
Citation: Maximov, J.; Duncheva, G.;

Anchev, A.; Dunchev, V.; Anastasov,

K.; Daskalova, P. Effect of Roller

Burnishing and Slide Roller

Burnishing on Surface Integrity of

AISI 316 Steel: Theoretical and

Experimental Comparative Analysis.

Machines 2024, 12, 51. https://

doi.org/10.3390/machines12010051

Academic Editor: Alexios

Papacharalampopoulos

Received: 12 December 2023

Revised: 30 December 2023

Accepted: 9 January 2024

Published: 11 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Effect of Roller Burnishing and Slide Roller Burnishing on
Surface Integrity of AISI 316 Steel: Theoretical and Experimental
Comparative Analysis
Jordan Maximov 1,* , Galya Duncheva 1 , Angel Anchev 1 , Vladimir Dunchev 1 , Kalin Anastasov 2 and
Petya Daskalova 3

1 Department of Material Science and Mechanics of Materials, Technical University of Gabrovo, 5300 Gabrovo,
Bulgaria; duncheva@tugab.bg (G.D.); anchev@tugab.bg (A.A.); v.dunchev@tugab.bg (V.D.)

2 Department of Mechanical Engineering Equipment and Technologies, Technical University of Gabrovo,
5300 Gabrovo, Bulgaria; kalinanastasov@abv.bg

3 Department of Industrial Design and Textile Engineering, Technical University of Gabrovo, 5300 Gabrovo,
Bulgaria; p.daskalova@tugab.bg

* Correspondence: jordanmaximov@gmail.com

Abstract: The article presents a new method called slide roller burnishing (SRB) for the cold working
of cylindrical surfaces on machine tools implemented with a novel multi-functional device. The
machined material is chromium–nickel austenitic stainless steel. The deforming element is a toroidal
roller whose axis crosses that of the workpiece. As a result, a relative sliding velocity occurs in the
contact zone between the roller and the machined surface. The sliding velocity vector is set using
the burnishing device. The theoretical background of SRB is presented. When the two axes are
parallel, the well-known roller burnishing (RB) method is implemented. Thus, RB is a special case
of SRB. Both processes are realized using the multi-functional burnishing device. The RB process
was studied experimentally and optimized according to three criteria, based on the relationship
between the surface integrity and operating behavior of the respective component, to achieve three
processes: smoothing, hardening, and mixed burnishing. Using the optimal RB parameters obtained,
the dependence of the results of SRB on the crossing angle was investigated and optimized. A
comparative analysis was performed between the optimized RB and SRB processes (respectively
for their three variants: smoothing, hardening, and mixed) based on geometrical and physical–
mechanical characteristics of the surface integrity. The main advantage of the SRB is that it provides
smaller height roughness parameters (improvement by 42%) and a higher surface microhardness
(improvement by 7%) than RB.

Keywords: austenitic stainless steel; surface integrity; roller burnishing; slide roller burnishing

1. Introduction

One of the methods used for the finishing processing of metal components is static sur-
face cold working (SCW), based on plastic deformation of the surface and near-subsurface
layers. SCW reduces the height parameters of roughness, increases the surface micro-
hardness, and introduces compressive residual stresses (RSs) at a depth of approximately
0.8 mm [1]. Any method implementing static SCW is a type of burnishing method and
includes one or more deforming elements that perform a relative movement toward the
machined surface and have a hardness much greater than that of the surface [2]. According
to the type of contact between the deforming element and the treated surface, burnishing
methods fall into two groups: with sliding friction contact or with rolling contact. The slide
burnishing (SB) method is implemented via sliding contact, whereas roller burnishing (RB)
and ball burnishing (BB) are implemented via rolling contact (Figure 1). The deforming
elements for RB and BB are, respectively, rollers (the working surface is usually cylindrical,
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barrel-shaped, or toroidal) and balls. Both methods implement one of two processes: roller
burnishing or deep rolling, according to the Ecoroll classification [1]. The aim of the former
process is a strong reduction of the height parameters to achieve a mirror-like surface.
The latter process aims primarily at maximum strain hardening, resulting in maximum
surface microhardness and maximum compressive RS distributed to maximum depth from
the surface layer. The choice of process (roller burnishing or deep rolling) depends on
the desired operational behavior of the respective metal component in accordance with
the known relationship between the finishing, the surface integrity, and the operating
behavior [3]. The SB method, depending on the processed material and the purpose of
the corresponding metal component, can also implement different processes: smoothing,
hardening, or mixed [4].
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Few studies have focused on comparing SB, RB, and BB according to the criteria of
surface integrity characteristics and operational behavior of components processed using
these methods. An extensive study and comparison of SB (implemented with a spherical-
ended diamond insert) with RB and deep rolling processes was carried out in [5], in which
they were used to process unhardened 41Cr4 steel. It was found that SB (with a burnishing
force of 300 N) achieves lower roughness, higher surface microhardness, and higher fatigue
strength at room temperature than RB (300 N) and deep rolling (1300 N) processes at equal
governing factors (except for burnishing force). Due to sliding friction contact, SB achieves
greater equivalent plastic deformation of the surface and near-subsurface layers, which
causes greater strain hardening. As a result, the surface microhardness and introduced
compressive RS (in absolute value) are greater, leading to greater (low-, high-, and mega-
cycle) fatigue strength. However, these beneficial effects of SB are most pronounced
for unhardened steel components operating under normal service conditions. At high
temperatures, RS relaxation is decisive. For example, in an AISI 304 steel component,
the compressive RS (measured for both the austenitic and martensitic phases due to the
presence of strain-inducedα′-martensite) introduced by SB with a spherical-ended diamond
insert is reduced from 50% to 0% from the surface layer to a depth of up to 0.1 mm after
heating at a temperature of 450 ◦C for two hours [6]. At greater depth, the RS distribution
remains nearly constant. To increase the fatigue life of hardened steel components operating
at high temperatures, low-plasticity burnishing (LPB) with dynamic adaptive control was
developed [7]. The LPB process is implemented using the BB method with a hydrostatic
sphere, but the equivalent plastic strain of the surface layer is kept below 5%. Thus, the
introduced RS remains stable even at a temperature of 600 ◦C [8,9]. However, the present
study focuses on the burnishing of components operating at normal temperatures and,
in particular, chromium–nickel austenitic stainless steel operating at a temperature below
350 ◦C, given the propensity of these steels to intergranular corrosion, as well as the
so-called “brittleness at 475 ◦C” [10].

