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Abstract: This paper presents control design and implementation for a power-assisted mobile trainer
that employs neuro-developmental treatment (NDT) principles. NDT is a gait rehabilitation technique
for stroke patients that provides minimum intervention at critical gait events. Traditional NDT
rehabilitation is an effective post-stroke treatment but is also time consuming and labor intensive
for therapists. Therefore, we designed a mobile NDT trainer to automatically repeat therapists’
intervention patterns, allowing patients to receive sufficient training without increasing therapists’
workloads. Because the trainer was self-propelled, it could cause burdens to stroke patients with
limited muscle strength, thereby potentially degrading the rehabilitation effects. Hence, this paper
proposes a power-assisted device that can let the mobile trainer follow the user, allowing the subject
to focus on the rehabilitation training. We conducted system identification and control design for the
power-assisted NDT trainer. We then implemented the designed controllers and tested the trainer.
Finally, we invited 10 healthy subjects and 12 stroke patients to conduct clinical experiments. After
using the power-assisted NDT trainer, most participants exhibited improvements in swing-phase
symmetry, pelvic rotation, and walking speed. Based on the results, the power-assisted device was
deemed effective in facilitating stroke rehabilitation.

Keywords: neuro-developmental treatment; stroke; rehabilitation; assisted; gait; motor; control

1. Introduction

Stroke is the second leading cause of death globally [1]. Even those who survive
a stroke can still experience various after-effects, such as balance issues, difficulties in
walking, cognitive impairments, visual problems, language difficulties, and fatigue [2].
Because approximately half of post-stroke patients cannot walk [3], regaining independent
walking is the primary goal for post-stroke rehabilitation as one’s walking ability can
significantly affect their daily activities and life.

Many rehabilitation devices have been proposed to assist stroke patients in recovering
their walking abilities. For example, Banala et al. [4] developed lower-limb exoskeletons
to improve patients’ gait patterns and walking speeds for rehabilitation on treadmills.
Pietrusinski et al. [5] developed a robotic gait rehabilitation trainer that provided practical
guidance on pelvic tilt angles for stroke patients to improve their walking ability. Werner
et al. [6] designed an electromechanical gait trainer to provide non-ambulatory subjects
with repetitive practice of gait-like movements.

Another therapeutic approach for treating post-stroke sequelae is neuro-developmental
treatment (NDT) [7–9], which is a way to let patients have the feeling of walking with
minimal intervention. The essence of NDT is to rectify sensory perception and re-educate
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the processes of posture and motor functions for daily activities. Patients can intentionally
impel their center of gravity (COG) forward to balance themselves during NDT train-
ing [10]. In contrast with other gait-training methods that depend on mechanical aids, NDT
applies facilitated interventions to cultivate the effects of motor learning. With minimum
intervention, NDT applies stimulating interventions at critical times to correct patients’
inaccurate movements, thereby enhancing their compensatory movements and daily ac-
tivities. Utilizing training techniques based on the NDT theory allows patients to learn
correct movement patterns through motor learning because of the human brain’s learning
capability and high plasticity [11–13].

NDT training has shown positive effects on stroke patients, but it places heavy de-
mands on participating therapists, and human factors influence the quality of training. For
these reasons, Wang et al. [14] developed an automatic mobile NDT trainer that repeats ther-
apeutic interventions that the therapist must typically perform every time. Their analysis
of patients’ movements and therapists’ actions revealed that the therapists conducted NDT
intervention primarily at the heel strike (HS) events. Hence, they applied a motion-capture
system to detect the HS. Wang et al. [15] later proposed a movable NDT trainer that allowed
the users to receive visual feedback during training. They attached inertial measurement
units (IMUs) to the user’s legs and measured the kinematic data to identify three essential
gait events: the mid-swing (MS), HS, and toe off (TO). Wang et al. [16] developed a Long
Short-Term Memory (LSTM) model, which is an advanced recurrent neural network to pro-
cess and predict time-series data to detect HS events effectively. They applied experimental
gait data to develop a gait-detection model, which sent a triggering signal to motors to
repeat NDT interventions upon detecting an HS. The experimental results showed that
subjects improved their gait performance after the NDT training. In this paper, we applied
the LSTM model to detect HS events based on IMU data and designed robust control to
repeat NDT interventions by a motor system.

During clinical experiments, however, we found that operating the self-propelled
mobile trainer could be burdensome for stroke patients, who usually exhibit a significant
reduction in muscle strength in their legs, especially on the paretic side [17]. Therefore, this
paper proposed a power-assisted device to let the trainer follow the user, thereby allowing
stroke patients to focus on gait training without having to manually propel the trainer. We
conducted system identification and control design for the power-assisted NDT trainer. We
then implemented the designed controller and recruited ten healthy subjects who wore
a joint restrictor to mimic stroke gaits to test the power-assisted trainer. We then invited
12 stroke patients to participate in clinical experiments. We evaluated the rehabilitation
effects by the swing-phase symmetry, pelvic rotation, and walking speeds during and after
receiving the NDT training with the power-assisted device.

Gait symmetry is an essential index for the gait rehabilitation of post-stroke patients
and requires shifting the COG at the right moments to initiate stepping [14]. The rotation
of the pelvis reduces the center of mass movement and thereby conserves energy [18].
Increasing walking speed can improve the quality of daily life of stroke patients [19]. Darcy
et al. [20] suggested that improving stroke patients’ walking speed could reduce energy
consumption. Reciprocal and repeated training can help patients improve their gaits by
motor learning and accumulating experience from comparisons with the sound side. This
study showed that the subjects’ gait performance and walking speeds improved after
receiving NDT rehabilitation by using the proposed trainer.

