
Citation: Carbajal-Espinosa, O.;

Campos-Macías, L.; Díaz-Rodriguez,

M. FIKA: A Conformal Geometric

Algebra Approach to a Fast Inverse

Kinematics Algorithm for an

Anthropomorphic Robotic Arm.

Machines 2024, 12, 78. https://

doi.org/10.3390/machines12010078

Academic Editor: Giuseppe Carbone

Received: 17 November 2023

Revised: 22 December 2023

Accepted: 23 December 2023

Published: 20 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

FIKA: A Conformal Geometric Algebra Approach to a Fast
Inverse Kinematics Algorithm for an Anthropomorphic
Robotic Arm
Oscar Carbajal-Espinosa 1,*, Leobardo Campos-Macías 2 and Miriam Díaz-Rodriguez 3

1 Tecnologico de Monterrey, School of Engineering and Science, Zapopan 45201, Mexico
2 Intelligent Systems Research Laboratory, Intel Corporation, Zapopan 45017, Mexico
3 Unidad Académica Zapopan, Instituto Tecnológico José Mario Molina Pasquel y Henríquez,

Tecnológico Nacional de México, Zapopan 45019, Mexico; miriam.diaz@zapopan.tecmm.edu.mx
* Correspondence: oscar.carbajal@tec.mx

Abstract: This paper presents a geometric approach to solve the inverse kinematics for an anthro-
pomorphic robotic arm with seven degrees of freedom (DoF). The proposal is based on conformal
geometric algebra (CGA), by which many geometric primitives can be operated naturally and di-
rectly. CGA allows for the intersection of geometric entities such as two or more spheres or a plane’s
projection over a sphere. Rigid transformations of such geometric entities are performed using only
one operation through another geometric entity called a motor. CGA imposes geometric restrictions
on the inverse kinematics solution, which avoids computation of the forward kinematics or other
numerical solutions, unlike traditional approaches. Comparisons with state-of-the-art algorithms
are included to prove our algorithm’s superior performance: such as decreased execution time and
errors of the end-effector for a series of desired poses.

Keywords: kinematics; humanoid robots; redundant robots

1. Introduction

The robotic arm is the most-used robot configuration to approach the human arm’s
performance. This kind of robotic arm is a multi-articulated rigid limb with many degrees
of freedom (DoF) that provide flexibility and agility, allowing a single task to be executed
using various postures and different trajectories. For this, the solution of the inverse
kinematics (IK) has become one of the techniques for this task, which is the problem of
determining an appropriate joint configuration so that the end-effector moves to a desired
target position.

A human arm’s basic configuration is described as 3-DoF at the shoulder, 1-DoF at
the elbow, and 3-DoF at the wrist. Thus, a 7-DoF robotic arm can interact naturally in
a designed human environment. One advantage of this configuration is that the elbow
creates a self-motion manifold on a circular path, avoiding joint limitations and singularities.
For these reasons, it is desired to have the same design in a humanoid robot.

One of the main difficulties when working with this kind of configuration is that
there may be many or infinite appropriate joint configurations (which is the common case),
a unique solution, or no solution for the same task, i.e., a set of solutions may exist to
carry the hand (end-effector) from an initial pose to a final one. This problem is known as
redundancy and makes the inverse kinematics more complex than solving it for kinematics
chains with lower DoFs for which redundancy is not present.

Many approaches tackle the redundancy problem, and in general, analytical and
numerical methods are the most-used. Other techniques use geometric and trigonometric
solutions to take advantage of the strong geometric structure representation of a rigid robot
arm and combine the classical representation of direct kinematics to solve the problem.

Machines 2024, 12, 78. https://doi.org/10.3390/machines12010078 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines12010078
https://doi.org/10.3390/machines12010078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-6389-1790
https://doi.org/10.3390/machines12010078
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines12010078?type=check_update&version=1

Machines 2024, 12, 78 2 of 17

For instance, the main issue of the analytical method is that the computations of the joints
become difficult to find when the kinematic chain becomes larger due to the complex system
of equations that results in an unfeasible algorithm for real-time implementation. Regarding
numerical solutions, they are based on iterative methods for which a cost function has to
be minimized.

The algorithm proposed here is based on the logic that a geometric method facilitates
the intuition to pose a solution to the problem but is formulated on the conformal geometric
algebra (CGA) mathematical framework. This algebra allows working with geometric
primitives such as circles, lines, planes, and spheres naturally. These geometric entities
can be represented in this algebra as linear combinations of its base, where parts of its
base are the canonical base of the Euclidean vector space R3, and also, it includes rigid
transformations defined in terms of geometric entities called rotors, translators, and motors.
Using the algebra characteristics, as the rigid transformation of geometric entities, it is
possible to define an algorithm that solves the inverse kinematics problem without using
matrices or numerical methods. The resultant algorithm allows us to impose geometric
constraints based on the physical possibilities of the arm.

Although our previous work [1] involves the inverse kinematics for a leg with 6-DoF
using the same mathematical framework, the extension to 7-DoF through the use of CGA is
not trivial given the redundancy caused by one extra degree of freedom, for which we had
to define more geometric entities to find one extra appropriate joint angle.