Numerous authors have conducted extensive research on using conventional burnish-
ing technologies to improve the surface integrity and operating behavior of chromium–
nickel austenitic stainless steels. For instance, RB was employed to improve the surface
integrity and wear resistance of 316L steel components [11], and to finish the surfaces of
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holes in 304 steel [12]. Improvement of the corrosion behavior of 304L steel by a hybrid
process (RB and cryogenic cooling) was demonstrated in [13]. The effects of BB with a
hydrostatic sphere, implemented with a deep rolling process, on the fatigue behavior of
304 steel specimens were studied in [14–19]. Nanostructuring BB with a hydrostatic ball of
316L steel was implemented in [20]. BB with a hydrostatic sphere was applied in [21] to
improve the wear resistance of 316L steel. Improvement of the surface integrity of 317 and
321 steel components via SB was demonstrated in [22–25]. The effect of SB on the fatigue
strength of 304 steel was investigated in [6].

In the conventional RB method, the motion of the deforming roller relative to the
machined surface is a superposition of pure rolling and rectilinear translation parallel to
the workpiece axis. Thus, the contact spot (between the deforming element and workpiece)
moves along a helical line described on the surface being burnished. The angle of inclination
of the screw line depends only on the diameter of the workpiece and the feed rate. Similarly,
in the SB method, the tip of the deforming diamond (or other hard material) insert moves
in a helical line along the treated surface. The kinematics of both methods (RB and SB)
greatly limit their ability to create different surface textures. However, if the axis of the
deforming roller with a toroidal working surface crosses the workpiece axis, a relative
sliding velocity will occur between the roller and the machined surface. The magnitude
and direction of this velocity can be varied widely by adjusting the crossing angle. Thus,
SB is implemented instead of the familiar RB method. The new method is called slide roller
burnishing (SRB). The present study provides a theoretical and experimental comparison of
RB and SRB processes. The objects of comparison are the main characteristics (roughness,
microhardness, and RS) of the surface integrity of processed AISI 316 steel cylindrical
samples. Figure 2 shows a flow chart of the investigations.
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2. Theoretical Background
2.1. Implementation of SRB

The implementation of the SRB process on a lathe is shown in Figure 3. The workpiece,
driven by the machine spindle, rotates about its own axis with an angular velocity

→
ωw. The

deforming toroidal roller is pressed against the workpiece with a force (the burnishing
force) in a direction perpendicular to the axis of the workpiece. The axis of the deforming
roller crosses the axis of the workpiece at an angle α, such that 0◦ < |α| < 90◦ (see Figure 4).
As a result of the contact between the roller and the machined surface, the roller rotates
around its own axis with an angular velocity

→
ωr. The feed movement is carried out by the

roller, which moves translationally, parallel to the axis of the workpiece.
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2.2. Kinematics of the Main Motion of SRB

The kinematics of the main motion of the SRB method (when the feed motion is turned
off) are shown schematically in Figure 4a. Point O is the center of contact between the
deforming roller r and the workpiece (w). The velocity of point O, considered as a point on
the periphery of the workpiece, has magnitude

vO,w = ωwrw, (1)

where rw is the workpiece radius. The magnitude of the velocity of point O, considered as
a point on the equatorial circle of the toroidal surface of the roll, is

vO,r = ωrrr, (2)

where rr is the radius of the equatorial circle. The relationship between the magnitudes of
the two velocities is

vO,r = vO,wcosα. (3)

If an angular velocity −→
ωw is imparted to the deforming roll–workpiece system

(Figure 4b), the workpiece will be stationary and the deforming roller will rotate about the
axis of the workpiece with an angular velocity −→

ωw, whereby it will simultaneously rotate
about its own axis with an angular velocity

→
ωr. Then, the velocity of point O belonging to

the deforming roller is a vector sum of two components:

→
v

slide
O,r = −→

v O,w +
→
v O,r, (4)

The resulting vector
→
v

slide
O,r is the sliding velocity of the roller relative to the work-

piece. From the velocity triangle (Figure 4b), it follows for the magnitude of the sliding
velocity that

vslide
O,r = vO,wsinα. (5)

The slide velocity magnitude diagram is shown in Figure 4c. When α =0◦, the axes of
the workpiece and the roller are parallel. The roller performs clean rolling (without slipping)
with respect to the machined surface of the workpiece, i.e., the method implemented is
RB. When α = ±90◦, the workpiece and roll axes are orthogonally crossed, the roller is
stationary, and the sliding velocity is maximal in magnitude: it is equal to the speed of a
peripheral point of the workpiece. In this case, the SB method is performed. For all other
cases (0◦ < |α| < 90◦), the SRB method is implemented. Therefore, the RB and SB method
are both special cases of the SRB method.