2. Materials and Methods

The power-assisted NDT trainer comprises a motor-control system, a gait-detection
system, and a power-assisted device, as shown in Figure 1a. We conducted system iden-
tification and control designs for the intervention and power-assisted systems. Then, we
recruited subjects to perform clinical experiments, as illustrated in Figure 1b.
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Figure 1. The power-assisted NDT trainer. (a) The trainer designs. (b) The hardware. (c) The rope
attached to the subject’s ASIS.

The gait-detection system applies two IMUs attached to the subjects’ lower legs to
detect HS events by using the LSTM model, as Appendix A shows [16]. It sends a triggering
signal to the motor-control system to perform NDT intervention upon detecting an HS. The
motor-control system [20] cues the subject’s anterior superior iliac spine (ASIS) by ropes
upon receiving the triggering signals from the gait-detection system, as shown in Figure 1c.
ASIS is a bony prominence located at the front and upper part of the pelvis, where the
subcostal nerve lies close and the tensor fasciae latae muscle attaches to its lateral. The
power-assisted system comprises a laser-distance sensor and two motors, where the sensor
measures the participant’s position and controls the trainer to keep the trainer at a constant
distance from the subject. Therefore, the subjects can focus on receiving the NDT training
without manually propelling the trainer.

2.1. NDT Intervention by the Motor-Control System

We invited therapists to conduct clinical NDT training and observed their actions.
During the training, the therapists guided the subject’s motions by using the ropes attached
to the subject’s ASIS. We recorded the therapists’ applied forces and the subjects’ motions
to analyze the therapists’ intervention patterns [14,18]. First, the therapists applied forces
to cue the subject’s opposite ASIS when they observed the subject’s HS. The intervention
forces were approximately sinusoidal, as shown in Appendix A [18]. Second, the therapist
increased the applied forces when they observed insufficient pelvic rotation, as illustrated
in Appendix C [18]. Therefore, we implemented these intervention patterns to control the
NDT motors, as shown in Figure 2, which produced the corresponding forces to cue the
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subjects’ ASIS through the ropes. When the gait-detection system identifies an HS, the
motor-control system tracks the following command to cue the opposite ASIS [18]:

F(t) =
(

Fmax − Fmin
)

2
× sin(2π f t) +

(
Fmax + Fmin

)
2

(1)

where Fmax and Fmin represent the maximum and minimum forces, respectively. f = 1 Hz.
The maximum force is initially set as Fmax = 6 lb and increases to Fmax = 9 lb when the
pelvic rotation AmpPR is less than 12

◦
. The minimum force is set as Fmin = 1 lb to keep the

rope tight.
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Figure 2. Motor-control processes.

Considering the human factor in the system, we applied robust control to replicate the
therapists’ rehabilitation interventions automatically in that robust control has a superior
ability to cope with system uncertainty and disturbances. Before control design, we derive
the system model by experiments.

Because the rope provided only traction forces, we conducted closed-loop identi-
fication. The block diagram of the rope motor-control system is illustrated in Figure 3,
where we sent the swept sinusoidal input signals r with magnitudes of 1–6 pounds and
frequencies of 0.01–2 Hz. We then measured the motor drive signal u and the output force
y. The system transfer functions were then derived by the Matlab command tfest by using
these signals. Considering system variation and uncertainties, we repeated the experiments
ten times to derive the following transfer functions:

G1(s) = −29.39s + 342.87
s2 + 46.79s + 114.27 , G2(s) = −19.74s + 263.14

s2 + 31.82s + 90.71 , G3(s) = −19.80s + 274.81
s2 + 33.19s + 86.43 ,

G4(s) = −28.87s + 355.76
s2 + 42.55s + 104.69 , G5(s) = −29.91s + 348.55

s2 + 41.51s + 115.71 , G6(s) = −30.76s + 366.68
s2 + 41.41s + 107.09 ,

G7(s) = −29.38s + 355.41
s2 + 39.68s + 102.89 , G8(s) = −22.06s + 280.76

s2 + 33.74s + 93.37 , G9(s) = −29.52s + 355.94
s2 + 39.44s + 103.77 ,

G10(s) = −23.74s + 290.55
s2 + 33.95s + 99.00 .

(2)

We applied a gap metric [21] to select a nominal plant from (2) to perform the robust
control design. Suppose a nominal plant G0 has a left coprime factorization of G0 = M−1 N,
where M M∗ + N N∗ = I, and ∆M, ∆N ∈ RH∞. Assume a perturbed system G∆ can be
expressed as G∆ = (M + ∆M)−1(N + ∆N), where ∆M, ∆N ∈ RH∞. The gap between these
two systems, G0 and G∆, is defined as the smallest

∥∥[∆N ∆M]
∥∥

∞ that can perturb G0 to G∆,
denoted as δ(G0, G∆) [21]. Hence, we selected G0 = G10(s) to represent the motor system
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because it minimized the maximum gap between G0 and other plants Gi for i = 1, 2, · · · , 10,
as follows:

G0 = arg
{

min
G0

max
Gi

δ(G0, Gi)

}
, ∀Gi, (3)

with a gap of δ(G0, Gi) ≤ 0.078, ∀Gi.
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Figure 3. The block diagram of the rope motor-control system.

