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Abstract: Due to the complex structure of the joint module and harsh working conditions of un-
manned platforms, the fault information is often overwhelmed by noise. Moreover, traditional
mechanical health state recognition methods usually require a large amount of labeled data in ad-
vance, which is difficult to obtain for specific fault data in engineering applications. This limited
amount of fault data restricts the diagnostic performance. Additionally, the characteristics of con-
volutional neural networks (CNNs) limit their ability to capture the relative positional information
of fault features. In order to obtain more comprehensive fault information, this paper proposes an
intelligent health state recognition method for unmanned platform joint modules based on feature
modal decomposition (FMD) and the enhanced capsule network. Firstly, the collected vibration
signals are decomposed into a series of feature modal components using FMD. Then, time–frequency
maps containing significant fault features are generated based on the continuous wavelet transform
(CWT). Finally, a multi-scale feature enhancement (MLFE) module and an efficient channel attention
(ECA) module are proposed to enhance the feature extraction capability of the capsule network,
extracting more comprehensive global and local feature information from the time–frequency maps to
achieve the intelligent state recognition of joint modules. This approach enhances fault features while
reducing the impact of redundant features, significantly improving the feature extraction capability
without increasing the model’s computational complexity. The effectiveness and superiority of
the proposed method are validated through experiments on an unmanned platform joint-module
testbed. An ablation experiment demonstrates the effectiveness of the MLFE and ECA modules, and
a comparison with other advanced network models proves the superiority of the proposed method
for health status recognition.

Keywords: feature mode decomposition; capsule network; health status recognition; joint module;
unmanned platform

1. Introduction

Unmanned platforms refer to robots that perform unmanned operations through
remote monitoring. As an emerging intelligent equipment, unmanned platforms have a
wide range of applications in military, medical, energy, and other fields [1,2]. The joint
module of unmanned platforms, as a key transmission mechanism, integrates a large
number of components, including permanent magnet synchronous motors, planetary gear
reducers, encoders, etc. [3,4], within a limited space. Considering the harsh working
environment and the complexity of its structure, the mechanical components of unmanned
platforms inevitably experience various faults, leading to significant economic losses and
even endangering one’s safety. In practical situations, when mechanical components, such
as bearings and gears, of the joint module fail, the collected vibration signals are inevitably
contaminated by strong noise, making it difficult to effectively identify the fault types of the
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unmanned platform joint module [5]. Therefore, researching the efficient feature extraction
and health status recognition of unmanned platform joint modules using vibration signals
has significant engineering application value.

To date, non-stationary signal processing algorithms have been widely applied in the
field of mechanical equipment fault diagnosis, such as short-time Fourier transform (STFT)
and wavelet transform. However, these time–frequency analysis methods require the
selection of suitable window functions or wavelet bases [6,7]. To address this issue, a series
of signal decomposition methods based on empirical mode decomposition (EMD) [8,9] have
been proposed and widely extended, such as variational mode decomposition [10], local
mean decomposition [11], symplectic geometric mode decomposition [12], and empirical
mode decomposition with improved time scales [13]. These signal decomposition methods
can adaptively decompose complex signals into a series of intrinsic mode function (IMF)
components. However, these decomposition methods often suffer from mode mixing when
dealing with noisy non-stationary signals, affecting the final decomposition results. To
overcome the shortcomings of the existing signal decomposition algorithms and improve
the fault diagnosis performance, inspired by the deconvolution theory, Miao et al. proposed
a new non-stationary signal decomposition algorithm called feature mode decomposition
(FMD) [14]. The FMD method establishes an adaptive finite impulse response (FIR) filter
and uses the iterative updating of filter coefficients. During each iteration, the fault period
of the measured signal is estimated based on the correlation coefficient (CC) to decompose
the non-stationary signal into several modal components. The FMD method not only
simultaneously considers the periodicity and impulsive nature of the signal, but also
exhibits certain anti-interference capabilities against noise, resulting in a more thorough
decomposition.