2.3. Kinematics of SRB with Feed Motion Included

The kinematics of the SRB method with feed motion included are shown schematically
in Figure 5.
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The velocity
→
v f of the roller during the feed motion has a magnitude

v f = n f , (6)

where n is the frequency of rotation of the workpiece (the number of revolutions per unit
time) and f is the feed rate (the displacement per revolution). The absolute sliding velocity
→
v

slide,a
O,r is the vector sum

→
v

slide,a
O,r =

→
v

slide
O,r +

→
v f . (7)

For brevity, the sliding velocities
→
v

slide
O,r and

→
v

slide,a
O,r are denoted by

→
v and

→
v

a
, respec-

tively. For their magnitudes, it follows that

vslide
O,r = v, (8)

vslide,a
O,r = va. (9)

Taking into account (5), (8) and (9), and the geometrical dependences shown in Figure 4,
for the magnitude of the absolute sliding velocity, it follows that

va =
√

v2
O,wsin2α + v2

f − vO,wv f sin2α. (10)

It is appropriate to normalize v and va to unity:

vn =
v

vO,w
= sinα, (11)

va
n =

va

vO,w
=

√
sin2α − kvsin2α + k2

v, (12)

where (taking into account that ωw = πn
30 )

∥v =
v f

vO,w
=

30 f
πrw

. (13)

The angle β between the absolute sliding velocity vector
→
v

a
and the workpiece axis is:

β = arccos
vcosα − v f

va = arccos
sinαcosα − kv√

sin2α − kvsin2α + k2
v

. (14)

Figure 6 shows the change in the magnitudes of the absolute sliding velocity
→
v

a

and sliding velocity
→
v depending on the crossing angle α when f = 0.1 mm/rev and

rw = 9.55 mm. The following conclusion can be drawn: excluding the small crossing angles
(0 < α ≤5◦), the feed motion has little effect on the magnitude and direction of the sliding
velocity

→
v , i.e., the absolute sliding velocity

→
v

a
is not significantly different from the sliding

velocity
→
v . The difference decreases with decreasing feed f and workpiece radius rw; see

(11)–(13).
It should be noted that in the known implementations of SB (with spherical- or

cylindrical-ended diamond or another material), the sliding velocity
→
v is always perpendic-

ular to the workpiece axis, which limits the range of surface textures that can be obtained.
In contrast to SB, SRB allows the variation of the angle β within a wide range, and hence a
greater variety of surface textures.
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2.4. Theoretical Roughness

The so-called kinematic (theoretical) surface roughness depth Rz,theor is defined based
on two consecutive positions of the deforming roller for one complete rotation of the
workpiece around its axis (Figure 7). The distance, measured along the axis of the workpiece,
between the two positions of the roll is numerically equal to the feed rate f. The theoretical
surface roughness depth at the RB process is

Rz,theor,RB ≈ f 2

8r
. (15)

where r is the radius of the working toroidal surface of the deforming roller and f is the
feed rate.
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and (c) SRB process.

When the axes of the deforming roller and the workpiece are crossed, the section of
the working toroidal surface of the deforming roller with a plane containing the axis of
the workpiece is, to a first approximation, an ellipse with a major semi-axis a = r

cosα and a
minor semi-axis b = r. Then, the theoretical surface roughness depth for the SRB process is:

Rz,theor,SRB ≈ ( f cosα)2

8r
. (16)

Comparing (15) and (16) shows that, for the same magnitudes of the governing factors
of the two processes and the same roller geometry, SRB achieves smaller integral roughness
height parameters.
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3. Experimental Setup and Conditions
3.1. Material

AISI 316 chromium–nickel austenitic stainless steel was obtained in the form of rolled
bars with a diameter of 30 mm. The material was used in the as-received state. The chemical
composition in weight percentages was established via optical emission spectrometer. Ten-
sile tests at room temperature were conducted with a Zwick/Roell Vibrophore 100 testing
machine using three specimens. The hardness was established with a ZWICK/Indentec–
ZHVµ-S tester. Spherical-ended indenter with diameter of 2.5 mm, loading of 63 kg, and
holding time of 10 s was used.

3.2. Burnishing Methods Implementation

RB and SRB were implemented on an Index Traub CNC lathe using a multifunctional
burnishing device, as shown in Figure 8. The required burnishing force is set in advance by
means of the shrinkage of an axial spring with linear performance situated in the device.
For this purpose, the axial displacement of the cylindrical nut is coordinated with the
spring characteristic. The deforming toroidal roller is then brought into contact with the
workpiece at its centerline and normal to the surface being burnished. The device is fed into
the workpiece an additional 0.05 mm to allow the toroidal roller to become disengaged from
the stop in the device. Thus, an elastic contact between the deforming roller and surface
being treated is provided. All deforming rollers had the same radii on their equatorial
circles: rr = 13 mm (see Figure 7).
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Figure 8. Burnishing device.