We applied the nominal plant G0 to design a robust controller. Considering a closed-
loop system with a controller K (see Figure 4a), we can rearrange the system as the standard
block diagram for the Small-Gain Theorem (see Figure 4b) because system stability is
independent of input signals. According to the Small-Gain Theorem [21], the closed-loop
system is internally stable for all perturbations ∆ =

[
∆N ∆M

]
with ∥∆∥∞ < ε if and only

if [21]: ∥∥∥∥ [
K
I

]
(I − G0 K)−1M−1

∥∥∥∥
∞
=

∥∥∥∥ [
K
I

]
(I − G0 K)−1[ I G0 ]

∥∥∥∥
∞
≤ 1/ε (4)
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Therefore, we can define the system’s stability margin b(G0, K) as follows:

b(G0, K) =
∥∥∥∥ [

K
I

]
(I − G0 K)−1[ I G0 ]

∥∥∥∥−1

∞
.

So that the necessary and sufficient condition to maintain internal stability for a system
G0 with a perturbation of ∆, where ∥∆∥∞ < ε, is to design a controller K that provides a
stability margin b(G0, K) ≥ ε. Hence, we must design a robust controller K for the system
G0 = G10(s) with a stability margin b(G0, K) ≥ 0.078.



Machines 2024, 12, 61 6 of 20

We applied H∞ loop-shaping techniques [22], as shown in Figure 5. We set the
weighting function

W(s) =
2s + 4

(0.02s + 1)s
(5)

and applied the shaped plant Gs(s) = G0(s)W(s) to design the following robust controller:

K∞(s) =
−3.004s3 − 244.1s2 − 4614s − 9755

s3 + 132.3s2 + 14, 910s + 29, 310
. (6)

The stability margin b(G0, WK∞) = 0.2789 exceeded the system gap and guaranteed system
stability during operations. Therefore, we applied the shaped controller K(s) = W(s)K∞(s)
to the original plant G0(s), as shown in Figure 5b.
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The simulation results are shown in Figure 6a, with significant phase delay and
magnitude decay. Hence, we designed a pre-compensator to modify the responses, as
shown in Figure 6b. Assuming the concerned frequency was 1 Hz, we designed the
following pre-compensator:

Cpre(s) =
0.1721s + 0.4816

0.016s + 1

The simulation results are shown in Figure 6c, where the motor-control system could
track the intervention forces. Therefore, we implemented the motor-control system to
track the intervention force commands of (1). Figure 6d shows the experimental force-
tracking responses, where the motor could track the intervention force commands for NDT
rehabilitation.

2.2. Control Design for the Power-Assisted System

Figure 7 illustrates the power-assisted device. The main control microprocessor is an
Arduino Due [23], which sends pulse-width modulation (PWM) signals to the wheel motor
drivers. The second microprocessor is an Arduino Mega [24], equipped with an MAX485
communication module to receive feedback signals from the motors and the laser-distance
sensor.

We connected the power-assisted device to the trainer and conducted open-loop
system identification by experiments. First, we set swept sinusoidal input signals with
frequencies of 0.01–2 Hz and converted the signals to the corresponding PWM signals to
drive the motors. We then measured the output signals by the laser-distance sensor to
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derive the system’s model from these signals. We considered system variation and repeated
the identification experiments to derive the following transfer functions:

G1(s) = 39.69
s2 + 6.15s , G2(s) = 39.31

s2 + 6.25s , G3(s) = 37.91
s2 + 6.03s , G4(s) = 38.88

s2 + 6.51s ,
G5(s) = 34.83

s2 + 6.00s , G6(s) = 41.42
s2 + 7.14s , G7(s) = 37.75

s2 + 6.03s , G8(s) = 45.90
s2 + 6.27s ,

G9(s) = 43.79
s2 + 6.93s , G10(s) = 37.92

s2 + 5.78s .
(7)

which represented the entire power-assisted device, including the wheels and motor-
reduction mechanism.
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Similarly, we calculated the gaps between these transfer functions and selected the
following nominal plant:

G0(s) = min
i

max
j

δ(Gi, Gj), ∀ i, j = 1, 2, . . . 10 = G10, (8)

which minimized the gaps between the nominal plant and other plants, with a gap of
δ(G0, Gi) ≤ 0.061, ∀Gi. The power-assisted control is shown in Figure 8a, where r is the
reference, h represents the disturbances from human movements, e is the position error, u is
the motor-control signal, and y is the actual distance. We first applied robust loop-shaping
control to design a controller K that gives a stability margin b(G0, K) ≥ 0.061.
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Based on previous experimental experiences [15], we set the NDT trainer to maintain
a constant distance of r = 10 cm from the participant, as shown in Figure 8b. The subject’s
movement h was regarded as a disturbance to the system. The laser sensor measured the
actual distance (y) between the participant and the trainer so that the feedback system
could compensate for the position error e by the motors.

Referring to Figure 5, we set the weighting W as follows:

W(s) =
10s + 3
(s + 2)s

(9)

and derived the following robust controller:

K∞(s) = − (1.02 × 104)s4 + (1.02 × 105)s3 + (2.79 × 105)s2 + (7.29 × 104)

s4 + (3.29 × 103)s3 + (7.499 × 104)s2 + (7.82 × 105)s + (2.28 × 105)
. (10)

We then reduced the weighted controller K = WK∞ to the fifth order, which provided a
stability margin b(G0, K) = 0.2823, which exceeded the system gaps and could guarantee
robust stability during operation. The simulation results are shown in Figure 8c, where the
significant overshoot and the high-order controller were disfavored. Therefore, we applied
gain-scheduling control for the power-assisted system.