Furthermore, extensive research can be found related to the problem of solving the
inverse kinematics of redundant robotic arms [2–5]. For example, in the works [6,7], the
solution of analytical inverse kinematics for a 7-DoF robotic arm are given in such form
that some restrictions to avoid joint limits are included, and many complex operations
must be solved along with a stage of forward kinematics, increasing the computational
burden of the algorithm. In [8], many matrix multiplications are needed to find a solution
for the problem. However, as in the previous two related papers, the authors define a
geometric restriction using a rotating plane. Still, given that matrix algebra is not suited to
work efficiently with this kind of entity, it is natural to find a mathematical framework to
solve this problem. Other approaches to the solution of inverse kinematics in redundant
robotic arms are given in the works [9,10], wherein the solution is given using the Jacobian
matrix. Its inverse is obtained using numerical methods to optimize the solution of the
inverse kinematics. Also, extended approaches can be found, such as [11]. However, this
method also poses a pseudo-inverse-like problem; this is in contrast with the purpose of our
method, wherein analytical constraints are exploited to produce solutions in a geometrical
manner and, as the comparisons demonstrate, with less computational time.

Unlike previous works, our method has the advantage that the use of analytical or
numerical solutions is not needed to find appropriate joint angles given a desired pose of
the end-effector. This work is an extension of our previous work [12], which solves the
inverse kinematics for a 5-DoF manipulator and which was then extended to a 6-DoF leg [1]
of a humanoid robot. These results were used as inspiration for this algorithm for a 7-DoF
arm, but many improvements are included. In summary, our contributions concerning the
state-of-the-art are:

• We propose an algorithm for the inverse kinematics for a 7-DoF robotic arm on a 5D
conformal geometric algebra CGA instead of working only on the 3D vector space
R3. The intuitive representation of geometric entities in CGA and the operations
that we can make of them allow us to find the joint positions (in Cartesian space)
and joint angles of the robot arm by taking into account the outer and inner product
that CGA possesses, which avoids analytical or numerical methods. The geometry
entities available in the arm structure are used to define CGA entities, e.g., circles are
determined to find elbow position. Thus, all the possible configurations for the arm
are in those circles, which takes advantage of the dexterity.

• We provide a comparison with state-of-the-art algorithms to demonstrate the superior
performance of our proposal.

Machines 2024, 12, 78 3 of 17

The rest of the paper is structured as follows: Section 2 provides a brief introduction
to CGA. Section 3 presents the proposed method to solve the inverse kinematics, including
images that clarify the steps of the algorithm. The comparison with the state-of-the-art
algorithms is shown in Section 4. Finally, some discussions are presented in Section 6.

The principal aim of this research work is to develop an inverse kinematics algorithm
using conformal geometric algebra that allows us to extend the previous work we have
been doing to redundant robotic arms with seven degrees of freedom. With our proposal,
the calculation time is reduced by exploiting the properties of the mathematical framework
with which we are working. By using this algorithm, we hope to improve the performance
of this type of manipulator arm in real time.

Comparisons with other algorithms show that conformal geometric algebra has ad-
vantages over other mathematical systems; we take advantage of these differences in our
proposal. Unlike other approaches, for which it is necessary to use direct kinematics to find
a possible solution to the configuration of the robotic arm, our algorithm uses geometric
constraints to resolve the inverse kinematics. Furthermore, the geometric entities defined
in the inverse kinematics solution can be used to find other configurations that allow us to
take advantage of the redundancy of the robotic arm.

2. Mathematical Background
2.1. Geometric Algebra

Geometric algebra (GA), also known as Clifford algebra, was introduced by William K.
Clifford (1845–1879) and recently has been increasingly applied in physics and engineering.
GA is a mathematical framework that allows for treating of the geometry of objects as
algebraic entities.

Let Vp,q,r be a vector space over the field R. We can generate a geometric algebra Gp,q,r
from Vp,q,r, where p, q, and r stand for the number of basis vectors that square to 1, −1,
and 0, respectively: that is, there are p, q, r ≥ 0 with n = p + q + r such that

eiei = e2
i =

1 for i = 1, . . . , p,
−1 for i = p + 1, . . . , p + q,
0 for i = p + q + 1, . . . , n.

(1)

The geometric algebra Gp,q,r has a base given by these elements:

{1}, {ei}, {ei ∧ ej}, {ei ∧ ej ∧ ek}, . . . , {e1 ∧ e2 ∧ · · · ∧ en}, (2)

where
In := e1 ∧ e2 ∧ · · · ∧ en (3)

is called as the pseudoescalar.
So M ∈ Gp,q,r (called a multivector) is expressed in terms of its base elements: namely,

M =< A >0 + < A >1 + · · ·+ < A >n, (4)

where each < A >j, j = 0, . . . , n is the j-vector part.
For instance, the Euclidean geometric algebra G3 := G3,0,0 has a base

{1, e1, e2, e3, e12, e31, e23, I3 = e123}, (5)

where eij := ei ∧ ej, and any multivector M can be written in the form

M = α0 + α1e1 + α2e2 + α3e3 + α4e12 + α5e31 + α6e23 + α7 I3, (6)

αi ∈ R, i = 0, . . . , 7.
The main product of Gp,q,r is called the geometric product; it is associative and dis-

tributive over addition but not necessarily commutative.