Each specimen had an outer diameter of 30 mm, a thickness of 25 mm, and a central
hole of 14 mm diameter. A group of specimens was positioned and fixed on a cylindrical
mandrel (Figure 9). Each package was clamped to one side into the chuck and supported
on the other side. Turning and burnishing were carried out in a single clamping process
for the purposes of (1) minimizing the concentric run-out in burnishing and (2) ensuring
the same initial roughness (before burnishing) of all samples in the group. The governing
factors were the radius r (see Figure 7) of the working toroidal surface of the deforming
roller, the burnishing force Fb, and the feed rate f. RB and SRB were implemented using
Vasco 6000 lubricant. The one-factor-at-a-time method and the planned experiment were
conducted sequentially.
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3.3. Measurement of Surface Integrity Characteristics

The roughness parameters were measured using a Mitutoyo Surftest SJ-210 surface
roughness tester. The roughness parameters were obtained as average values from measure-
ments of six equally spaced specimen generatrices. A ZHVµ Zwick/Roell microhardness
tester was used to measure the surface microhardness. The measurement conditions were
a 10 s holding time and 0.1 kgf loading. Twelve measurements were conducted for each
specimen. The final surface microhardness magnitude for each specimen was the center of
clustering of the twelve measurements. The RS distribution was measured with a Bruker D8
Advance X-ray diffractometer using the sin2ψ method and a least-squares fitting procedure.
More detailed information on the measurement is provided in Table 1.

Table 1. Characteristics of the residual stress X-ray measurement.

Measuring Device Bruker D8 Advance Diffractometer

X-ray tube Long focus Cr–Kα

Crystallographic plane Fe(γ)–(220)
Diffraction angle (2θ) 128.78◦ (124◦–133◦)
Measuring method Offset coupled TwoTheta/Theta (sin2ψmethod)
Scan mode Continuous PSD fast
X-ray detector SSD160-2 (1D scanning)
Collimator spot size Standard Φ1.0 mm
Measurement time for single scan Approx. 35 s
Elastic constant s1 −1.352 × 10−6

Elastic constant 1/2s2 6.182 × 10−6

Voltage 30 kV
Current 40 mA
Step size 0.5◦

Time for step 1 s

4. Experimental Results and Discussion
4.1. Material Characteristics

The chemical composition of the AISI 316 steel used in this work is shown in Table 2.
The remaining chemical elements (with a total content of 0.0382 wt%) are Zr, Se, B, Sn,
Pb, and Al. The specimen geometry and tensile tests results (σ − ε diagram and main
mechanical characteristics) are shown in Figure 10. The measured hardness was 215HB.
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Table 2. Chemical composition (in wt%) of the tested AISI 316 austenitic stainless steel.

Fe C Si Mn P S Cr Ni Nb Ti Mo Cu Co W V
67.3 0.0384 0.169 1.75 0.0354 0.008 18.3 9.35 0.0358 0.0052 2.03 0.559 0.203 0.1 0.078
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4.2. Optimization of RB Process
4.2.1. One-Factor-at-a-Time Study

The effect of each of the three governing factors of the RB process on the roughness and
surface microhardness was studied. The objects of study were the two integral height rough-
ness parameters Ra and Rq, as well as the two shape roughness parameters, the skewness
Rsk and kurtosis Rku. The average initial roughness (after turning) was Rinit

a = 0.479 µm
and was achieved with the following turning parameters: feed rate f = 0.05 mm/tr, depth
of cutting ap = 0.2 mm, and cutting speed v = 60 m/min. A TCMX110204WP carbide
cutting insert was used. The influence of the radius r is illustrated in Figure 11a. The radius
values in the range of 2 to 5 mm provide an integral height parameter Ra under 0.17 µm,
a kurtosis Rku close to 3, and a negative skewness Rsk. Radii of 1 mm and 6 mm were
excluded in further studies. Figure 11b visualizes the effect of burnishing force on the five
selected surface texture characteristics. The integral height roughness parameters Ra and
Rq decrease when the burnishing force increases (albeit weakly), whereas the skewness
increases but remains negative. The kurtosis takes a value greater than four for a burning
force in the interval 200–500 N. As expected, microhardness shows a tendency to increase
with burnishing force. Figure 11c depicts the effect of the feed rate on the five investigated
surface texture characteristics, of which Ra and Rq increase with the feed rate. This effect
is more pronounced for Rq when the kurtosis trend is decreasing. The skewness remains
negative, showing minimum values in the middle of the feed rate interval.

Compared with the height roughness parameters, the microhardness is less strongly
affected by the radius (Figure 11a) and the burnishing force (Figure 11b). A minimum feed
rate ensures maximum surface microhardness and a steady trend of decreasing microhard-
ness with increasing feed rate is observed. A possible explanation is the cyclic loading
in the vicinity of each point of the processed surface due to the presence of the so-called
overlapping effect [26]. The smaller the feed rate compared with the radius, the stronger
this effect becomes. However, some of the observed trends may change if the values of
the fixed factors in the one-factor-at-a-time experiment are altered. Therefore, a planned
experiment is necessary.
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4.2.2. Planned Experiment

The levels of the governing factors are based on the outcomes of the one-factor-at-a-
time study and are listed in Table 3. The dependence between the governing factors in
natural

∼
x i and coded xi form is

xi =
2
(∼

x i −
∼
x0,i

)
∼
xmax,i −

∼
xmin,i

. (17)

where
∼
xmax, i,

∼
x0,i, and

∼
xmin,i are the upper, middle, and lower levels of the i-th factor in

natural coordinates, respectively.
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Table 3. Levels of the governing factors.

Governing Factors Natural Codded Levels

Radius of the roller
toroidal surface r, mm x1 2 3 3.5 4 5 −1 −0.333 0 0.333 1

Burnishing force Fb, N x2 100 250 400 550 700 −1 −0.5 0 0.5 1Feed rate f , mm/rev x3 0.02 0.05 0.08 0.11 0.14

The objective functions are the integral height roughness parameter and the surface
microhardness selected based on the results from the one-factor-at-a-time study. Given
the wide ranges of variation of the governing factors (Table 3), a fourth-order central
composition plan was chosen for the planned experiment. Table 4 lists the experimental
outcomes from the planned experiment.