Although various non-stationary signals can provide distinct fault features, they
heavily rely on the application of expert systems for health status recognition, which
is clearly not intelligent enough for the big data era of Industry 4.0. Therefore, many
scholars have combined signal processing algorithms with intelligent classifiers. The signal
processing algorithms can provide richer and more accurate fault features for subsequent
intelligent classifiers. For example, Li et al. first used parameter-optimized variational
mode decomposition (VMD) for signal decomposition, combined with a sample entropy
to extract fault feature vectors, and finally introduced a support vector machine (SVM)
to perform the fault diagnosis of rolling bearings [15]. Zhang et al. used an improved
EMD for signal decomposition, combined with signal complexity, to reconstruct effective
intrinsic mode functions (EIMFs) [16]. They then extracted ten time-domain features of
EIMFs as inputs to deep belief networks (DBNs) for the diagnosis of rotating machinery
faults. In addition, Kim et al. proposed a fault diagnosis method for high-speed train
rotational components using a VMD algorithm based on the multi-verse optimization
to decompose and reconstruct vibration signals, followed by the feature extraction of
the reconstructed signals and the use of adaptive mutation particle swarm optimization-
random forest (AMPSO-RF) [17]. Tong et al. combined the second-generation wavelet
packet transform and local feature scale decomposition to decompose the vibration signal
into multiple IMFs and applied the extreme learning machine (ELM) to perform the fault
diagnosis of rolling bearings [18]. Tu et al. used an EEMD to decompose the original signal
to obtain several IMFs, then conducted an overall average check and optimization of each
IMF to obtain multiple sets to characteristic the values, and finally input the characteristic
values into a KELM to perform the fault diagnosis of an RV reducer [19]. However, the
aforementioned classifiers (such as the SVM, DBN, RF, ELM, etc.) are only shallow machine
learning models, and are ineffective and lack robustness in the face of strong noise and
limited training samples in practical situations.

To overcome these challenges, intelligent diagnostic models based on deep learning
have garnered increasing attention and achieved numerous results for fault diagnosis. Chen
et al. combined the complementary set empirical mode decomposition and STFT to generate
a time–frequency diagram of noise reduction signals, and then used a CNN to automatically
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extract fault information from the time–frequency diagram and realize the fault diagnosis
of rolling bearings [20]. Likewise, Tran et al. presented a two-dimensional time–frequency
representation of vibration signals based on the continuous wavelet transform (CWT),
combined with a CNN for an intelligent diagnosis of induction motors [21]. Zaman
et al. utilized the S-transform and Sobel filter to create scaleograms with higher time–
frequency resolutions. Subsequently, these scaleograms were provided to the CNN for the
classification of centrifugal pump health conditions [22]. Tang et al. used the synchronous
compressed wavelet transform to transform the original signal into a two-dimensional
image, and then used the CNN for fault feature extraction and classification, ultimately
validating the effectiveness using the vibration signals of a hydraulic piston pump, sound
signals, and pressure signals [23]. Huang et al. decomposed the original vibration signal
into multi-scale vibration components using the wavelet packet decomposition, then used
the CNN to extract fault features from the multi-scale vibration components for the fault
diagnosis of a wind turbine gearbox [24]. Xiong et al. combined a complementary ensemble
empirical mode decomposition with multidimensional non-dimensional indicators to
extract complementary ensemble multi-dimensional indicators (CEMDIs) from vibration
signals, which were then transformed into two-dimensional data as the input for the
CNN to perform the fault diagnosis of rotating machinery [25]. Zhang et al. proposed an
adaptive multi-dimensional variational mode decomposition to decompose an original
signal and used a multi-scale CNN to extract the fault features from the denoised signal
for the fault-type recognition of rolling bearings [26]. Kim et al. incorporated a health-
adaptive time-scale representation (HTSR) into a CNN to extract richer fault information
and perform the intelligent diagnosis of gearboxes [27]. Zhang et al. used compressive
sensing to compress and reconstruct vibration signals, then combined transfer learning
and the CNN for the fault sample recognition of wind turbine generators [28]. Gu et al.
first decomposed the original signal using the VMD, then used the continuous wavelet
transform to transform the IMF decomposition into a two-dimensional time–frequency
image, which was trained using a CNN to perform the online fault diagnosis of rotating
machinery [29]. Xie et al. first converted the time domain signal into the frequency domain
signal by using the fractional Fourier transform, then converted the amplitude spectrum
and phase spectrum into a gram angle field diagram, and finally used the CNN to extract
the information of the angle field diagram to realize fault diagnosis of rolling bearings [30].