Machines 2024, 12, 78 4 of 17

The geometric product of two multivectors A, B ∈ Gp,q,r can be written as the sum of
its anticommutaror and commutator parts:

AB =
1
2
(AB + BA) +

1
2
(AB− BA) (7)

Moreover, if
M = a1a2 · · · an−1an (8)

for some {a1, a2, . . . , an−1, an} ⊂ Vp,q,r, then it is called a k-versor. A k-blade is a k-versor of
orthogonal vectors, and the linear combination of k-blades give rise to a k-vector.

In particular, the geometric product of two vectors a, b ∈ R is given by the sum of a
symmetric and antisymmetric part:

ab = a · b + a ∧ b, (9)

where a · b and a ∧ b are the inner product and wedge product, respectively. The inner
product of two 1-vectors is the standard cross product in the Euclidean vector space.

The inner product operator is used for the computations of the angles between lines,
planes, etc.; the wedge product is mainly used for the construction and intersection of
geometric entities, while the geometric product is used for the description of transformations.

2.2. Conformal Geometric Algebra

It is well known that objects, such as points, lines, circles, spheres, etc., can be described
in R3. However, in this vector space, we cannot make an operation on these objects. Then,
it is natural to think of how to make this possible. Then, we should use a 5D geometric
algebra: for this, take an orthonormal base for R3, say {ei}, i = 1, 2, 3, and join it with this
orthonormal base {e4, e5}, which is the base of a Minkowski plane such that

e2
4 = 1, e2

5 = −1, e4 · e5 = 0. (10)

In this case, we have p = 4, q = 1, r = 0 as in (1); then, we have R4,1 := R4,1,0,
which gives G4,1 := G4,1,0. This GA is called conformal geometric algebra (CGA), by which
geometric entities such as points, lines, and spheres can be represented as vectors that have
two algebraic representations: the inner product null space (IPNS) and the outer product
null space (OPNS).

Also, CGA has the sphere as its unity of calculus; this means that the representation of
the other geometric primitives such as lines, points, planes, circles, and point pairs can be
obtained from the representation of the sphere, as we will see in the next subsection.

From the Minkowski plane base, {e4, e5} gives rise to another base that has these
elements:

e∞ = e5 + e4, e0 =
1
2
(e5 − e4), (11)

where e∞ and e0 are the point at infinity and the origin point, respectively.
These new vector bases satisfy

e2
∞ = e2

0 = 0; (12)

that is, e∞ and e0 are null vectors, and also, their inner product satisfies

e∞ · e0 = −1. (13)

Often the null vectors are used to represent the geometric entities instead of e4 and e5.
In the base of G3 given in (5), we have the pseudo-scalar

I3 = e1 ∧ e2 ∧ e3; (14)

Machines 2024, 12, 78 5 of 17

this can be multiplied with the bivector

E := e∞ ∧ e0 = e4 ∧ e5 = e4e5, (15)

leading to the pseudo-scalar

I = I3E = e1 ∧ e2 ∧ e3 ∧ e∞ ∧ e0 (16)

in G4,1, which is used for computing the dual of the multivectors in CGA.
For instance, the dual of a multivector M ∈ G4,1 is given by

M∗ := MI−1; (17)

from now on, we will use the symbol ∗ to identify the dual of a multivector in this algebra.
Now, the principal geometric primitives used in this work are defined, and rigid

transformations are introduced to give the background of the proposed algorithm of
inverse kinematics.

2.3. Used Geometric Primitives

A point xc ∈ G4,1 is represented in the 5D conformal space by taking the linear
combinations of some elements of its base:

{e1, e2, e3, e∞, e0}; (18)

that is,

xc = xe +
1
2

x2
e e∞ + e0, (19)

where xe = α1e1 + α2e2 + α3e3 ∈ R3.
Note that R3 can be seen to be embedded in CGA.
We know that the equation of a sphere with its center at pe ∈ R3 and radius ρ ≥ 0 is

given by
(xe − pe)

2 = ρ2. (20)

The sphere can be mapped to G4,1 as

s = pc −
1
2

ρ2e∞, (21)

where pc ∈ G4,1 is the center of the sphere; (21) corresponds to the so-called inner product
null space (IPNS) representation.

Note that when ρ = 0, we again obtain this point: that is, s = pc. Taking into account
the pseudo-scalar I, we can obtain the dual of the sphere s∗ = sI−1, which is represented
as a 4-vector. This means that a sphere can be described by making the wedge product of
four points that lie on it: namely,

s∗ = xc1 ∧ xc2 ∧ xc3 ∧ xc4 . (22)

If we make xc4 = e∞, then we obtain a plane:

π∗ = xc1 ∧ xc2 ∧ xc3 ∧ e∞. (23)

A plane is a sphere with an infinite radius.
The plane π is also represented in IPNS form as follows:

π = n + de∞, (24)

where n and d are the normal vector and Hesse distance, respectively.

Machines 2024, 12, 78 6 of 17

In G4,1, we can also find a line that is normal to a plane π as

L∗π = (π∗ · E)/I, (25)

where E is the Minkowski plane and I is the pseudo-scalar in CGA that we defined at the
end of the above subsection.