Table 4. Experimental plan and outcomes.

№ x1 x2 x3
Ra,
µm

Ra, µm
Scattering YRa ,

µm HV
HV
Scattering YHV

+ − + −
1 −1 −1 −1 0.133 0.014 0.008 0.1395 397.6 26 24 392.11
2 1 −1 −1 0.158 0.006 0.003 0.1624 402 32 21 400.23
3 −1 1 −1 0.107 0.014 0.026 0.1194 406.6 20 29 406.13
4 1 1 −1 0.261 0.022 0.015 0.2454 416.1 19 16 414.26
5 −1 −1 1 0.280 0.006 0.011 0.2783 397.1 29 30 400.23
6 1 −1 1 0.254 0.008 0.007 0.2554 388.0 27 29 392.11
7 −1 1 1 0.347 0.018 0.041 0.3614 413.9 20 32 414.26
8 1 1 1 0.236 0.048 0.019 0.2353 404.2 17 25 406.13
9 −1 0 0 0.245 0.012 0.013 0.2404 437.9 21 33 438.60
10 1 0 0 0.269 0.030 0.032 0.2404 439.3 35 34 438.60
11 0 −1 0 0.180 0.003 0.006 0.1559 390.4 17 24 390.40
12 0 1 0 0.147 0.006 0.008 0.1229 427.2 18 32 427.20
13 0 0 −1 0.270 0.033 0.038 0.2459 404.2 13 13 403.60
14 0 0 1 0.210 0.015 0.005 0.1859 403 24 22 403.60
15 −0.333 −0.5 −0.5 0.106 0.005 0.005 0.1428 400.4 16 33 406.20
16 0.333 −0.5 −0.5 0.141 0.011 0.012 0.1509 403.7 25 26 406.35
17 −0.333 0.5 −0.5 0.230 0.016 0.015 0.2057 420 22 44 444.72
18 0.333 0.5 −0.5 0.168 0.011 0.015 0.2224 436.1 26 28 444.87
19 −0.333 −0.5 0.5 0.144 0.008 0.004 0.1654 400.3 36 25 406.35
20 0.333 −0.5 0.5 0.171 0.028 0.011 0.1572 420.7 14 18 406.20
21 −0.333 0.5 0.5 0.214 0.031 0.020 0.2369 457.1 29 30 444.72
22 0.333 0.5 0.5 0.219 0.025 0.023 0.2202 466 14 25 444.87

Analysis of variance (ANOVA) was carried out using QStatLab version 6.1.1.3 [27]
to study the significance of the governing factors. The ANOVA main effects are shown
in Figure 12. The burnishing force (x2) exerts the strongest influence on the roughness
parameter Ra (Figure 12a) and the surface microhardness HV0.1 (Figure 12b). The second
most important factor is feed rate (x3). The influence of the radius (x1) is the weakest. The
minimum value of Ra is obtained when all three governing factors are simultaneously
maintained at the second level: x1 = −0.333 and x2 = x3 = −0.5. The maximum
microhardness is obtained when the three governing factors simultaneously occupy the
fourth level: x1 = 0.333 and x2 = x3 = 0.5.
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Figure 12. ANOVA main effects: (a) roughness parameter Ra, µm and (b) microhardness HV0.1.

Regression analyses were conducted using QStatLab. The approximating polynomials
were of order no higher than four, i.e., with one lower than the number of levels of the
governing factors:

Yk({X}) = b0 + ∑m
i=1 bixi + ∑m−1

i=1 ∑m
j=i+1 bijxixj + ∑m

i=1 biix2
i + ..., k = 1, 2, ... q, .... (18)

where {X} is the vector of the governing factors, m is the number of governing factors, and
q is the number of objective functions.

Table 5 lists the coefficients of regression. A graphical visualization of the models is
shown in Figure 13. The models confirm the conclusions drawn based on the ANOVA
regarding the influence of the governing factors on the roughness parameter Ra and the
microhardness. The magnitudes of the objective functions calculated with (18) for the
experimental design points are shown in Table 4. The comparison with the experimental
results shows good agreement.

Table 5. Regression coefficients.

b0 b2 b11 b22 b33 b222 b333 b3333

YRa 0.185544 0.084417 0.054893 −0.046149 0.030350 −0.100917 −0.030000 0
YHV 438.6000 46.9170 0 −29.8000 −22.6117 −28.5170 0 −12.3883

b13 b112 b123 b223 b233 b1113 b1122

YRa −0.037239 0 −0.025790 0.087953 0.032250 0 0
YHV 0 −11.3875 0 0 0 −4.0633 29.3875
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4.2.3. Optimization

The three processes that can be implemented with the RB method are smoothing,
hardening, and mixed RB. The first of these achieves a minimum value of the integral height
parameter Ra. The goal of the second process is to maximize the surface microhardness.
Mixed RB achieves compromise values of Ra and the surface microhardness. Finding
the optimal values of the governing factors for the first two processes requires solving
single-objective optimization problems, i.e., finding the minimum value of the objective
function YRa and respectively finding the maximum value of the objective function YHV ,
whereby the governing factors are varied in the defined factor space. However, the radius
changes discretely and takes values according to Table 3. Therefore, instead of minimizing
or maximizing the YRa or YHV value, respectively, another approach was applied. Based
on the ANOVA, points 15 and 22 were selected from the experiment plan, for which the
magnitudes of the governing parameters provide minimum roughness and maximum
microhardness, respectively. These combinations of governing factors are only compromise
optimal rather than optimal. A multi-objective optimization problem needs to be solved
to realize a mixed RB process: YRa → min and YHV → max with the constraints on the
governing factors shown in Table 3. The following functional constraints are also defined:
Ra < 0.2 µm and HV > 410. The decision was made with the nondominated sorting
genetic algorithm [28] using QstatLab. The compromise optimal solution was selected from
the Pareto front. Figure 14 illustrates the Pareto front and the chosen compromise optimal
solution. Table 6 provides detailed information regarding the solution results for the three
optimization tasks.
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Table 6. Compromise optimal values.