Although the aforementioned intelligent diagnosis models achieve certain effective-
ness, they still have some drawbacks. On the one hand, the fault features extracted by
existing CNN models are scalar, unable to capture the relative positional relationships
between fault features, leading to the loss of fault-related information. On the other hand,
existing CNN models are often composed of a large number of feature extraction mod-
ules, which, limited by this, often become stuck in local optimizations during the training
process, and even lead to the degradation of the final recognition capability. Therefore,
to address these challenges, this paper proposes a new method for the intelligent health
status recognition of unmanned platform joint modules based on the FMD and enhanced
capsule network. This method integrates a multi-scale feature enhancement module (MLFE
module) and attention mechanism, constructing an intelligent health status recognition
model based on the multi-scale feature enhancement module and efficient channel attention
module for the enhanced capsule network. The capsule network [31] adopts feature vectors
as the input to reduce the loss of fault feature information, while the MLFE module and
attention mechanism enhance the model’s ability to extract fault features.

In summary, this paper proposes a novel approach for the intelligent health status
recognition of joint modules in an unmanned platform based on time–frequency repre-
sentation and enhanced capsule network. The method initially employs the FMD and
CWT to extract time–frequency features from the vibration signals. Subsequently, these
time–frequency representations are input into an improved capsule network for the fault
diagnosis of joint modules in unmanned platforms. The main contributions of this paper
are as follows:
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(1) Introduces a hybrid model based on the FMD, CWT, and capsule network for the fault
diagnosis of joint modules in unmanned platforms.

(2) Investigates the decomposition effectiveness of the FMD method on vibration signals.
The signals processed by FMD are transformed into time–frequency representations
using the CWT.

(3) Proposes the multi-level feature enhancement (MLFE) module for integrating multi-
scale features, and simultaneously utilizes the enhanced channel attention (ECA)
module to adaptively extract crucial channel features to enhance the feature extraction
capability of the capsule network.

The remaining sections of this study are as follows. Section 2 briefly outlines the basic
theories of the continuous wavelet transform, FMD, and capsule network. In Section 3,
the proposed MLFE module and efficient channel attention module, as well as the overall
structure of the proposed method for health status recognition, are introduced. Section 4
describes the overall roadmap of the proposed intelligent health status recognition frame-
work. Section 5 validates the effectiveness and robustness of the proposed method through
the study and comparative analysis of the experimental platform for unmanned platform
joint modules. Section 6 provides the conclusion of this work.

2. Basic Theory
2.1. Continuous Wavelet Transform

Studies show that one-dimensional time-domain signals are not the best method to
reveal fault information, and the research also demonstrates that two-dimensional-type
images can represent more complex distributions, thus providing a more distinct way to
distinguish different fault distributions. Furthermore, CapsNet was initially proposed
for 2D-image classification tasks, making it more suitable for processing 2D data. The
CWT is a time–frequency transformation method that is very suitable for analyzing non-
stationary signals, as it can accurately locate the frequency information corresponding to
each moment [32]. Therefore, in order to improve the diagnostic performance, the CWT is
used to extract deep time–frequency features from the original vibration signal as the input
to the intelligent fault diagnosis model.

For a continuous time signal, f (t), the definition of the continuous wavelet transform is:

Wb(a) = ψa,b(t), x(t) = |a|−
1
2

+∞∫
−∞

f (t)ψ
(
(t − b)

a

)
dt (1)

In Equation (1), a and b are the scale and translation factors of the wavelet function,
respectively, determining the time–frequency window of the wavelet in the frequency and
time domains, while ψ(t) represents the wavelet function being used.

The wavelet function is a function with local properties in the time–frequency domain.
In this paper, we used the Morlet wavelet because of its concentrated frequency energy,
narrow bandwidth, minimal frequency aliasing effects, time-domain symmetry, and linear
phase characteristics, ensuring a distortion-free transformation.

