaptation speed to vary with sensor
input and the evaluation index for the strength of the sensor input to be appropriate for
the environment. Therefore, it is expected to increase the number of actions in safe areas,
thereby stabilizing the robot activities. We compared the proportion of visits by each
robot obtained using the previous method with the that of the proposed method for each
coordinate in the environment.

4.2.1. Experimental Setup

In this experiment, we performed a simulation in which the robots remained active
on a grid map, as shown in Figure 6. There are seven types of stimuli in the environment,
some of which are dangerous to the robots. Therefore, the robots should avoid dangerous
environments and continue to operate in safe environments. The robot can move one
square per action and perform four different types of actions: up, down, left, and right
motions. The time and energy required for all of the actions performed by the robot were
the same. The robot was equipped with an array of sensors to receive inputs from the
environment. The robot was equipped with temperature, collision, and positional sensors,
as was the case before. If the robot performs an action that causes a wall collision, it returns
to its the original square. The robot returns to the starting point and performs the next trial
when the number of actions in a trial is met or when it becomes inactive.
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Table 3 lists the environmental settings for this experiment, and Table 4 lists the
experimental settings of the robot.

The temperature sensor receives seven different inputs corresponding to the outside
temperature from 20 ◦C (lower bound) to 80 ◦C (upper bound) every 10 ◦C.

Robots are more likely to become inactive when their internal temperature increases
because of environmental temperature. Therefore, we set the agent to become inactive
if it continued to receive certain inputs from the environment. The inactivity points that
increase for each action with input from the environment at 60 ◦C, 70 ◦C, and 80 ◦C are
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defined by Equation (16). The decision to deactivate the agent was made on a per-action
basis. The initial value of the probability of agent inactivity in each trial was zero.

Inactivity point =


5.0× 10−7(80 °C)
1.0× 10−7(70 °C)
0.5× 10−7(60 °C)

(16)

Table 3. Environmental settings for the experiment 2.

The number of trials 2000
The number of actions per trial 200

Learning method Q-learning
Learning rate in Q-learning α 0.3
Discount rate in Q-learning γ 0.99
The action selection method ε-greedy
ε in the ε-greedy method 0.01

Reward for continued 200 actions 1
The reward of inactivity −1

Reward for colliding with a wall −1

Table 4. Experimental settings of the robot for the experiment 2.

The maximum value of the temperature sensor 100
The minimum value of the temperature sensor 0

Parameter N 0.08
ki in the evaluation for the time with no input 250
γi in the evaluation for the time with no input 0.99

Parameter of the proposed method c 0.001
Parameter of the proposed method β 0.001

Input for action taken 100

4.2.2. Experimental Results and Discussion

We compared the extent to which learning from the previous and proposed methods
changed the percentage of robot visits to the environment. Figure 7 shows the percentage
of robots visits to the environment from the first trial to the 500th trial (with insufficient
learning) and the percentage of robots visits to the environment from the 1501st trial to
the 2000th trial (with sufficient learning). The results of the previous method are shown in
Figure 7. Figure 7a shows the percentage of visits made using the previous method by the
robot with insufficient learning, and Figure 7b shows the percentage of visits made using
the previous method by the robot with sufficient learning. The results corresponding to the
proposed method are shown in Figure 8. Figure 8a,b show the percentage of visits by the
robot with insufficient and sufficient learning, respectively.

The robots used in the previous method visited the entire environment during the
initial stages of the experiment. The percentage of robot visits to the upper-right safe area
to avoid danger in the final phase of the experiment did not differ significantly from that in
the earlier phase, demonstrating that they affected the environment. We assume that the
robot can easily adapt to any input; hence, only a slight difference exists between the values
of the evaluation indices for the potentially dangerous high-temperature areas (70 ◦C and
80 ◦C) and those obtained from normal-temperature areas (20 ◦C and 30 ◦C). Furthermore,
no difference was observed in the generated reward. We believe that the robot learns about
the environment by recognizing that the inputs from the high- and normal-temperature
areas are equivalent.

We found that the robots using the proposed method visited a higher proportion of
the environment on the upper-right side, a safer area. In the final phase of the experiment,
visitation rates to the high-temperature areas of 70 ◦C and 80 ◦C were lower, and the
percentage of visits to the safe environment in the upper-right was higher. We believe that
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this is because the rewards generated by the self-generation of evaluations allow them
to learn and continue to operate in safer areas, even in an environment where external
rewards are sparse. Thus, we assume that the robot learns by showing a lower evaluation of
the sensor inputs in areas with higher temperatures than in the normal-temperature areas.
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5. Conclusions

This study focused on the issue of robots learning potentially harmful behavior when
the adaptation speed of the adaptation value, which is the threshold for the strength
of the sensor input, is the same for all sensor input values. To address this issue, we
varied the adaptation speed to consider the danger and degree of deviation for different
properties of the sensor input. This is expected to improve the robot’s adaptation to the
environment by carefully changing harmful sensor inputs. The results of our simulation
experiments on path learning in an environment with safe and harmful paths and learning
in an environment with sparse rewards confirm that the proposed method enables the
robot to learn actions to avoid harmful environments with high failure rates.

In the future, we intend to allow the robot to distinguish and evaluate sensor inputs
that are lower than the threshold for the strength of the sensor input to evaluate safer
sensor inputs. SGE yields the same evaluation for all sensor input values below the
threshold for the strength of the sensor input. Therefore, learning safer behavior is difficult
because the evaluation cannot distinguish between larger and smaller sensor inputs within
a sensor input value lower than the threshold strength of the sensor input. By changing the
evaluation equation for each strength region using a piecewise linear function, it is possible
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to distinguish between large and small strengths with sensor input values smaller than
the strength threshold of the sensor input. Therefore, we believe that safer actions can be
learned, and the accuracy of danger-evading actions can be improved. In addition, we
intend to consider generic evaluation indices that can be applied to various sensors and
environments and conduct simulation experiments and resultant data collection that more
closely resemble real-world environments to demonstrate the utility of SGE.
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