Process x*
1 r*, mm x*

2 F*
b, N x*

3 f*,mm/rev R*
a, µm HV*

Smoothing −0.333 3 −0.5 250 −0.5 0.05 0.106 400.4
Hardening 0.333 4 0.5 550 0.5 0.11 0.219 466
Mixed −1 2 1 700 0.4212 0.0547 0.127 439.1

4.3. SRB Investigation
4.3.1. Formulation of the Study

As a result of the RB optimization, the optimal values of the governing factors for the
three RB processes, smoothing, hardening, and mixed, were obtained (see Table 6). Using
the governing factors of each of the three processes, SRB was implemented with different
values of the crossing angle α. The specimens had the same shape and dimensions as those
used for the RB research and optimization (see Figure 9). The subject of the research is the
variation of the roughness parameter Ra and surface microhardness HV0.1 as a function of
the crossing angle α. When α = 0◦, the RB process is implemented, and the obtained results
for Ra and HV0.1 represent an experimental verification of the results obtained from the
optimizations in Section 4.2.3. For each of the three RB processes (smoothing, hardening,
and mixed), the optimal values of the governing factors are used to implement SRB and an
optimal value of α is selected.

4.3.2. Effect of Crossing Angle on the Roughness Parameter Ra and Microhardness

The effect of the crossing angle on the roughness parameter Ra and surface micro-
hardness HV0.1 is illustrated in Figure 15. For all values of α (except for two experimental
points in Figure 15c), SRB achieves a significantly lower roughness parameter Ra compared
with the RB process, i.e., when α = 0◦. The largest reduction, by more than a factor of two,
was obtained for the hardening process. It is well known that there is a positive correlation
between the roughness height parameters Ra and Rz. Therefore, the experimental results
obtained for Ra confirm the theoretical justifications in Section 2.4 for a smaller kinematic
roughness in the SRB process.
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For all α values (except for one experimental point in Figure 15a and two points in
Figure 15b), SRB increases the surface microhardness HV0.1. This is due to the greater
equivalent plastic deformation of the surface layer, and hence greater strain hardening.

Based on the obtained results for Ra and HV0.1 (Figure 15), the following values of
the crossing angle αwere selected for the three processes: for smoothing SRB, α = −45◦

(Figure 15a), since the main objective is to minimize the height roughness parameters, and
for hardening and mixed SRB processes, α = −30◦ (Figure 15b,c), since high microhardness
is combined with the inherent main advantage of SRB, namely lower roughness. From
this point of view, the identification of smoothing, hardening, and mixed SRB processes
is conditional.

4.4. Effect of RB and SRB on Surface Integrity: Comparative Analysis
4.4.1. Formulation of the Study

Two samples were selected for each of the three processes (see Figure 15). One was
treated with RB (α = 0◦) and the other with SRB with the crossing angle values chosen in
Section 4.3.2. A comparison of the surface integrity characteristics (roughness parameters,
microhardness HV0.1, and residual axial and hoop stress distributions) was performed for
each pair of samples.

4.4.2. Smoothing Process

A comparison of the 2D roughness parameters and surface microhardness obtained
via smoothing RB and SRB processes is shown in Table 7. The height roughness parameters
obtained via smoothing SRB demonstrate the great potential of this process for minimizing
roughness. The integral height parameters Ra and Rq are reduced by a factor of approx-
imately two, whereas the local height parameters Rp and Rv, as well as the family of
functional parameters Rk, are reduced by an even greater factor. Significantly lower values
of height roughness parameters after SRB are a prerequisite for reducing friction [29] and
improving fatigue behavior [30,31] and corrosion resistance [32], compared with RB. The
shape parameters, skewness Rsk and kurtosis Rku, are important indicators of tribological
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behavior because they characterize the distribution and shapes of peaks and valleys. It is
known that a surface texture characterized by a negative skewness (Rsk < 0) and a higher
kurtosis (>3) improves lubrication and reduces friction [23,33]. This effect is mainly due
to the dominance of deep valleys when Rsk < 0. These valleys act as micro-reservoirs
that hold the lubricant. In this respect, the smoothing SRB process provides negative
skewness and kurtosis with a value close to three (Table 7). Smoothing SRB leads to a slight
reduction (by 2.4%) in the surface microhardness compared with smoothing RB (Table 7).
A comparison of the evaluation profiles obtained via the smoothing RB and SRB processes
is shown in Figure 16.

Table 7. Comparison of the surface integrity characteristics obtained via smoothing RB and SRB
processes.

Process

Surface Integrity Characteristics
2D Roughness Parameters Microhardness

Ra
µm

Rq
µm

Rp
µm

Rv
µm Rsk Rku

Rk
µm

Rpk
µm

Rvk
µm HV0.1

RB 0.130 0.167 0.388 0.672 −0.569 4.348 0.416 0.146 0.231 414
SRB 0.068 0.083 0.182 0.245 −0.221 2.650 0.212 0.056 0.100 404
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Figure 17 illustrates the distribution of RS introduced by the RB and SRB smoothing
processes. Both methods introduce significant compressive RS at depths greater than
0.5 mm. The axial RS introduced by RB in the surface layer and in subsurface layers up
to a depth of 0.05 mm is greater in absolute value. In contrast, the SRB introduces larger
absolute compressive hoop RS at a depth of up to 0.15 mm. Since both RSs slow down the
formation and development of fatigue macro-cracks, it is difficult to predict which of the
two smoothing processes is more effective at improving fatigue strength.