Let s1, s2 ∈ G4,1 be two spheres. We can obtain a circle z as the intersection of s1 and
s2: that is,

z = s1 ∧ s2, (26)

which is given in IPNS, and its dual form can be expressed by three points lying on the
circle (similarly to the dual of a sphere) as

z∗ = xc1 ∧ xc2 ∧ xc3 . (27)

Given the circle z as in (26) and from (27), it follows that the plane π∗z in which the
circle lies is given by

π∗z = z∗ ∧ e∞. (28)

Now, we can have a line that passes through the center of the circle that is normal to
the plane π∗z as

L∗z = z ∧ e∞. (29)

These properties of the primitives will be used as a part of the proposed algorithm of
inverse kinematics.

Similar to the case of planes, lines can be defined by changing xc3 = e∞ in (27),
which gives

L∗ = xc1 ∧ xc2 ∧ e∞. (30)

A line can also be expressed as

L = nI3 + e∞mI3 (31)

in the standard IPNS form, where n and m are the line orientation and moment, respectively.
Finally, the point pair is used as two possible solutions of a joint that is given by

P∗p = p1 ∧ p2 (32)

by using the wedge product of the two points p1 and p2. Alternatively, we can also get
the point pair as the intersection of a line and a sphere, a line and a circle, or a circle and
a sphere.

Given P∗p , we can compute p1, p2 as

p1,2 =
P∗p ±

(
P∗p · P∗p

)1/2

P∗p · e∞
. (33)

2.4. Translation, Rotation, and Motor

Rigid transformations can be expressed in CGA by composing plane reflections. For
any geometric entity, say Q, the reflection with respect to a plane π is given by

Q′ = πQπ−1. (34)

The translation can be seen as the reflection with respect to the planes π1 = n + 0e∞,
π2 = n + de∞. It follows that the translation is given by

Q′ = (π2π1)Q(π−1
1 π−1

2) = TaQT̃a, (35)

Machines 2024, 12, 78 7 of 17

where
Ta = (n + de∞)n = e−

a
2 e∞ , (36)

a = 2dn, ∥n∥ = 1, and T̃a is called the reversion.
Similarly, the rotation can be described as the composition of two reflections with

respect to π1 = n1, π2 = n2, which is

Q′ = (π2π1)Q(π−1
1 π−1

2) = RθQR̃θ , (37)

where
Rθ = π2π1 = n2 · n1 + n2 ∧ n1 = cos(

θ

2
)− sin(

θ

2
)l = e−

θ
2 l , (38)

l = n1 ∧ n2, and θ is double the angle between π2 and π1.
A rigid-body motion that includes translation and rotation is described by a motor (also

called a displacement versor) Mot = TR. Thus, the rigid body motion of Q is described by

Q′ = MotQM̃ot. (39)

3. Inverse Kinematics Methodology

The human upper limb is described as a system of three segments: the upper arm,
the forearm, and the hand; it includes seven degrees of freedom. This configuration is
basic to emulate human movements and is used in this paper. We present a summary
of the algorithm proposed in Algorithm 1. To explain the IK of a humanoid robot arm,
an anthropomorphic 7-DoF arm is used; the configuration of the real robot to implement
the IK is represented in Figure 1.

Figure 1. Initial configuration of the 7-DoF arm.

Usually, the desired trajectory of the hand of a humanoid robot is given to satisfy
complex tasks, i.e., around an object, to achieve the desired position, etc. Then, the amount
of joint rotation of the wrist, elbow, and shoulder must be found with this information.

The desired position and attitude of the gripper at the hand are given in the form:

xg, yg, zg (40)

for the e1, e2, and e3 axes, and the pitch, yaw, and roll are

αg, βg, γg (41)

with respect to the frame coordinates fixed to the center of the torso. We define l1 as the
distance between the shoulder and the elbow joint, l2 as the distance between the elbow
and the wrist, and finally, l3 as the distance from the wrist to the gripper, as shown in

Machines 2024, 12, 78 8 of 17

Figure 1, where lwt and lth are the distances between the shoulder frame with respect to the
fixed torso frame in the e2 and e1 directions, respectively.

Algorithm 1 Inverse Kinematics for 7-DoF Manipulator.

Input: xg, yg, zg, αg, βg, γg, l1, l2, l3, lwt, lth
Output: q1, q2, q3, q4, q5, a6, q7

x1 ← 0e1 + lwte2 + 0e3 +
1
2 (0e1 + lwte2 + 0e3)

2e∞ + e0

x2 ← −lthe1 + lwte2 + 0e3 +
1
2 (−lthe1 + lwte2 + 0e3)

2e∞ + e0

x3 ←
P∗pe+
√

P∗pe ·P∗pe
P∗pe ·e∞

x4 ←
P∗pw+
√

P∗pw ·P∗pw
P∗pw ·e∞

xp ← MgwM̃g
Links:

Link0 ← e∞ ∧ x1 ∧ x2
Link1 ← e∞ ∧ x2 ∧ x3
Link2 ← e∞ ∧ x3 ∧ x4
Link3 ← e∞ ∧ x4 ∧ xp