The gain-scheduling-control design was conducted empirically because the control
signal u should be large enough to overcome frictions and small enough to avoid over-
shoots. We tuned the controller gain K(s) = Kp and verified its effects iteratively. For
example, when K(s) = Kp = 1, the stability margin was b(G0, K) = 0.3910 with the sys-
tem response as shown in Figure 8d, where the overshoot and steady-state error were
significant due to friction. On the other hand, when K(s) = Kp = 0.8, the stability margin
was b(G0, K) = 0.4259 with the system response, as shown in Figure 8e, where the steady-
state error was negative because of the low gain and friction. Therefore, we designed the
following gain-scheduling control:

K(s) =

{
Kp = 1, If |e| > 5cm
Kp = 0.8, otherwise

(11)

The simulation and experimental responses are shown in Figure 8f, where the system
responses were satisfactory during experiments despite slight oscillations and steady-state
errors. The gain-scheduling control could successfully regulate the NDT trainer, keeping
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it at a constant distance from the user. Therefore, we applied this controller in clinical
experiments.

2.3. Performance Indexes and Evaluation

A complete gait cycle is illustrated in Figure 9, which comprises three essential gait
events: the MS, HS, and TO. The swing phase of a leg is defined as the duration between
the leg’s TO and its subsequent HS and accounts for about 40% of a gait cycle [25] while
the stance phase takes the remaining 60%.
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Figure 9. The gait cycles.

We evaluated the participants’ gait performance by their asymmetry of swing phase,
pelvic rotation, and average walking speed.

(1) Asymmetry of swing phase: We measured each subject’s gait response and segmented
it into gait cycles based on HSs. The asymmetry of the swing phase AsymSP is defined
as follows:

AsymSP(%) =
SPparetic − SPnon−paretic

SPparetic
× 100%, (12)

where SPparetic and SPnon−paretic represent the swing phases on the paretic and sound
sides, respectively.

(2) Amplitude of pelvic rotation: We attached an IMU to the subject’s waist to measure
the rotation angle of the pelvis [18]. The pelvic rotation is the maximum rotational
angle between two successive HS events, defined as follows:

AmpPR = θmax − θmin, (13)

where θmax and θmin represent the minimum and minimum pelvic angles in a gait
cycle.

(36) Average walking speed: we estimated the subject’s average walking speed based on
the encoder data from the motors on the power-assisted device, as in the following:

Vave = ωD · Rred, (14)

where ω is the motors’ angular velocity, D is the wheel diameter, and Rred is the
motors’ reduction ratio for amplifying the motor torques to drive the trainer. In the
experiments, we set D = 0.3 m and Rred = 1/15.

2.4. Clinical Experiments

We recruited 10 healthy subjects and 12 stroke patients to participate in the experiments.
The inclusion criteria were (1) stroke patients with lower-limb paralysis at Brunnstrom
stage III to V, whose characteristics are described in Appendix B. The Brunnstrom stage is
used to assess and describe the stages of limb-function recovery in stroke patients. (2) The
ability to walk independently and follow commands. (3) Age between 18 and 80 years.
Appendix C illustrates the participants’ statistical data. All participants provided written
informed consent before participating in the study.
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(1) Healthy subjects: The healthy subjects wore a joint restrictor with a 2 kg block on
one knee, as shown in Figure 10a; the joint restrictor constrained their knee flexion to
simulate stroke patients’ gait patterns. Each participant performed the following two
sets of experiments to validate the effectiveness of the power-assisted device:
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(a) Experiments without power assistance.
(b) Experiments with power assistance.

Each set of experiments contained three stages: stage A (pre-treatment), stage B
(during treatment), and stage A (post-treatment). First, the subject walked approximately
25 m without intervention at the A stage. Then, the subject walked approximately 50 m
with the NDT intervention at the B stage. Finally, the subject walked approximately 25 m
without intervention at the A stage. There were no breaks between the stages, but the
subject could rest if necessary.

(2) Stroke patients: The experiments were conducted within a hospital approved by the
Cheng Hsin General Hospital. Twelve stroke patients participated in the experiments,
walking in a straight line with the NDT trainer at their most comfortable pace, as
shown in Figure 10b.

The stroke patients’ experiments also consisted of three stages. First, each subject
walked approximately 44 m without intervention at stage A. Then, the subject walked
approximately 88 m with the trainer’s intervention at stage B. Finally, the subject walked
approximately 44 m without intervention at stage A. Participants completed the procedures
consecutively, with the option to rest if necessary during the experiments. Considering
the stroke patients’ physical stamina and walking ability, they only conducted one set of
experiments with the power-assisted device.

3. Results

The participants’ data are illustrated in Appendix C. The average age (±standard
deviation, SD) was 24.3 ± 2.4 years for the healthy subjects and 51.5 ± 7.8 years for the
stroke patients. Among the stroke patients, 10 (83%) were males and 2 (17%) were females.
The mean duration (±SD) from stroke onset was 21.1 ± 28.0 months. The number of
patients at the Brunnstrom recovery stages III, IV, and V were 7, 4, and 1, respectively.
Because the participants had different physical conditions, we compared each subject’s
performance before, during, and after the NDT training.
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The healthy subjects wore a joint restrictor to simulate the stroke gait. Their gait
performance indexes are illustrated in Appendix D. Table 1 shows the number of subjects
whose performance indexes were improved after the experiments (a) and (b). The improved
rates were almost identical in experiments (a) and (b) for the asymmetry of the swing phase
and the pelvic rotation. In addition, all the subjects’ walking speeds increased after using
the power-assisted trainer. The results indicate that the power-assisted device improved
the subjects’ walking speed without compromising other rehabilitation effects.