Due to the discrete nature of the measured signal, for a discrete time series, fm, let
t = m △ t, b = n △ t, where m, n = 0, 1, 2 . . . , N − 1, N is the number of sampling points,
and △t is the sampling time interval. The continuous wavelet transform of the discrete
time series, xm, is given by:

Wn
(
aj
)
=

N−1

∑
m=0

fmψ

[
(m − n)∆t

aj

]
(2)

By changing the scale factor, a, and the translation factor, b, corresponding to the time
indices j and n, a continuous wavelet transform coefficient matrix can be obtained, which
reflects the variation of the amplitude of the continuous wavelet transform coefficients with
time and scale.
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2.2. Feature Mode Decomposition

Inspired by the deconvolution theory, the FMD method is a non-recursive decompo-
sition method aimed at partitioning the original signal into different modes through the
design of FIR filter banks. It mainly involves processes, such as an adaptive FIR filter design,
filter updating, period estimation, and mode decomposition. Due to the strong dependence
of the decomposition results on the filter coefficients, FMD is ultimately considered as a
constrained problem solution, which can be expressed as:

argmax

{
CKM(uk) =

N
∑

n=1

(
M
∏

m=0
uk(n − mTs)

)2/(
N
∑

n=1
uk(n)

2
)M+1

}
s.t.uk(n) =

L
∑

l=1
fk(l)x(n − l + 1)

(3)

where CK is the objective function, which can simultaneously evaluate the periodicity and
impulsiveness of the signal. It is the n-th decomposition mode and K-th FIR filter with a
length of L. M represents the input periodicity and shift order.

To solve the constrained problem in (3), we used the iterative eigenvalue decomposi-
tion algorithm. First, we rewrite the decomposition mode in matrix form:

uk =

 uk[1]
...

uk[N − L + 1]

 = Xfk =

 x(1) · · · x(L)
...

. . .
...

x(N − L + 1) · · · x(N)


 fk(1)

...
fk(L)

 (4)

Then, the CK of the decomposition mode can be defined as:

CKM(uk) =
uH

k WMuk

uH
k uk

(5)

where the superscript H denotes the operation of the conjugate transpose, used for the
intermediate variable of the weighted correlation matrix. Its expression is shown as:

WM =



(
M
∏

m=0
uk[1 − mTs]

)2

0 · · · 0

0
(

M
∏

m=0
uk[2 − mTs]

)2

· · · 0

...
...

. . .
...

0 0 · · ·
(

M
∏

m=0
uk[N − L + 1 − mTs]

)2


1

N−L+1
∑

n−1
uk[n]

M−1
(6)

Substituting Equation (4) into Equation (5), we can obtain the following expression:

CKM(uk) =
fH

k XHWMXfk

fH
k XHXfk

=
fH

k RXWXfk

fH
k RXXfk

(7)

where RXWX and RXX are the weighted correlation and correlation matrices, respectively.
Mathematically, maximizing Equation (7) with respect to the filter coefficients is equivalent
to solving for the eigenvector corresponding to the maximum eigenvalue, λ, in Equation (8):

RXWXfk = RXXfkλ (8)

During the iteration process, the k-th filter coefficient was updated through the solution
of Equation (8) to progressively approach the filter signal with the maximum CK.
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Due to multi-modality, many modes can contain the same fault features. Therefore,
FMD performs the mode selection by computing the Pearson CC to assess the similarity
between two modes. The specific expression for CC is given by:

CCpq =
∑N

n=1
(
up(n)− up

)(
uq(n)− uq

)√
∑N

n=1
(
up(n)− up

)2
√

∑N
n=1

(
uq(n)− uq

)2
(9)

where up and uq are the mean values of modes up and uq, respectively.
The overall implementation process of the FMD is as follows:

(1) Load the original signal, x, and preset the parameters for the FMD, such as the
decomposition mode, K; the filter length, L; and the maximum iteration count, I.

(2) Initialize the FIR filter bank using M Hanning windows and start the iteration with
i = 1. Typically, M is set to be within the range of 5–10.

(3) Use ui
m = x ∗ f i

m to obtain the filtered signal or decomposed mode components, where
m = 1, 2, . . . M; ∗ represents the convolution operation.

(4) Update the filter coefficients and estimate the fault period based on the input original
signal and decomposed mode components. Here, Ti

m is the time delay corresponding
to the local maximum of the autocorrelation spectrum after the first zero crossing.

(5) Check if the current iteration count has reached the maximum iteration count. If not,
return to step (3); otherwise, proceed to step (6).

(6) Compute the CC between two adjacent components and construct a correlation matrix.
Select two adjacent mode components with the highest CC and calculate the CK values
of the selected mode components based on the estimated fault period. Then, choose
the mode component with the larger CK value as the FMD mode component and set
M = M − 1.