Joints:

q1 ← − arccos
(√

P∗a ·P∗31
|P∗a ||P∗31|

)
q2 ← − arccos

(√
Link1·Link0
|Link1||Link0|

)
q3 ← arccos

(√
P∗q3r ·P∗q3

|P∗q3r ||P∗q3|

)
q4 ← arccos

(√
Link2·Link1
|Link2||Link1|

)
q5 ← arccos

(√
P∗q5r ·P∗q5

|P∗q5r ||P∗q5|

)
q6 ← arccos

(√
Link3·Link2
|Link3||Link2|

)
q7 ← arccos

(√
P∗q7·P∗xp

|P∗q7||P∗xp |

)

Development of the algorithm is separated into the following two sections: In the first
section, we define the geometric entities that will be used in the algorithm: in particular,
those used to compute the joint positions in CGA. In the second section, we use the
definition of the inner product to find the angles of each joint. The proposed method is
based on our previous works [1,12] given that the first four joint angles are calculated in
the same way for a 5-DoF robot arm or 6-DoF leg.

3.1. Defining the Geometric Entity References

First, we define the Euclidean positions representing the initial joint positions that are
shown in Table 1.

Table 1. Joint positions according to Figure 1.

Reference Point x, y, and z Position Description

x1e (0, lwt, 0) Center of the torso
x2e (−lth, lwt, 0) Shoulder initial position
x30e (−(lth + l1), lwt, 0) Elbow initial position
x40e (−(lth + l1 + l2), lwt, 0) Wrist initial position
x50e (−(lth + l1 + l2 + l3), lwt, 0) Gripper initial position

Machines 2024, 12, 78 9 of 17

Since x1e and x2e are fixed with respect to the world coordinate system, their conformal
representations are given by

x1 = 0e1 + lwte2 + 0e3 +
1
2
(0e1 + lwte2 + 0e3)

2e∞ + e0, (42)

and similarly for

x2 = −lthe1 + lwte2 + 0e3 +
1
2
(−lthe1 + lwte2 + 0e3)

2e∞ + e0. (43)

Three rotors describing the desired pitch, yaw, and roll of the gripper are created in
the form:

Rxg = e−
1
2 αge23 ,

Ryg = e−
1
2 βge31 ,

Rzg = e−
1
2 γge12 ,

(44)

where e23, e31 and e12 are bivectors.
Thus, the general rotor describing the entire desired attitude is given in the form:

Rg = Rxg Ryg Rzg . (45)

Then, with the desired Euclidean coordinates, a translator is formed:

Tg = e−
1
2 (xge1+yge2+zge3)e∞ , (46)

where xge1 + yge2 + zge3 ∈ R3.
Using the rotor (45) and translator (46), a motor describing the desired pose of the

gripper in terms of the fixed torso frame is given in the form:

Mg = TgRg. (47)

It follows that the pose of the gripper is given by

xp = MgwM̃g, (48)

where w is a conformal point of (42) representing the origin of the world coordinate system.
Now, it remains to calculate the joint positions x3 and x4; to this end, several geometric

entities are defined.
First, a sphere and a line are created about the zero conformal point e0 using the

distance l3 between the wrist and the gripper as follows:

S0 = e0 −
1
2

l2
3e∞,

L0 = e2e3.
(49)

Then, the sphere and the line given in (49) are translated and rotated by the motor Mg
to the desired pose of the end-effector:

Sre f = MgS0M̃g,

Lre f = MgL0M̃g
(50)

such that the center of this translated sphere S0 is the gripper position of xp, and the line L0
meets this point.

The sphere and the line defined in (50) are intersected to obtain a point pair that represents
the two possible solutions for the conformal positions of the wrist and are given by

Machines 2024, 12, 78 10 of 17

Ppw = Sre f ∧ Lre f . (51)

The point pair can be separated using the equation

x4 =
P∗pw +

√
P∗pw · P∗pw

P∗pw · e∞
, (52)

which gives the wrist a conformal joint position.
An illustration of how to get x4 when implemented is given in Figure 2.

Figure 2. Geometric entities used to find x4.

Now, two spheres have been defined: one with its origin at the point x2 after mapping
x2e (Table 1) in CGA and the second one with its center at the point x4 obtained from (52);
the radii of the spheres are the distances l1 and l2, respectively, as shown in Figure 1, and are
defined as

S1 = x2 −
1
2

l2
1e∞,

S2 = x4 −
1
2

l2
3e∞.

(53)

The intersection of the two spheres from (53) gives a circle that contains all the possible
positions of the elbow and is given by

Z = S1 ∧ S2; (54)

this circle will be intersected with a plane to find the elbow position. This circle contains an
infinite number of points to place the robot’s elbow; when intersecting it with the plane,
we find a pair of points, and it is necessary to select one of them to define the configuration
of the arm, If we want to find another configuration, it is possible to take the initial point
and rotate this point with respect to the center of the circle and find a new one. With this
procedure, it is possible to take advantage of the redundancy of the seven degrees of
freedom of the arm: for example, in obstacle avoidance tasks. The development of these
operations can be found in our previous work [12].

The plane is constructed as follows:
As shown in Figure 3, a line normal to the circle of (54) is calculated in the form

L∗z = Z ∧ e∞; (55)

this line can be used to find a plane in which the arm lies and, as future work, could help to
design systems for obstacle and self-collision avoidance.

Machines 2024, 12, 78 11 of 17

Sref

xp
x4

S1

S2

Z

x2

Figure 3. Intersections of geometric entities to calculate x4 and all the possible positions for x3 (which
lies in a circle).