Table 1. Improved ratio in experiments (healthy subjects).
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The 12 stroke patients only conducted one set of experiments with the power-assisted
device. Their gait performance indexes are illustrated in Appendix D. Table 2 shows the
number of subjects whose performance indexes improved after using the NDT trainer. For
the swing phase, eight stroke patients showed improvement at the B and A stages. For
pelvic rotation, 12 and 8 stroke patients showed improvement at stage B and A, respectively.
Finally, 11 and 10 subjects’ walking speeds increased at stage B and A, respectively. The
results indicate that the power-assisted device relieved the subjects’ burden in pushing the
trainer while slightly improving the NDT rehabilitation effects.

Table 2. Improved ratio in experiments (stroke patients).

Power-Assisted Stage B Stage A

AsymSP Yes 8/12 8/12

AmpPR Yes 12/12 8/12

Vave Yes 11/12 10/12

4. Discussion

In this study, we developed a power-assisted trainer that can automatically move
with the user and perform NDT training. We conducted closed-loop identification and a
robust control design for the motor-rope system so that the trainer could automatically
repeat the NDT intervention based on key gait events. We then performed open-loop
identification and gain-scheduling-control design for the power-assisted system, which
could automatically follow the subject during NDT training and relieve the user’s burden
of pushing the trainer.

We recruited 10 healthy subjects and 12 stroke patients to participate in experiments to
verify the trainer’s effectiveness in improving the subjects’ gait performance. The healthy
subjects conducted two experiments: without and with power assistance. On the other
hand, the stroke patients participated in only one experiment with power assistance because
of their limited muscle strength and endurance. Each subject walked in a straight line with
the NDT trainer at their most comfortable pace. Most participants exhibited improvements
in swing-phase symmetry, pelvic rotation, and walking speed.

For the healthy subjects, the improved ratio of the swing-phase symmetry was almost
the same with or without power assistance: less improvement in the swing-phase sym-
metry at the B stage but more improvement in pelvic rotation at the B and A stages. We
conjectured that pushing the trainer might be a form of resistance training, which could
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improve the subjects’ lower-limb muscle strength and balance abilities. Flansbjer et al. [26]
showed significant differences in muscle strength for stroke patients undergoing resistance
training compared to a control group. Shao et al. [27] demonstrated the improvement in
balance, functional capacity, and muscle strength by training the stroke patients’ paraplegic
side. Noveletto et al. [28] designed a task-oriented game that enhanced lower-limb mo-
tor function and improved muscle control and gait speed. These studies highlighted the
positive impact of resistance training on stroke subjects’ lower-limb strength and balance.
The healthy subjects also showed slightly better improvement in pelvic rotation because
they did not need to propel the trainer, which consumed part of the movement energy and
limited the pelvic rotation. Similarly, the walking speeds of all the healthy subjects were
increased with power assistance because no walking energy was consumed by pushing the
trainer.

The stroke patients only conducted the experiments with power assistance; therefore,
we cannot compare the effects of using and not using the power-assisted device. However,
most subjects showed improvements in swing-phase symmetry, pelvic rotation, and walk-
ing speeds. Compared to healthy individuals, patients with stroke have paretic hemi-limb
strength and impaired endurance and balance. Consequently, a power-assisted device
could alleviate the physical effort required to activate the NDT trainer, thereby allowing
participants to complete their intervention with less effort. Our findings had clinical signifi-
cance, as utilizing a power-assisted gait trainer improved ambulatory ability in patients
with stroke in the chronic phase. According to the previous literature, power-assisted
devices (e.g., exoskeletons) showed alterations in stroke paretic patterns during ambulation
training that were not detected during traditional gait training without a power-assisted
device [29]. Another study based on a wearable, powered, lower-limb robot also revealed
an improved gait speed compared to a control group that received traditional gait reha-
bilitation training [30]. Supportive results from a study by Pohl et al. [10] showed that
patients with subacute stroke who received gait training with an electromechanical gait
trainer exhibited a significantly better gait ability than patients who received conventional
physical therapy only. Most stroke patients’ walking speed increased at stages B and A.
Increasing walking speed can also reduce stroke patients’ energy consumption and let them
feel less fatigued when receiving rehabilitation training [20].

Another perspective of the power-assisted NDT device involves its potential to stimu-
late central pattern generators (CPGs), which are neuronal circuits activated to produce
rhythmic motion patterns, such as walking. This neural circuit has no sensory or descend-
ing inputs. Previous studies have identified that all forms of bipedal movement appear to
be controlled by four or five CPGs [31]. A locomotion study based on spinal-cord-injury pa-
tients also suggested that a CPG pattern of ambulation is better recognized with a straighter
trunk and knee alignment when partial weight bearing is provided [32]. In our study,
handrails provided by the NDT trainer also provided partial weight support for the par-
ticipants. The improved gait pattern observed immediately after the power-assisted NDT
training is more likely attributable to neural adaptations than aerobic exercise’s muscular
effects. Improvement due to the latter typically becomes evident after an intensive treadmill
therapy regimen lasting three to six months [33]. Suppose NDT training can indeed induce
a CPG pattern of locomotion in stroke patients. In that case, it will allow those patients to
ambulate, despite the lack of supraspinal motor signals arising via interneuron pathways.

