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Abstract: The drill pipe of a rotary rig is subject to the dynamic influence of non-stationary loads,
including rotation torque and applied force. In order to address the challenge of simultaneously
extrapolating multiple non-stationary loads, a novel extrapolation framework is proposed. This
framework utilizes rainflow counting to obtain mean and amplitude sequences of the loads. The
extreme values of the amplitude sequence are fitted using the Generalized Pareto Distribution
(GPD), while the median values are fitted using the Double Kernel Density Estimation (DKDE). By
extrapolating the Inverse Cumulative Distribution Function (ICDF) based on the fitted distribution, a
new amplitude sequence can be derived. The combination of this extrapolated amplitude sequence
with the original mean sequence forms a new load spectrum. The results of applying the proposed
extrapolation method to the drill pipe of a rotary rig demonstrate the ability of the method to yield
conservative extrapolation results and accurately capture the variations in damage under the original
working conditions.

Keywords: drill pipe; multiple loads; non-stationary load; load extrapolation; load spectrum

1. Introduction

The rotary drilling rig is a type of large-scale engineering equipment that is extensively
utilized in highway and bridge engineering, water conservancy engineering, and urban
construction [1]. The drill pipe is a critical component of the rotary drilling rig, and there has
been significant attention given to the compilation of its load spectrum and the calculation
of its fatigue life. The load spectrum can be employed to evaluate the structural life, analyze
bench tests, and consequently optimize the main structure to enhance durability [2,3].
In general, testing large equipment poses challenges due to its difficulty and high cost.
A rational load spectrum extrapolation method is crucial to accurately reflect the load
variations throughout the entire life cycle of the structure.

As shown in Figure 1a, the drill pipe is subject to both rotation torque and applied force.
The torque and force, obtained from the stress solution, are illustrated in Figure 1b. None
of the existing methods are suitable for the compilation and extrapolation of the drill pipe
load spectrum. The compiled and extrapolated load spectrum should take into account the
simultaneous variations in both torque and force. The extrapolation based on the rainflow
matrix method does not meet the aforementioned requirements, while the time-domain
extrapolation approach is constrained by the stationary properties of the loads, making
it unsuitable for non-stationary load scenarios. Therefore, there is an urgent demand for
load extrapolation methods for multiple non-stationary loads acting simultaneously.
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Figure 1. Schematic diagram of load on drill pipe. (a) Rotation torque and applied force acting on the
drill pipe. (b) Time history of rotation torque and applied force.

1.1. Related Works
1.1.1. Approach for Keeping the Load Sequence

Multiple load sequences can be statistically counted in two ways: online and offline,
depending on whether the order of actions is preserved.

Online counting ensures the load sequence order, taking into account the effects
of temperature gradients [4] and time-dependent damage mechanisms [5,6], but it may
be limited by data storage and computational resources [7]. Moreover, online real-time
counting may neglect the residual large loads, which can cause significant damage.

The purpose of offline counting methods is to retain the load sequence without requir-
ing real-time processing [8]. For example, the top-level-up counting technique considers the
load sequence, but it only records the changes in load magnitude [9]. Additionally, there is
an iterative RFC algorithm that preserves the cycle order, but it has high complexity and a
long computation time [10]. However, the methods for actively retaining the non-stress
loads are still imperfect. The integration of extrapolation knowledge with the load sequence
is an undeveloped area.

1.1.2. Load Extrapolation

Currently, load spectrum extrapolation methods can be primarily categorized into
three main approaches: parametric extrapolation, nonparametric extrapolation, and time-
domain extrapolation [11,12]. Both parametric and nonparametric methods rely on statisti-
cal rainflow matrices [13]. In the parametric method, amplitude and mean distributions are
parametrically fitted, and extrapolation is performed based on the estimated number of
potential load cycles. On the other hand, the nonparametric method utilizes kernel density
to estimate potential distribution and extrapolate the load accordingly [2]. The prototypical
time-domain extrapolation method, proposed by P. Johannesson, is based on the peak over
threshold (POT) Pareto parameter model [14].