4.4.3. Hardening Process

A comparison of the 2D roughness parameters and surface microhardness obtained
via hardening RB and SRB processes is shown in Table 8. The larger equivalent plastic
strain during hardening SRB provides two effects: a more favorable combination of shape
roughness parameters from the point of view of improving tribological behavior in bound-
ary and mixed friction conditions (Rsk = −0.531 and Rku = 5.04), and a visible increase in
microhardness relative to hardening RB.
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Table 8. Comparison of the surface integrity characteristics obtained via hardening RB and SRB
processes.

Process

Surface Integrity Characteristics
2D Roughness Parameters Microhardness

Ra
µm

Rq
µm

Rp
µm

Rv
µm Rsk Rku

Rk
µm

Rpk
µm

Rvk
µm HV0.1

RB 0.163 0.202 0.466 0.631 −0.248 3.417 0.555 0.153 0.223 421
SRB 0.073 0.093 0.225 0.420 −0.531 5.040 0.233 0.088 0.137 424

It is important to note that hardening SRB does not change the integral 2D height
roughness parameters Ra and Rq significantly in comparison with smoothing SRB, and for
the remaining 2D height roughness parameters, a slight deterioration is observed. This
shows that the smoothing effect is highly pronounced for both smoothing and hardening
SRB. The comparison of evaluation profiles obtained via hardening RB and SRB processes
(Figure 18) confirms this advantage of SRB.

Machines 2024, 12, x FOR PEER REVIEW 18 of 22 
 

 

4.4.3. Hardening Process 
A comparison of the 2D roughness parameters and surface microhardness obtained 

via hardening RB and SRB processes is shown in Table 8. The larger equivalent plastic 
strain during hardening SRB provides two effects: a more favorable combination of shape 
roughness parameters from the point of view of improving tribological behavior in 
boundary and mixed friction conditions (𝑅 = −0.531 and 𝑅 = 5.04), and a visible in-
crease in microhardness relative to hardening RB. 

Table 8. Comparison of the surface integrity characteristics obtained via hardening RB and SRB 
processes. 

Process 

Surface Integrity Characteristics 
2D Roughness Parameters Microhardness 𝑹𝒂 𝛍𝐦  

𝑹𝒒 𝛍𝐦 
𝑹𝒑 𝛍𝐦 

𝑹𝒗 𝛍𝐦 𝑹𝒔𝒌 𝑹𝒌𝒖 𝑹𝒌 𝛍𝐦 
𝑹𝒑𝒌 𝛍𝐦 

𝑹𝒗𝒌 𝛍𝐦 HV0.1 

RB 0.163 0.202 0.466 0.631 −0.248 3.417 0.555 0.153 0.223 421 
SRB 0.073 0.093 0.225 0.420 −0.531 5.040 0.233 0.088 0.137 424 

It is important to note that hardening SRB does not change the integral 2D height 
roughness parameters 𝑅  and 𝑅  significantly in comparison with smoothing SRB, and 
for the remaining 2D height roughness parameters, a slight deterioration is observed. This 
shows that the smoothing effect is highly pronounced for both smoothing and hardening 
SRB. The comparison of evaluation profiles obtained via hardening RB and SRB processes 
(Figure 18) confirms this advantage of SRB. 

Summing up, all the surface integrity characteristics obtained via hardening SRB 
have improved values compared with hardening RB (Table 8). These results show the 
technological capabilities of hardening SRB to simultaneously provide favorable height 
and shape roughness parameters and surface microhardness. Therefore, the hardening 
SRB process can be used to significantly improve the tribological, fatigue, and corrosion 
behavior of AISI 316 steel components. 

 
Figure 18. Evaluation profiles: (a) RB and (b) SRB hardening processes. 

Figure 19 depicts the RS distribution due to the RB and SRB hardening processes. For 
both hardening processes, the depth of the compression zone is greater than 0.5 mm, for 
both axial and hoop RS. A comparison with Figure 17 shows that hardening processes 
provide a greater depth for the compressive zone. The larger equivalent plastic strain re-
sults in larger surface compressive RSs for both RB and SRB. RB introduces greater com-
pressive axial RS at depths up to ≈ 0.09 mm, after which the trend changes in favor of 
SRB. Conversely, the SRB introduces larger compressive hoop RS into the surface and 
subsurface layers at depth≈ 0.3 𝑚𝑚. Similar to the smoothing processes, it is difficult to 

Figure 18. Evaluation profiles: (a) RB and (b) SRB hardening processes.

Summing up, all the surface integrity characteristics obtained via hardening SRB
have improved values compared with hardening RB (Table 8). These results show the
technological capabilities of hardening SRB to simultaneously provide favorable height
and shape roughness parameters and surface microhardness. Therefore, the hardening
SRB process can be used to significantly improve the tribological, fatigue, and corrosion
behavior of AISI 316 steel components.