Next, a reference line parallel to the e1 axis is translated to the point x2; this is given
using a translator defined as follows:

Tx2 = e−
1
2 (−lthe1+lwte2)e∞ , (56)

and the reference line is given by

L∗e1
= Tx2 Ee1T̃x2 , (57)

where −lthe1 + lwte2 ∈ R3 and E = e∞ ∧ e0.
Now, using the lines L∗z and L∗e1

, the plane is defined as

P∗a =
(

L∗z · (e∞ ∧ e0)
)
∧ L∗e1

. (58)

Then, a point pair representing the two possible positions of the elbow can be found:
to do this, the circle in (54) is intersected with the plane of (58) using the equation

Ppe = Z ∧ P∗a . (59)

As before, the point pair is separated, and the elbow point is given by

x3 =
P∗pe +

√
P∗pe · P∗pe

P∗pe · e∞
. (60)

This procedure is shown in Figure 4.

xp x4

x2

x3
Z

Figure 4. Intersection of the plane P∗a with Z to get the two possible positions of x3.

Machines 2024, 12, 78 12 of 17

Finally, using the previously found points, four lines representing the links of the arm
are calculated; these lines are shown in Figure 5 and are given by

Link0 = e∞ ∧ x1 ∧ x2,

Link1 = e∞ ∧ x2 ∧ x3,

Link2 = e∞ ∧ x3 ∧ x4,

Link3 = e∞ ∧ x4 ∧ xp.

(61)

x2

Link1

x1

x
3

x4

xp

0

2

3

Link

Link

Link

Figure 5. The lines and points defining the configuration that are needed in order to reach the
desired pose.

These lines will be used in the next subsection to find some of the joint angles by
taking into account their inner product.

3.2. Computing the Joint Values of the Arm

With the points and geometric entities defined, the angles of each joint are calculated:
the first four are calculated as in [1,12].

First, to find the rotation of q1, a plane parallel to the axes e3 and e1 is defined; then,
using a translator, this plane is translated to the point x2 as follows:

P∗31 = Tx2

(
(e∞ ∧ e0)e3e1

)
T̃x2 . (62)

The amount of rotation is given by the angle between the planes of (58) and (62) and
is calculated by

q1 = − arccos

(√
P∗a · P∗31
|P∗a ||P∗31|

)
. (63)

The joint value q2 is defined as the angle between the lines Link0 and Link1 of (61)
and is obtained as

q2 = − arccos
(√

Link1 · Link0

|Link1||Link0|

)
. (64)

In order to find q3, two planes are defined as

P∗q3r = e∞ ∧ x1 ∧ x2 ∧ x3,

P∗q3 = e∞ ∧ x3 ∧ x2 ∧ x4,
(65)

and q3 is defined as the angle between the planes defined in (65) and is calculated as

Machines 2024, 12, 78 13 of 17

q3 = arccos

√

P∗q3r · P∗q3

|P∗q3r||P∗q3|

. (66)

The angle q4 is defined as the angle between the lines Link1 and Link2 defined in (61);
this angle is obtained as

q4 = arccos
(√

Link2 · Link1

|Link2||Link1|

)
. (67)

In the same way, the joint value q6 is the angle between the lines Link2 and Link3
in (61) and is given by

q6 = arccos
(√

Link3 · Link2

|Link3||Link2|

)
. (68)

The angles q5 and q7 are difficult to compute because of the redundancy of the 7-DoF
robotic arm; for that reason, in conventional approaches such as matrix representation,
direct kinematics are used to know where the arm is based on previously computed angles,
and this leads to many computations, which costs time to compute the inverse kinematics
in real-time. To avoid the need to use direct kinematics in this approach, four planes are
defined as geometric restrictions to compute the two angles: these planes are shown in
Figures 6 and 7.

Figure 6. Geometric entities used in order to compute q5.

Figure 7. Geometric entities used in order to compute q7.

First, using the plane P∗q3 defined in (65), a line normal to this plane is calculated; then,
this line is translated to the calculated point x4 as follows:

L∗P3 = Tx4((P∗q3 · E)/I)T̃x4 . (69)

Machines 2024, 12, 78 14 of 17

where Tx4 is given similar to (56).
Using the computed point x3 and the goal position xp, two planes are defined as follows:

P∗q5 = L∗P3 ∧ x3,

P∗xp = L∗P3 ∧ xp.
(70)

After that, a plane is defined using the calculated points and the goal position as

P∗q5r = e∞ ∧ x3 ∧ x4 ∧ xp. (71)

The angle q5 is defined as the angle between the planes P∗q5 and P∗q5r as

q5 = arccos

√

P∗q5r · P∗q5

|P∗q5r||P∗q5|

. (72)

Finally, to compute the joint angle q7, the next steps are followed. First, we obtain the
normal line to the plane P∗q5r, and as in (69), this line is translated to the goal position xp
as follows:

L∗xp = Tg

(
(P∗q5r · E)/I

)
T̃g, (73)

where Tg is the translator given in (46).
Now, using this line L∗xp and the point x4, a plane is defined as

P∗q7 = L∗xp ∧ x4. (74)

The joint value q7 is defined as the angle between the planes P∗q7 and P∗xp and is given
by

q7 = arccos

√

P∗q7 · P∗xp

|P∗q7||P∗xp|

. (75)

Therefore, we have solved the inverse kinematics problem, where given a desired pose

xg, yg, zg, αg, βg, γg, (76)

we find the appropriate joint angles in order for the end-effector of the 7-DoF robotic arm
to move to that desired pose.