1.1.3. Advanced Load Extrapolation Method

Advanced load spectrum extrapolation methods emphasize the integration of load
extrapolation with sophisticated preprocessing techniques and simulation-based or data-
driven approaches for load extrapolation. Zhang et al. [15] determined the optimal
threshold for extreme value extrapolation based on gray correlation. Shangguan et al. [16]
used the wavelet transform to process the measured loads, preserving most of the damage
while making it possible to reduce the length of the time series. In terms of simulation-based
or data-driven approaches, Poloni et al. [17] used Gaussian process strain extrapolation
to reconstruct displacements on beam or shell structures. Wen et al. [18] recognized the
high-work-intensity segment of a tractor load spectrum using a modified LSTM network.
Other approaches include the use of machine learning [19,20] and deep learning [21,22] for
load prediction and estimation, which can lead directly to the relevant load spectrum.
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1.2. Motivation and Contribution

We propose a novel load extrapolation framework to effectively address the scenario
of multiple non-stationary loads acting simultaneously. The torque and force loads are
first processed using rainflow counting to obtain a sequence of amplitude and mean
values. These values are then arranged in the order of their occurrence. To capture extreme
amplitudes, the POT method is utilized in the proposed framework. By fitting the extreme
loads using a Generalized Pareto Distribution (GPD), the extrapolation of extreme loads can
be performed effectively. The median amplitudes are fitted using a Diffusion Kernel Density
Estimation (DKDE) [23,24] method. This allows for an accurate estimation of the underlying
probability density function, which is then used to extrapolate the median amplitudes
accordingly. The final load spectrum is obtained by combining the mean sequence and the
extrapolated amplitude sequence. The main contributions of the proposed load spectrum
extrapolation framework are as follows:

1. Consideration of multiple non-stationary loads. The framework addresses the chal-
lenge of multiple non-stationary loads acting simultaneously, allowing for a more
realistic representation of load variations.

2. Integration of rainflow counting and POT method. By incorporating rainflow counting
and the POT method, the framework effectively captures extreme load amplitudes
and enables accurate extrapolation of the load spectrum.

3. DKDE method for median amplitudes estimation. The DKDE method is employed to fit
and extrapolate median amplitudes, providing a reliable estimation of load behavior.

4. Comprehensive load spectrum representation. A load spectrum that accounts for both
median and extreme load variations, offering a more complete understanding of the
load profiles for structural analysis.

2. Methods
2.1. Proposed Load Spectrum Extrapolation Framework

The specific steps involved in the multiple non-stationary load extrapolation frame-
work shown in Figure 2 are as follows:

1. Data collection and preprocessing. The stress data of the drill pipe are converted into
torque and force data, which are filtered and synchronized with rainflow counting to
obtain the same mean and amplitude sequences.

2. Fit distributions. The amplitude sequence is analyzed by fitting distributions to
different parts of the data. Specifically, a GPD fit is applied to the portion beyond
a specified threshold, while a DKDE fit is used for the section between the median
and the threshold. This fitting process allows for capturing the characteristics and
modeling the distribution of amplitudes within different ranges of the data.

3. Load extrapolation. To extrapolate the amplitude in the order of occurrence, an
inverse cumulative distribution function (ICDF) is established based on the probability
density function (PDF) of the distribution function. Using the established ICDF, we
can extrapolate the amplitudes in the order of occurrence by generating random
numbers from a uniform distribution and mapping them to corresponding amplitude
values using the ICDF.

4. Generate load spectrum and damage evaluation. The extrapolated amplitude se-
quence, obtained using the inverse cumulative distribution function, is combined
with the original mean sequence to form a load spectrum, and nonlinear damage is
used to assess the damage of the current extrapolated load spectrum.
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Figure 2. Multiple non-stationary load extrapolation framework.

2.2. Data Preprocessing

Before obtaining the mean and amplitude of the rainflow count for torque and force,
the loads undergo a filtering process that consists of two steps: a turning point filter and a
hysteresis filter based on the rainflow counts, as shown in Figure 3 [25].

Turning Point Filter. The turning points of the load data L(t) are identified. Turning
points represent the transition from one load direction to another.

TP(L(t)) = {L(t0
1), L(t0

2), . . . , L(t0
N)} (1)

where t0
1, . . . , t0

N are the time points of the local extremes. By filtering out insignificant
turning points, such as those caused by noise or measurement errors, the data are refined
to include only significant turning points.