(7) Check if the current mode count has reached the preset mode count, K. If not, return
to step (3); otherwise, stop the iteration and output the final decomposition results.

2.3. Capsule Network

A basic capsule network model is shown in Figure 1. Unlike a typical convolutional
neural network, the capsule network performs a convolutional feature extraction, only
in the initial part of the network. In the latter part, it replaces the original pooling and
fully connected layers with a network-specific primary capsule layer and digit capsule
layer. In this process, steps 1⃝ and 2⃝ are convolutional layers used to extract low-level
convolutional features from the input image. The primary capsule layer is used to generate
capsule activation vectors of specific dimensions. Step 3⃝ refers to the dynamic routing
algorithm used to convert primary capsules into digit capsules. The digit capsule layer
transforms the length of each capsule vector into the probability of each category appearing
using a transformation matrix, and outputs the final classification result.

Machines 2024, 12, x FOR PEER REVIEW 7 of 24 
 

 

transforms the length of each capsule vector into the probability of each category appear-
ing using a transformation matrix, and outputs the final classification result.

 
Figure 1. Capsule network structure diagram. 

The capsule network differs from traditional artificial neurons in that it outputs a 
vector as a result, known as a capsule, which can effectively handle different types of vis-
ual stimuli and encode information, such as position, shape, and speed, reducing the loss 
of important information. When propagating from low-dimensional to high-dimensional 
capsules, the dynamic routing between the capsules allocates weights to the low-dimen-
sional capsules, enhancing the feature recognition capability, as illustrated in Figure 2. 

 
Figure 2. Capsule networks use dynamic routing algorithms to improve the efficiency of routing 
information through the network. 

This process can be divided into the following steps: 
(1) The input is a set of lower-level capsules, where n  represents the number of cap-

sules and k  represents the number of neurons in each capsule (vector length). Us-
ing a transformation matrix, ×∈ℜ p k

ijW , and p  representing the number of neurons 

in the output capsule, the input k i
iu

×∈ℜ  is transformed into the prediction vector: 

μ μ
⏐

= ij ij i
W  (10)

where 
1p

j iμ ×
| ∈ℜ . 

(2) The weighted sum of all the obtained prediction vectors is calculated as: 

μ
⏐

=j ij j i
i

s C  (11)

where ijc  is the coupling coefficient and 1ijj
c =å . 

(3) The final vector, jv , is obtained through non-linear mapping by the squeezing func-
tion: 

Figure 1. Capsule network structure diagram.



Machines 2024, 12, 79 7 of 23

The capsule network differs from traditional artificial neurons in that it outputs a vector
as a result, known as a capsule, which can effectively handle different types of visual stimuli
and encode information, such as position, shape, and speed, reducing the loss of important
information. When propagating from low-dimensional to high-dimensional capsules, the
dynamic routing between the capsules allocates weights to the low-dimensional capsules,
enhancing the feature recognition capability, as illustrated in Figure 2.
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This process can be divided into the following steps:

(1) The input is a set of lower-level capsules, where n represents the number of capsules
and k represents the number of neurons in each capsule (vector length). Using a
transformation matrix, Wij ∈ ℜp×k, and p representing the number of neurons in the
output capsule, the input ui ∈ ℜk×i is transformed into the prediction vector:

µji = Wijµi (10)

where µj|i ∈ ℜp×1.

(2) The weighted sum of all the obtained prediction vectors is calculated as:

sj = ∑
i

Cijµji (11)

where cij is the coupling coefficient and ∑j cij = 1.

(3) The final vector, vj, is obtained through non-linear mapping by the squeezing function:

vj =
∥sj∥2

1 + ∥sj∥2

sj

∥sj∥
(12)

where j represents the j-th output neuron. Essentially, the squeezing function is a normal-
ization operation that causes the length of each vector fall between 0 and 1 (positively
correlated with the original length), only changing the magnitude without affecting the
direction; cij and bij are updated by the dynamic routing algorithm:

Cij =
ebij

∑k ebik
(13)

bij = bij + vjµji (14)

In the forward propagation of the network, bij is initialized as 0, Cij is initially cal-
culated by Equation (14), and then vj is calculated based on the forward propagation.
Equation (15) is used to update bij and Cij, thereby further updating sj and vj.
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2.4. Evaluation Metrics