The improvements in pelvic rotation and average walking speed were particularly
notable, as more than 90% of the healthy and stroke subjects achieved improvement
during the intervention. These improvements might be attributed to the reduced energy
consumption required to push the trainer. According to a study by Mahaki et al. [34], stride
length increases with pelvic rotation. However, increasing the walking speed also shortened
the training time and number of repetitions because our experiment utilized a fixed distance,
which might potentially affect the subjects’ level of improvement. Nevertheless, the power-
assisted NDT trainer demonstrated positive rehabilitation effects in all three indicators:
asymmetry of the swing phase, amplitude of pelvic rotation, and average walking speed.
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This study has some limitations. First, our participant pool was limited to a small
group of individuals who had experienced strokes. Consequently, the applicability of
these findings to the broader stroke-patient population undergoing gait training might
be restricted. Second, our intervention period was relatively short, prompting the need
for a more extensive investigation of the lasting impacts of NDT intervention. Our stroke
patients also did not receive non-power-assisted NDT training due to their limited strength
and endurance. We plan to conduct a large-scale controlled trial with extended intervention
periods and a comprehensive assessment of functional outcomes to investigate the long-
term effects of the power-assisted NDT trainer.

5. Conclusions

This study proposes a power-assisted NDT trainer that automatically follows a stroke
subject while repeating NDT rehabilitation training. We conducted system identification
and control designs for the motor-traction and power-assisted systems. We then invited
10 healthy subjects and 12 stroke patients to participate in clinical experiments. Their
kinematic data were collected to analyze the training effects on swing-phase symmetry,
pelvic rotation, and walking speed.

The preliminary validation of the power-assisted device in this study indicates that the
power-assisted trainer can relieve the stroke patients’ burden of manually propelling the
trainer when receiving NDT training and enable them to focus more on gait rehabilitation.
Consequently, most participants’ performance indexes were improved with the power-
assisted device. During the experiment, the trainer facilitated walking to expedite the
training process. It raises the possibility of extending the intervention time for stroke
patients undergoing treatment to enhance rehabilitation performance.
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Appendix A. The LSTM Model for HS Detection

We collected gait data and applied them to develop an LSTM model for real-time HS
detection. The development processes included two stages [15]. In the training stage, we
applied the six-axis IMU data and the hand-labeled HS events to train the model. In the
validation stage, we utilized the trained model to identify HS events as they occurred and
assessed the model’s effectiveness in real-time detection.

The structure of the LSTM model is shown in Figure A1, which included fifty samples
of six-axis IMU data per sliding window with a 98% overlap between consecutive windows.
The IMU data in the last 50 samples were used as the model input X ∈ R50×6, which

http://140.112.14.7/~sic/PaperMaterial/IMU_data_machines_2023.zip
http://140.112.14.7/~sic/PaperMaterial/IMU_data_machines_2023.zip
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derived the output Y ∈ R50×64 by RNN. Y was then sent to a fully connected layer to
produce the layer output Z ∈ R50×1, which was then sent through a sigmoid function
to calculate the prediction output P ∈ R50×1. The output P(50) was binary, where ‘1’
indicated HS and ‘0’ indicated non-HS events.

Machines 2024, 12, x FOR PEER REVIEW 15 of 20 
 

 

Funding: This research was financially supported in part by the Ministry of Science and Technology 
of Taiwan under Grands MOST 109-2634-F-002-027- and MOST 107-2314-B-350-001-MY3 and by 
Cheng Hsin General Hospital (CHNDMC-111-2). 

Data Availability Statement: The dataset of the gaits applied in this paper is available at 
http://140.112.14.7/~sic/PaperMaterial/IMU_data_machines_2023.zip, accessed on 8 December 2023. 

Acknowledgments: This research was financially supported in part by the Ministry of Science and 
Technology of Taiwan and Cheng Hsin General Hospital. The author would like to thank Yin Keat 
Tan and Hsin-Ti Cheng for assisting with the experiments and revision. 

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the 
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-
script; or in the decision to publish the results. 

Appendix A. The LSTM Model for HS Detection 
We collected gait data and applied them to develop an LSTM model for real-time HS 

detection. The development processes included two stages [15]. In the training stage, we 
applied the six-axis IMU data and the hand-labeled HS events to train the model. In the 
validation stage, we utilized the trained model to identify HS events as they occurred and 
assessed the model’s effectiveness in real-time detection. 

The structure of the LSTM model is shown in Figure A1, which included fifty samples 
of six-axis IMU data per sliding window with a 98% overlap between consecutive win-
dows. The IMU data in the last 50 samples were used as the model input 50 6×∈X  , which 
derived the output 50 64×∈Y   by RNN. Y was then sent to a fully connected layer to pro-
duce the layer output 50 1×∈Z  , which was then sent through a sigmoid function to cal-
culate the prediction output 50 1×∈P  . The output 50( )P  was binary, where ‘1’ indicated 
HS and ‘0’ indicated non-HS events. 

 
Figure A1. The LSTM model structure. 

Appendix B. Characteristics of Brunnstrom Stage III–V [35] 
(1) Stage III: Spasticity Increases 

In this stage, spasticity intensifies, potentially leading to severe muscle stiffness and 
contractures, where joints freeze. Despite spasticity seeming to worsen, it indicates im-
proving neural connections. If excessive spasticity hinders exercise, Botox injections, upon 
medical approval, can offer temporary relief and aid in continuing therapy exercises. 
(2) Stage IV: Spasticity Decreases 

Progressing to this stage signifies decreasing spasticity due to persistent rehab exer-
cises. It leads to regained muscle control and coordination, usually starting with larger 
arm and leg muscles, then smaller hand and foot muscles. Maintaining rehabilitation and 
incorporating strength training is vital for ongoing neuroplasticity and countering 
strength loss from previous stages. 
(3) Stage V: Complex Movement Returns 

Figure A1. The LSTM model structure.