Hysteresis Filter. Based on the rainflow counts, a hysteresis filter is applied to remove
minor load cycles that do not significantly contribute to fatigue damage. This removes all
turning points that correspond to rainflow cycles with the ranges below the given threshold
w, resulting in

TP(L(t), w) = {L(t∗1), L(t∗2), . . . , L(t∗N)} (2)

where t∗1 , . . . , t∗N are the time points of the local extremes.
The filter process helps to capture the major load cycles with higher amplitudes and

eliminate smaller cycles that may not significantly affect the structural fatigue life.
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Figure 3. Turning point (TP) filter and hysteresis (rainflow) filter.

2.3. Distribution Fitting

The fitting of the distribution in the proposed framework involves two parts: GPD
fitting for suprathreshold extremes and DKDE fitting for medium loads.

2.3.1. Generalized Pareto Distribution Model

After counting the rainflow, the amplitude and mean values of the torque and force in
the order of occurrence are obtained. Based on the POT method for selecting extreme values
above the threshold u, the upper tail is fitted using the GPD. The cumulative distribution
function (CDF) of the GPD is expressed as [26]

G[u](x; σ, ξ) =


1 −

(
1 + ξ

x − u
σ

)−
1
ξ , ξ ̸= 0

1 − exp
(
− x − u

σ

)
, ξ = 0

, x ≥ u, 1 + ξ
x − u

σ
> 0 (3)

By calculating the first derivative of the distribution function (Equation (3)), the
probability density function (PDF) of the GPD can be obtained.

g[u](x; σ, ξ) =


1
σ

(
1 + ξ

x − u
σ

)−
1 + ξ

ξ , ξ ̸= 0

1
σ

exp
(
− x − u

σ

)
, ξ = 0

, x ≥ u, 1 + ξ
x − u

σ
> 0 (4)

where x is the sample value, σ is the scale parameter, and ξ is the shape parameter.

2.3.2. Threshold Selection

In the GPD, one of the main concerns is the determination of appropriate thresholds.
The selection of thresholds is crucial as it affects the estimation of the tail behavior and the
accuracy of the extrapolation for extreme values. The choice of thresholds should strike
a balance between capturing enough extreme events for reliable estimation and avoiding
excessive inclusion of non-extreme events that can lead to biased results.

Various statistical methods, such as the mean excess plot, Hill plot, or graphical
techniques, can be employed to assist in determining suitable thresholds for GPD estimation
based on the specific characteristics of the dataset and the desired level of accuracy.

Mean exceedance is the most commonly used method of threshold selection. The
mean excess function (MEF) of the GPD can be obtained as follows

e(u) = E(x − u | x > u) =
σ

1 − ξ
+ u

ξ

1 − ξ
, ξ < 1 (5)

Furthermore, once the threshold is selected, the shape and scale parameters of the
GPD can be estimated using the maximum likelihood estimation method. This estimation
allows for quantifying the shape of the distribution and its scale relative to the threshold.
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To evaluate the goodness of fit, a χ2 test can be performed to assess the difference
between the observed extreme-value distribution and the estimated GPD distribution. The
test calculates a p-value, and a p-value close to 1 indicates a good fitting effect, suggesting
that the estimated GPD distribution adequately captures the characteristics of the observed
extreme values.

2.3.3. Diffusion Kernel Density Estimation

Kernel density estimation (KDE) is an important nonparametric estimation method.
Consider a random variable X ∈ [X1, . . . , Xn] with a true probability distribution f (x) [27]:

f̂ (x; h) =
1
n

n

∑
i=1

K(x, Xi; h) =
1

nh

n

∑
i=1

K
(

x − Xi
h

)
(6)

where K(·) is a kernel function, and h is a bandwidth. The two most important parameters
to be determined in kernel density estimation are the choice of the kernel function and
the bandwidth.

The kernel function determines the shape and characteristics of the individual kernels
placed at each sample point. Commonly used kernel functions include the Gaussian
(or normal) kernel, Epanechnikov kernel, and uniform kernel. The bandwidth parameter
controls the width or spread of the kernel function. It determines the extent to which nearby
sample points contribute to the density estimate. There are various methods available for
selecting the kernel function and bandwidth, such as cross-validation, plug-in methods,
and rule-of-thumb approaches.