4. Results
Simulations

To demonstrate the effectiveness of the proposed method, several experiments were
performed. One of them uses the time-dependent reference given by the desired position
and attitude of the gripper at the hand:

xg = −0.1− 0.08 cos(0.2t),

yg = 0.1 + 0.8 sin(0.2t),

zg = 0.35,

(77)

and the pitch, yaw, and roll are

αg = 0, βg = −π

2
, γg = 0, (78)

where the dimensions of the position are given in meters, and for the attitude, they are
given in radians. The simulation was done using Clucalc [13,14], and the results of the joint
angles are shown in Figure 8.

Machines 2024, 12, 78 15 of 17

Figure 8. Inverse kinematics solution of a 7-DoF robotic arm.

Finally, for the sake of comparison, we implemented our algorithm in C++ language
and compared it with the state-of-the-art algorithms [15,16]. The benchmark was performed
on a PC running Ubuntu 14.04-LTS with an Intel Core i5-3210M @ 2.50 GHz processor and
4 GB of RAM.

The test setup consisted of generating 1000 random poses composed of the position
and orientation of the end-effector. The different poses served as input for the algorithm
proposed in [15,16]. The arms from the Mex-One robot, REEM-C, and the PR2 were selected
to test the different algorithms. The results are shown in Table 2.

The solve rate of our algorithm shows improvement compared to [15] and has similar
performance as [16]. Nevertheless, our algorithm outperforms in the time for computing a
solution compared to using inverse kinematics.

Table 2. A comparison with the state-of-the-art.

Robot Position/Rotation
Error

KDLSolve
Rate (%)

Avg Time
(ms)

TRAC-IKSolve
Rate (%)

Avg Time
(ms)

FIKASolve
Rate (%)

Avg Time
(ms)

Mex-One 1 × 10−6/1 × 10−6 79.8 1.57704 98.9 0.88694 94.9 0.14862
REEM-C 1 × 10−6/1 × 10−6 81.3 1.47647 99.8 0.66928 95.6 0.15064

PR2 1 × 10−6/1 × 10−6 81.7 1.46981 99.7 0.68159 92.9 0.16407

5. Real-Time Results

Several experiments were performed to demonstrate the effectiveness of the proposed
method. As explained before, a simulation was done using the time-dependent reference
given by (77). Note that all the position dimensions are in meters, and the orientation goals
are in radians.

Using the pose reference, a simulation was done using Clucalc [13,14]; the joint values
obtained from the simulation are shown in the Figure 8.

Finally, online implementation was done in a full-sized humanoid platform. Seven
DoFs configure the humanoid arm, each with a Dynamixel series servomotor. Three
printed fingers conform to the gripper, each wired to one DC motor. Composite images
of the experiment are shown in the Figure 9. The complete video of an example of the

Machines 2024, 12, 78 16 of 17

experiments can be found in the Supplementary Materials. With this real-time experiment,
we demonstrate that our algorithm can be implemented in robot platforms. First, we
designed a desired trajectory for the end effector, a circle inside the plane formed by e1 and
e2, with different radius and a distance in e3 direction such that it lies in the workspace
of the robot arm. The home position of our arm is the same as presented in Figure 1,
meaning the arm is fully stretched. Thus, we described the circle trajectory by restricting
the orientation of the robot hand and moving the e1 and e2 coordinates according to the
circle equation discretized up to a delta time of 0.1s. The inverse kinematics is computed at
each time step, and the joint angles calculated are commanded to the Dynamixcel motors.

Figure 9. Experimental results of the inverse kinematic algorithm implemented in the Mex-One
humanoid robot prototype.

6. Conclusions

In this paper, a novel method to solve the inverse kinematics for seven degrees of
freedom for a redundant robotic arm using the conformal geometric algebra framework is
proposed. Taking advantage of geometric entities defined in this algebra, it was possible
to find a solution to the problem without using forward kinematics, numerical solutions,
or many matrix multiplications.

This property allowed us to decrease the amount of calculations needed to reach
the desired goal. A comparison with the state-of-the-art algorithms was presented and
demonstrated the superior performance of the algorithm discussed here.

As future work, the addition of geometric restrictions to avoid joint limits will be
considered: including algorithms to avoid self-collision and for obstacle avoidance.

Moreover, an online implementation in a real robot and a complexity analysis of the
proposed algorithm must be done.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/machines12010078/s1.