Appendix B. Characteristics of Brunnstrom Stage III–V [35]

(1) Stage III: Spasticity Increases

In this stage, spasticity intensifies, potentially leading to severe muscle stiffness and
contractures, where joints freeze. Despite spasticity seeming to worsen, it indicates im-
proving neural connections. If excessive spasticity hinders exercise, Botox injections, upon
medical approval, can offer temporary relief and aid in continuing therapy exercises.

(2) Stage IV: Spasticity Decreases

Progressing to this stage signifies decreasing spasticity due to persistent rehab exer-
cises. It leads to regained muscle control and coordination, usually starting with larger
arm and leg muscles, then smaller hand and foot muscles. Maintaining rehabilitation and
incorporating strength training is vital for ongoing neuroplasticity and countering strength
loss from previous stages.

(3) Stage V: Complex Movement Returns

In this stage, control over complex movements improves, enabling tasks like hair
combing and independent fork use. Spasticity remains but is less obstructive. Fine motor
skills show advancement too. Recovery of the hand and foot function benefits from targeted
exercises. It is often the slowest post-stroke due to the distance from the body’s midline.
Synergistic movements, where unrelated movements occur together, like shoulder hiking
when moving an arm, should also see improvement in this stage. Besides, synergistic
movement should be improving or even gone as more complex, coordinated movement
returns.

Appendix C. Participants’ Statistical Data

Table A1. The healthy subjects’ data.

Subject Gender Age Height (cm) Weight (kg)
N1 Male 24 172 65
N2 Female 23 160 50
N3 Male 24 175 60
N4 Male 23 170 69
N5 Male 24 178 80
N6 Male 23 172 92
N7 Female 24 153 45
N8 Male 31 168 90
N9 Male 24 175 68

N10 Female 23 142 53
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Table A2. The stroke patients’ data.

Subject Gender Paretic
Side Age Height

(cm)
Weight

(kg) BS

P1 Male L 40 173 88 III
P2 Male R 61 178.5 75 III
P3 Female R 51 166 67 III
P4 Male R 62 164 71 III
P5 Male L 52 173 64.5 III
P6 Female R 54 156 76 III
P7 Male R 45 172 72 III
P8 Male L 46 168 70 IV
P9 Male L 47 176 85 IV
P10 Male R 65 163 65.4 IV
P11 Male L 44 173 69 IV
P12 Male L 51 168 72 V

Appendix D. The Gait Data

The dataset of gaits applied in this paper is available at: http://140.112.14.7/~sic/
PaperMaterial/IMU_data_machines_2023.zip, accessed on 8 December 2023.

We calculated each subject’s improvement indexes and defined the improvements,
compared with stage A, as follows:

(1) Improvement index of asymmetry of swing phase (ImpSP):

ImprovementSP
B (ImpSP

B ) =
|AsymSP,A| − |AsymSP,B|

|AsymSP,B| × 100%

ImprovementSP
A (ImpSP

A
) =

|AsymSP,A| − |AsymSP,A|
|AsymSP,A|

× 100%

where AsymSP,A, AsymSP,B, and AsymSP,A are the subject’s asymmetry of swing
phase at stage A, B, and A, respectively.

(2) Improvement index of amplitude of pelvic rotation (ImpPR):

ImprovementPR
B (ImpPR

B ) =
AmpPR,B − AmpPR,A

AmpPR,A
× 100%

ImprovementPR
A (ImpPR

A
) =

AmpPR,A − AmpPR,A
AmpPR,A

× 100%

where AmpSP,A, AmpSP,B, and AmpSP,A are the subject’s pelvic rotation at stage A,
B, and A, respectively.

(3) Improvement index of average walking speed (ImpSPEED):

ImprovementSPEED
B (ImpSPEED

B ) =
Vave,B − Vave,A

Vave,A
× 100%

ImprovementSPEED
A (ImpSPEED

A
) =

Vave,A − Vave,A
Vave,A

× 100%

where Vave,A, Vave,B, and Vave,A are the subject’s average walking speed at stage A, B,
and A, respectively.

http://140.112.14.7/~sic/PaperMaterial/IMU_data_machines_2023.zip
http://140.112.14.7/~sic/PaperMaterial/IMU_data_machines_2023.zip
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Table A3. Asymmetry of swing phase (healthy subjects).

Subject
without Power Assistance (%) (%) with Power Assistance (%) (%)

A B (ImpSP
B ) A (ImpSP

A
) A B (ImpSP

B ) A (ImpSP
A

)

N1 22.76 19.77 (13.13) 20.26 (10.96) 26.90 14.74 (45.21) 21.25 (20.99)

N2 20.35 17.59 (13.57) 12.87 (36.73) 12.88 16.29 (−26.51) 15.34 (−19.07)

N3 22.73 18.27 (19.64) 14.82 (34.8) 30.56 17.81 (41.71) 12.13 (60.32)

N4 11.44 13.02 (−13.78) 13.77 (−20.31) 9.9 10.05 (−1.53) 7.95 (19.73)

N5 9.46 9.84 (−3.97) 11.99 (−26.70) 18.13 10.93 (39.74) 10.30 (43.17)

N6 19.53 17.30 (11.43) 17.04 (12.74) 11.52 15.45 (−34.13) 13.97 (−21.27)

N7 19.11 23.37 (−22.26) 25.79 (−34.93) 12.5 11.61 (7.17) 8.99 (28.07)

N8 16.16 19.08 (−18.08) 15.77 (2.43) 26.82 26.32 (1.88) 12.60 (53.01)

N9 25.08 11.2 (55.35) 16.42 (34.53) 11.84 17.15 (−44.92) 11.77 (0.60)

N10 15.68 14.11 (10.03) 13.93 (11.19) 13.37 27.44 (−105.22) 15.93 (−19.14)

Table A4. Amplitude of pelvic rotation (healthy subjects).