In the DKDE, when the domain is [0, 1], it is divided into N segments as part of the
estimation process. The PDF of the DKDE can be expressed as [23]

f̂ (x, t) ≈
N−1

∑
k=0

ak exp
(
− k2π2t

2

)
cos
[

kπ(2j + 1)
2N

]
(7)

where t is the bandwidth of the DKDE, and the coefficient ak is

ak =

{
1, k = 0
2 ∑N−1

j=0 P(j) cos
[
(2j+1)kπ

2N

]
, k = 1, 2, . . . , N − 1

(8)

where P(j) is the probability that Xi happens in the interval [j/N, (j + 1)/N].
Indeed, the DKDE method employs an improved plug-in methodology that is fully

data-driven and does not assume that the data follow a Gaussian distribution. DKDE
provides a flexible and robust method for estimating the probability density function. It
is particularly useful when dealing with complex or unknown data distributions, ensur-
ing reliable density estimates without relying on specific assumptions. The bandwidth
calculation formula is [23]

t = ζγ[l](t) (9)

ζ =

(
6
√

2 − 3
7

)
⩽ 0.9 (10)

γ[l](t) =

(
1 + (0.5)l+0.5

3
× 1 × 3 × · · · × (2l − 1)

n
√

0.5π
∥∥ f (l+1)

∥∥2

)
(11)

∥∥∥ f (l+1)
∥∥∥2

=
l−1

∑
k=1

(kπ)(2l+2)a2
k exp

(
−k2π2t

)
(12)

where ∥ f (l+1)∥2 is the square of the second paradigm, representing the square of the
Euclidean distance. In this paper, the value of l is set to 5 because increasing it beyond that
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does not enhance the outcome of Equation (9). The code for the numerical solution can be
found at https://github.com/john-hen/KDE-diffusion (accessed on 5 January 2024).

2.4. Load Extrapolation

The inverse cumulative distribution function (ICDF) of the GPD can be used for
stochastic extrapolation of the extremes [15].

G−1
[u] (ν) =

{
u + σ

[
(1 − ν)−ξ − 1

]
/ξ , ξ ̸= 0

u + [−σ ln(1 − ν)] , ξ = 0
(13)

where ν ∈ [0, 1] is a random value.
Due to the complexity of solving the ICDF of the DKDE analytically, an approximation

method is employed. The ICDF is approximated using a spline fit to the keypoints, where
the cumulative probability values are represented by the horizontal coordinates and the
corresponding amplitudes are represented by the vertical coordinates. Random points are
generated within the interval [0, 1], and the median amplitude of the change is extrapolated
from these points.

2.5. Damage Evaluation
2.5.1. Equivalent of the Mean Value

Fatigue damage primarily relies on the amplitude of the load, and the mean value of
the cycle also exerts an influence. Consequently, this effect is typically considered in fatigue
analysis. An improvement can be made to the Smith–Watson–Topper (SWT) method by
disregarding plastic deformation, thus extending the applicability of mean stress corrections
to non-stress data:

∆Ŷ =

{√
Ya(Ya + Ym), Ya + Ym > 0

Ya, Ya + Ym ≤ 0
(14)

where Ya and Ym are the amplitude and mean of the loop.

2.5.2. Multi-Axis Load Equivalence

By integrating the multi-axial damage model on the critical plane and the load–strain
proportionality, the enhanced multi-axial load equivalence equation can be formulated
as follows:

∆Sp

2
=

√
S2

p +
1
3

(
St

2

)2
(15)

∆St

2
=

√
3S2

p +

(
St

2

)2
(16)

∆Seq/2 =

{
∆Sp/2, ∆Sp ≥ ∆St

∆St/2, ∆Sp < ∆St
(17)

The pressure- and torque-equivalent amplitudes, calculated by Equation (14), are
denoted by Sp and St, respectively. The multi-axial equivalence amplitudes of the pressure
and torque are represented by ∆Sp and ∆St, respectively. The final equivalence amplitude
is given by ∆Seq.

2.5.3. Linear/Nonlinear Damage Accumulation Rule

According to the cumulative Palmgren–Miner rule for damage, the total fatigue
damage D = 1, which can be expressed as follows:

∑ Di = ∑
ni
Ni

(18)

https://github.com/john-hen/KDE-diffusion
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where the number of load cycles for fatigue failure under a specific load amplitude is
denoted by Ni. The damage caused by ni cycles at the stress level of Si is represented by Di.