Author Contributions: Conceptualization, O.C.-E. and L.C.-M.; methodology, O.C.-E.; software,
L.C.-M.; validation, O.C.-E., L.C.-M. and M.D.-R.; formal analysis, O.C.-E.; investigation, O.C.-E.
and L.C.-M.; resources, M.D.-R.; data curation, L.C.-M.; writing—original draft preparation, O.C.-E.,
L.C.-M. and M.D.-R.; writing—review and editing, O.C.-E., L.C.-M. and M.D.-R.; visualization,
O.C.-E., L.C.-M. and M.D.-R.; supervision, M.D.-R.; project administration, O.C.-E. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available in the article.

https://www.mdpi.com/article/10.3390/machines12010078/s1
https://www.mdpi.com/article/10.3390/machines12010078/s1

Machines 2024, 12, 78 17 of 17

Conflicts of Interest: Author Leobardo Campos-Macías was employed by the company Intel Cor-
poration. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Campos-Macías, L.; Carbajal-Espinosa, O.; Loukianov, A.; Bayro-Corrochano, E. Inverse Kinematics for a 6-DOF Walking

Humanoid Robot Leg. Adv. Appl. Clifford Algebr. 2017, 27, 581–597. [CrossRef]
2. Gong, M.; Li, X.; Zhang, L. Analytical Inverse Kinematics and Self-Motion Application for 7-DOF Redundant Manipulator. IEEE

Access 2019, 7, 18662–18674. [CrossRef]
3. Liu, W.; Chen, D.; Steil, J. Analytical Inverse Kinematics Solver for Anthropomorphic 7-DOF Redundant Manipulators with

Human-Like Configuration Constraints. J. Intell. Robot. Syst. 2017, 86, 63–79. [CrossRef]
4. Li, S.; Wang, Z.; Zhang, Q.; Han, F. Solving Inverse Kinematics Model for 7-DoF Robot Arms Based on Space Vector. In

Proceedings of the 2018 International Conference on Control and Robots (ICCR), Hong Kong, China, 15–17 September 2018;
pp. 1–5. [CrossRef]

5. Brahmi, B.; Saad, M.; Rahman, M.H.; Ochoa-Luna, C. Cartesian Trajectory Tracking of a 7-DOF Exoskeleton Robot Based on
Human Inverse Kinematics. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 600–611. [CrossRef]

6. Zhou, D.; Ji, L.; Zhang, Q.; Wei, X. Practical analytical inverse kinematic approach for 7-DOF space manipulators with joint and
attitude limits. Intell. Serv. Robot. 2015, 8, 215–224. [CrossRef]

7. Shimizu, M.; Kakuya, H.; Yoon, W.K.; Kitagaki, K.; Kosuge, K. Analytical Inverse Kinematic Computation for 7-DOF Redundant
Manipulators With Joint Limits and Its Application to Redundancy Resolution. IEEE Trans. Robot. 2008, 24, 1131–1142. [CrossRef]

8. Yu, C.; Jin, M.; Liu, H. An analytical solution for inverse kinematic of 7-DOF redundant manipulators with offset-wrist. In
Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, 5–8 August 2012;
pp. 92–97.

9. Colomé, A.; Torras, C. Redundant inverse kinematics: Experimental comparative review and two enhancements. In Proceedings
of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, Portugal, 7–12 October 2012;
pp. 5333–5340.

10. Wang, J.; Li, Y.; Zhao, X. Inverse Kinematics and Control of a 7-DOF Redundant Manipulator Based on the Closed-Loop Algorithm.
Int. J. Adv. Robot. Syst. 2010, 7, 37. [CrossRef]

11. Guo, D.; Li, A.; Cai, J.; Feng, Q.; Shi, Y. Inverse kinematics of redundant manipulators with guaranteed performance. Robotica
2022, 40, 170–190. [CrossRef]

12. Carbajal-Espinosa, O.; Loukianov, A.; Bayro-Corrochano, E. Obstacle avoidance for a humanoid arm using conformal geometric
algebra. In Proceedings of the 2010 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, 6–8
December 2010; pp. 524–529.

13. Perwass, C. Clucalc v6.2. 2010. Available online: http://www.clucalc.info/ (accessed on 22 September 2023).
14. Perwass, C. Geometric Algebra with Applications in Engineering, 1st ed.; Springer Publishing Company, Incorporated: Berlin/Heidelberg,

Germany, 2009.
15. The Orocos Project. KDL. 2010. Available online: http://www.orocos.org/wiki/orocos/kdl-wiki/ (accessed on 1 August 2023).
16. Beeson, P.; Ames, B. TRAC-IK: An open-source library for improved solving of generic inverse kinematics. In Proceedings of the

2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, Republic of Korea, 3–5 November 2015;
pp. 928–935.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s00006-016-0705-7
http://dx.doi.org/10.1109/ACCESS.2019.2895741
http://dx.doi.org/10.1007/s10846-016-0449-6
http://dx.doi.org/10.1109/ICCR.2018.8534498
http://dx.doi.org/10.1109/TSMC.2017.2695003
http://dx.doi.org/10.1007/s11370-015-0180-3
http://dx.doi.org/10.1109/TRO.2008.2003266
http://dx.doi.org/10.5772/10495
http://dx.doi.org/10.1017/S026357472100045X
http://www.clucalc.info/
http://www.orocos.org/wiki/orocos/kdl-wiki/

	Introduction
	Mathematical Background
	Geometric Algebra
	Conformal Geometric Algebra
	Used Geometric Primitives
	Translation, Rotation, and Motor

	Inverse Kinematics Methodology
	Defining the Geometric Entity References
	Computing the Joint Values of the Arm

	Results
	Real-Time Results
	Conclusions
	References