Figure 19 depicts the RS distribution due to the RB and SRB hardening processes. For
both hardening processes, the depth of the compression zone is greater than 0.5 mm, for
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both axial and hoop RS. A comparison with Figure 17 shows that hardening processes
provide a greater depth for the compressive zone. The larger equivalent plastic strain
results in larger surface compressive RSs for both RB and SRB. RB introduces greater
compressive axial RS at depths up to ≈ 0.09 mm, after which the trend changes in favor
of SRB. Conversely, the SRB introduces larger compressive hoop RS into the surface and
subsurface layers at depth ≈ 0.3 mm. Similar to the smoothing processes, it is difficult to
predict based only on the RS distribution which of the two methods (RB or SRB) is more
effective at enhancing fatigue strength.
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4.4.4. Mixed Process

Table 9 shows a comparison of the 2D roughness parameters and surface microhard-
ness obtained via the mixed RB and SRB processes. The surface integrity characteristics after
mixed SRB are close to those obtained after hardening SRB, with a slight deterioration of the
Ra and Rq height roughness parameters. The same trends are observed as with hardening
SRB, but mixed SRB provides a more favorable combination of shape roughness parameters:
the skewness parameter is negative, but with a larger absolute value (Rsk = −0.763), and
the kurtosis parameter is larger (Rku = 5.748). The surface microhardness HV0.1 obtained
via mixed SRB decreases slightly (by 4 units) relative to the hardening SRB. Therefore, the
hardening and mixed SRB processes provide very similar surface integrity characteristics.
A comparison of the evaluation profiles obtained via mixed RB and SRB processes is shown
in Figure 20.

Table 9. Comparison of the surface integrity characteristics obtained via mixed RB and SRB processes.

Process

Surface Integrity Characteristics
2D Roughness Parameters Microhardness

Ra
µm

Rq
µm

Rp
µm

Rv
µm Rsk Rku

Rk
µm

Rpk
µm

Rvk
µm HV0.1

RB 0.117 0.145 0.342 0.429 −0.274 2.907 0.381 0.122 0.172 415
SRB 0.080 0.105 0.217 0.441 −0.763 5.748 0.238 0.077 0.175 420

Figure 21 shows the distribution of RS introduced by the RB and SRB mixed processes.
For both of these, the same trends are observed regarding the depth and intensity of the
compressive zones, as in the case of hardening processes (see Figure 19). The experimental
RS distributions obtained for the three processes (smoothing, hardening, and mixed)
confirm the effectiveness of single-toroidal RB and SRB at introducing a deep zone with
high compressive RS in AISI 316 steel components.
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5. Conclusions

A new method called SRB and a multi-functional device for the surface cold working
of cylindrical outer surfaces have been developed. The deforming element is a toroidal
roller whose axis crosses that of the workpiece. SRB is based on the well-known single-
toroidal RB, in which the axes of the roll and the workpiece are parallel. The two methods
were applied to the cold working of AISI 316 steel outer cylindrical surfaces. The main
advantage of the SRB is that it provides smaller height roughness parameters and a higher
surface microhardness than RB. The major new findings are as follows:

1. The new method was investigated theoretically and experimentally. Based on the
theoretical background of SRB, it was established that RB is a special case of SRB.
Due to the crossing axes of the deforming roller and workpiece, a relative sliding
velocity occurs in the contact zone between the roller and the machined surface. The
direction of the sliding velocity vector depends on the size of the crossing angle and
is set by the new burnishing device. This makes it possible to realize a desired surface
texture. When the two axes are parallel, the well-known RB method is implemented.
The relationship between the finishing and the surface integrity characteristics was
investigated for both methods.

2. Three combinations of optimal sizes of RB governing factors were found, with which
three processes were realized: smoothing, hardening, and mixed. Using the same
three combinations of governing factor sizes, the optimal crossing angle values for
the SRB were found. The distinctions between smoothing, hardening, and mixed
processes were found to be largely irrelevant to SRB, as with all three combinations
of governing factors, SRB achieved roughness and microhardness values within a
narrow range. For instance, the roughness parameter Ra and microhardness HV0.1
remained within the ranges (0.068–0.080) µm and (404–424) HV0.1, respectively.
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3. It was established that the implementation of the SRB process with a crossing angle
of α = −30◦ (for hardening and mixed) and α = −45◦ (for smoothing) reduces
the roughness parameter (0.068–0.080 µm) of AISI 316 steel samples by a factor of
about two compared to the basic smoothing, hardening, and mixed RB processes
(0.117–0.163 µm). Therefore, the smoothing is a mandatory effect in SRB, regardless of
the equivalent plastic strain degree. The minimization of all the height roughness pa-
rameters via SRB should significantly improve the fatigue life and corrosion resistance
of the components.

4. Both the RB and SRB processes provide a favorable surface texture characterized by
negative skewness and a kurtosis close to or greater than three. This effect is more
pronounced in SRB than in RB, when the strain hardening is greater. Therefore, SRB
implemented as a hardening or mixed process is particularly suitable for improving
the tribological behavior of AISI 316 steel components under boundary and mixed
friction conditions.

5. Single-toroidal RB and SRB (for all three implementation options: smoothing, hard-
ening, and mixed processes) introduce significant compressive RS at a depth greater
than 0.5 mm. However, on the basis of only RS distribution, it is not possible to predict
which of the two methods is more effective at enhancing fatigue strength.

6. Both single-toroidal RB and SRB provide substantial improvement in the investigated
surface integrity characteristics, but SRB has a significant advantage in terms of
roughness and microhardness. On the basis of only roughness, microhardness, and
RS distribution, it is difficult to predict the operational behavior (wear under dry
friction conditions and fatigue) of machined components, since the microstructure
and orientation of the surface texture are important surface integrity characteristics.
Therefore, to establish which of the two methods provides better operational behavior,
additional studies of the relationships between the surface integrity characteristics
and the wear resistance and fatigue behavior are necessary.
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