Based on the dynamic residual S-N curve in [28], a nonlinear cumulative fatigue
damage rule can be suggested. The S-N curve follows the form of Basquin’s equation.

Ni = τ × S−η
i (19)

where the specific load amplitude is denoted by Si, τ is associated with the materials of
components, and the damage exponent is represented by η. For the components with a
normal surface, the damage exponent η = 5 is chosen [29]. The nonlinear pseudo-damage
can be expressed as follows:

∑ di =
i

∑
1

Sη
i ×

i−1

∏
j=1

(
Sj

Sj+1

)η

(20)

3. Implementation and Results
3.1. Experiments and Data Preprocessing

In this case, the load of the drill pipe was tested and a load spectrum was compiled
using the drilling soil condition of a rotary drilling rig. Figure 4 illustrates the placement of
the strain gauge on the drill pipe of the XR360E rotary drilling rig. The frequency of the
signal acquisition was 50 Hz.

Strain was converted into torque and force with simple equivalent calculations. The
torque and force data obtained after data preprocessing are shown in Figure 5. Data
preprocessing eliminated small loops while preserving the load variability. Figure 6 depicts
the outcomes of simultaneous rainflow counting, revealing an equal number of cycles for
torque and force totaling 7690.

Strain gauge
placement

Figure 4. Load testing of drill pipe on rotary drilling rig.
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mean and sequence, (c) torque rainflow matrix, (d) force amplitude and sequence, (e) force
mean and sequence, and (f) force rainflow matrix.

3.2. Fitting the Distribution of Extremes

The GPD distribution was utilized to fit the extremes, while the selection of the
threshold involved a combination of a mean excess plot and goodness-of-fit (p-value)
analysis performed under various threshold-parameter scenarios. The threshold selection
for torque and force amplitude is shown in Figures 7 and 8.

According to the mean excess plot, the threshold should be selected at the inflection
point where there is a sharp decrease. However, choosing the threshold at this point may
result in a very small number of extreme values, making it difficult to support the fitting of
the GPD. Therefore, by considering the relationship between shape and scale parameters
and the threshold, as well as the current goodness of fit (p-value), it is possible to select a
reasonable threshold. The final threshold for torque was chosen as 79.445 kNm, and for
force, it was 160.202 kN. The parameter selection for the GPD is shown in Table 1. The final
fitting results are depicted in Figure 9, illustrating the goodness of fit achieved.
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Table 1. The parameter selection for the GPD.

Items Shape
Parameter

Scale
Parameter Threshold p-Value Number of

Extremes

Torque
amplitude −1.005 15.409 79.445 kNm 0.588 33

Force
amplitude −0.269 31.233 160.202 kN 0.835 45
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a b

Figure 9. GPD fit for extremes, where the red lines are the error boundary and the blue line is the ture
value. (a) Torque extremes, (b) force extremes.

3.3. Fitting the Distribution of the Median Amplitude

To model the distribution of the intermediate values using the DKDE method, we
took the mean values of the torque and force amplitudes as the minimum values and the
threshold as the maximum value. The minimum value, maximum value, bandwidth, and
goodness of fit are shown in Table 2. The final fit is shown in Figure 10, where the DKDE
distribution perfectly fits the median values of torque and force.

Table 2. The parameter for the fitted DKDE.

Items Minimum
Value

Maximum
Value Bandwidth Goodness of

Fit

Number of
Median
Values

Torque
amplitude 15.392 kNm 79.445 kNm 0.972 0.994 2706

Force
amplitude 32.494 kN 160.202 kN 2.030 0.995 2371
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Figure 10. DKDE fit for median values. (a) Torque median values, (b) force median values.