Subject
without Power Assistance (◦) (%) with Power Assistance (◦) (%)

A B (ImpPR
B ) A (ImpPR

A
) A B (ImpPR

B ) A (ImpPR
A

)

N1 8.29 14.93 (80.13) 8.61 (3.91) 10.9 15.3 (39.98) 9.56 (−12.52)

N2 12.22 14.22 (16.30) 15.83 (29.47) 18.04 21.5 (19.19) 21.62 (19.89)

N3 7.36 10.39 (41.15) 3.69 (−49.92) 15.78 20.98 (33.00) 18.25 (15.66)

N4 11.77 14.58 (23.84) 10.81 (−8.12) 12 15.39 (28.20) 11.71 (−2.42)

N5 6.87 6.99 (1.75) 6.21 (−9.57) 6.98 9.92 (42.14) 6.51 (−6.61)

N6 5.79 12.45 (114.98) 6.27 (8.32) 7.75 11.80 (52.33) 9.4 (21.3)

N7 9.66 10.36 (7.24) 7.31 (−24.38) 13.37 15.99 (19.63) 12.45 (−6.84)

N8 13.05 12.49 (−4.29) 8.92 (−31.65) 7.85 9.22 (17.37) 12.24 (55.91)

N9 11.68 14.47 (23.87) 14.7 (25.82) 6.2 8.01 (29.25) 16.45 (165.32)

N10 8.91 10.17 (14.20) 9.3 (4.40) 5.61 5.74 (2.30) 5.66 (0.95)

Table A5. Average walking speed (healthy subjects).

Subject
with Power Assistance (m/s) (%)

A B (ImpSPEED
B ) A (ImpSPEED

A
)

N1 0.55 0.64 (15.65) 0.62 (12.47)
N2 0.39 0.59 (51.76) 0.48 (23.66)
N3 0.48 0.60 (24.64) 0.57 (19.23)
N4 0.55 0.62 (12.22) 0.60 (9.18)
N5 0.54 0.61 (13.24) 0.60 (10.59)
N6 0.41 0.59 (43.22) 0.55 (33.82)
N7 0.46 0.64 (38.21) 0.75 (61.31)
N8 0.57 0.62 (8.95) 0.59 (3.89)
N9 0.48 0.61 (27.91) 0.62 (29.73)

N10 0.62 0.64 (3.80) 0.65 (5.00)



Machines 2024, 12, 61 18 of 20

Table A6. Asymmetry of swing phase (stroke patients).

Subject
with Power Assistance (%) (%)

A B (ImpSP
B ) A (ImpSP

A
)

P1 39.1 39.86 (−1.95) 43.83 (−12.10)
P2 18.25 17.82 (2.40) 12.7 (30.43)
P3 41.99 41.49 (1.21) 36.84 (12.28)
P4 28.45 15.86 (44.27) 23.22 (18.41)
P5 36.86 43.41 (−17.78) 33.55 (8.96)
P6 10.46 11.58 (−10.78) 15.69 (−50.07)
P7 34.22 29.62 (13.44) 28.08 (17.95)
P8 45.4 37.21 (18.04) 33.83 (25.48)
P9 8.43 5.65 (32.90) 7.91 (6.06)
P10 18.03 20.90 (−15.93) 19.24 (−6.69)
P11 16.27 14.20 (12.70) 8.07 (50.41)
P12 10.17 7.05 (30.67) 11.94 (−17.44)

Table A7. Amplitude of pelvic rotation (stroke patients).

Subject
with Power Assistance (◦) (%)

A B (ImpPR
B ) A (ImpPR

A
)

P1 10.77 12.85 (19.40) 9.78 (−9.15)
P2 12.99 13.36 (2.85) 12.59 (−3.07)
P3 9.06 12.33 (36.12) 12.25 (35.14)
P4 11.98 15.79 (31.84) 13.84 (15.55)
P5 10.85 13.8 (27.22) 9.56 (−11.88)
P6 9.87 13.27 (34.42) 10.6 (7.45)
P7 14.11 15.19 (7.64) 11.06 (−21.66)
P8 7.73 10.43 (34.96) 8.36 (8.19)
P9 9.41 10.49 (11.48) 10.18 (8.14)
P10 15.72 15.75 (0.23) 17.50 (11.32)
P11 12.88 15.51 (20.46) 13.03 (1.23)
P12 3.91 4.60 (17.76) 3.94 (0.85)

Table A8. Average walking speed (stroke patients).

Subject
with Power Assistance (m/s) (%)

A B (ImpSPEED
B ) A (ImpSPEED

A
)

P1 0.45 0.58 (29.66) 0.34 (−11.03)
P2 0.49 0.57 (16.32) 0.52 (6.10)
P3 0.32 0.46 (43.53) 0.42 (28.68)
P4 0.37 0.56 (51.41) 0.47 (26.75)
P5 0.14 0.22 (50.37) 0.14 (−0.44)
P6 0.53 0.65 (22.96) 0.66 (25.71)
P7 0.62 0.63 (1.21) 0.64 (2.53)
P8 0.38 0.58 (51.19) 0.55 (42.06)
P9 0.39 0.58 (50.80) 0.64 (64.84)
P10 0.59 0.62 (4.04) 0.60 (1.90)
P11 0.46 0.60 (29.63) 0.50 (8.39)
P12 0.65 0.64 (−0.88) 0.68 (4.14)
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