3.4. Load Extrapolation and Damage Evaluation

To extrapolate the load using the ICDF of the fitted distribution, it is necessary to
estimate the load values beyond the observed range, allowing predictions based on the
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characteristics of the fitted distribution to be made. Based on the number of extreme
and intermediate values, random numbers are generated within the range of [0, 1]. The
extrapolation of torque and force amplitudes is illustrated in Figure 11, where Figure 11a,b
represent the extrapolation of extreme values, while Figure 11c,d include both extreme and
intermediate values.
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Figure 11. Load extrapolation for amplitude sequence. (a) Extreme extrapolation of torque amplitude,
(b) extreme extrapolation of force amplitude, (c) load extrapolation of torque amplitude, and (d) load
extrapolation of force amplitude.

Moreover, the extrapolation results of different extrapolation methods are compared.
Three types of extrapolation methods are compared; namely, parametric extrapolation,
linear (proportional) extrapolation, and the proposed non-stationary load extrapolation
method. Linear extrapolation extrapolates the original load with a certain number of
folds and does not estimate the statistics or distribution of the original load [2]. The
method does not take into account large loads that may occur during the life cycle, and the
results are biased towards conservatism. The parametric method extrapolates the original
load through the estimated mean and amplitude distributions, generally using a Weibull
distribution to fit the PDF of the amplitude value and a Gaussian or mixed Gaussian
distribution to fit the PDF of the mean value [30].

The cumulative frequency cycle of the extrapolated values can be seen in
Figure 12. This plot represents the cumulative probability of the extrapolated torque
and force amplitudes over a specified range. Indeed, as depicted in Figure 12, the extrapola-
tion method we employed effectively accounted for the potential occurrence of extreme and
moderate load values. This conservative approach is particularly beneficial for structural
components, as it considers a wider range of potential loads, ensuring a higher level of
safety and reliability. By combining the extrapolated amplitudes with the original mean
values, the final extrapolated load spectrum can be created. The nonlinear pseudo-damage
of the original load and a tenfold load spectrum obtained with different methods are shown
in Table 3.

When parameter extrapolation is applied, the resulting step spectrum may lead to
the inclusion of large force loads alongside large torque loads. This can potentially result
in excessive damage and may not accurately reflect the actual operating conditions. It is
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essential to consider the practical aspects of the working environment and the interplay
between torque and force loads to ensure a more realistic representation of the damage
evolution process. The proposed method of extrapolation resulted in possible extreme and
intermediate load values, which led to a extrapolated damage 12.59 times the original load.
This conservative estimate demonstrates that the extrapolation approach considers a wider
range of potential loads and is more inclined towards a conservative estimation of damage.
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Figure 12. Cumulative frequency of cycles for load extrapolation. (a) Torque amplitude extrapolation,
(b) force amplitude extrapolation.

Table 3. Comparison of nonlinear pseudo-damage of original load and tenfold load spectrum.

Items Nonlinear Pseudo-Damage Ratio

Original load 2.25 × 1013 1.00
Parametric extrapolation 5.33 × 1014 20.90

Liner extrapolation 2.64 × 1014 10.35
Proposed extrapolation 3.21 × 1014 12.59

4. Conclusions

The drilling pipe of a rotary rig is subject to the dual action of torque and force, which
necessitates a rational extrapolation of the load spectrum to enhance structural design
and lifespan assessment. However, existing load spectrum extrapolation methods fail to
adequately address the challenge of non-stationary load extrapolation with multiple loads
acting simultaneously.

To overcome this limitation, we propose a novel load extrapolation framework tailored
for the extrapolation of multiple non-stationary loads. Through synchronized rainflow
counting, the torque and force loads on the drill pipe are converted into mean-sequence
and amplitude-sequence data. Subsequently, the extremes of the amplitude sequence
are fitted using the GPD, while the intermediate values are fitted using the DKDE. By
employing the estimated parameters and observed data, the ICDF of the fitted distribution
can be calculated. Utilizing different probabilities as inputs to the ICDF allows for the
determination of corresponding amplitude values, thereby providing insights into potential
values that may lie beyond the observed dataset. Finally, the extrapolated amplitude and
mean values are combined to form the ultimate load spectrum.
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The extrapolation results highlight the efficacy of our proposed method in address-
ing the challenges posed by multiple non-stationary loads, enabling the extrapolation of
possible extreme and intermediate values. Furthermore, the nonlinear cumulative pseudo-
damage results demonstrate that our method yields more conservative fatigue damage
estimations. Overall, our proposed framework contributes novel insights into the realm of
extrapolation of multiple non-stationary loads.
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