During the process of evaluating a model, it is often necessary to use multiple different
metrics for the assessment. Most evaluation metrics can only reflect certain aspects of
the model’s performance. The incorrect usage of evaluation metrics can lead to incorrect
conclusions and the failure to recognize issues with the model itself, making the correct
and rational selection of evaluation metrics extremely important. For common binary
classification problems, the classes are typically divided into positive and negative classes,
with the positive class being the class of interest. Based on the correctness of the final
prediction results, the predicted samples can be categorized into four types: the number
of falsely predicted positive samples (False Positive, FP), the number of falsely predicted
negative samples (False Negative, FN), the number of correctly predicted positive samples
(True Positive, TP), and the number of correctly predicted negative samples (True Negative,
TN). In practical fault classification problems, using only positive and negative classes
to determine the state of a machine is clearly not detailed enough. It is necessary to
differentiate between multiple fault types to thoroughly assess the mechanical fault state,
thus requiring the use of evaluation metrics for multi-class problems. The evaluation
metrics for multi-class problems have evolved from binary classifications, including metrics,
such as accuracy, loss, and the confusion matrix.

In the binary classification, TP, FP, TN, and FN are scalar values, whereas in multi-class
problems (taking n classes as an example), these values become n-dimensional vectors,
with each dimension of the vector representing a specific value for a particular classification.
A sample that is TP in one classification can become FP in another classification.

(1) Accuracy represents the proportion of correct predictions to the total number, with a
higher ratio indicating a better classification performance.

Accuracy = (TP + TN)/(TP + FP + TN + FN) (15)

(2) For multi-class classifications, the loss function commonly used is the cross-entropy
loss function, where a smaller value indicates a better performance.

Loss = − 1
N ∑

i

M

∑
c=1

yic log(pic) (16)

(3) The confusion matrix, also known as an error matrix, is a way to evaluate the per-
formance of a classifier. It is an n × n matrix that describes the relationship between
the true class attributes of the sample data and the predicted recognition classes,
widely used for pattern recognition. Each row of the confusion matrix represents the
true class attributes of the sample data, while each column represents the predicted
recognition classes. It can be inferred that the higher the values on the diagonal of the
confusion matrix, the better the classification recognition results.

3. Multi-Feature-Enhanced Efficient Channel Attention Fusion Capsule Network
3.1. Multi-Scale Feature Enhancement Module

Traditional feedforward neural networks tend to produce increasingly localized feature
maps as the network layers increase, leading to the loss of some crucial information from
the original data in the intermediate layers of the neural network model. To address this
deficiency, this paper proposed a method that could reduce the complexity of the neural
network model while preventing the loss of intermediate layer information. This method is
called the multi-scale feature enhancement (MLFE) module, as shown in Figure 3, where X
and Y represent the input and output of the module, respectively. The arrows of different
colors represent the flow of features of different scales within the structure. The input, X,
undergoes a series of operations, including convolution, activation, pooling, upsampling,
and concatenation, to obtain a vector, Y, with global features of the input, X. As shown in
the figure, the initial structure of this module is based on the common standard structure
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for image classification, with an added auxiliary structure that allows the module to obtain
features of different sizes during the feedforward process. Since features at each scale have
different resolutions during the feedforward process, they are upsampled using a bilinear
interpolation to achieve the same resolution. Ultimately, the feature maps from all scales
are concatenated to form a tensor. Therefore, the output, Y, encodes both low-level details
from shallow layers and high-level details from deep layers. This method integrates and
utilizes features generated from multiple intermediate layers, enabling the neural network
model to capture varying degrees of global information. Additionally, this multi-scale
fusion network with a concatenated skip-connection structure can mitigate the problem
of gradient vanishing in deep networks and facilitate gradient backpropagation, thereby
accelerating the training process. This module plays a role in the proposed health state
recognition model by initially extracting fault features of different scales and integrating
them, ensuring that the model does not overlook fault features generated in the early
and middle stages of the network while increasing its depth. This improves the global
dependency of the method.
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3.2. Efficient Channel Attention Module

The channel attention mechanism has been shown to have a significant potential for
improving the performance of deep neural networks. However, most existing methods
focus on developing more complex attention modules to achieve a better performance,
inevitably increasing the complexity of the model.

To overcome the trade-off between performance and complexity, this paper adopted
an efficient channel attention (ECA) module, which involved only a small number of
parameters while achieving significant performance gains. The structure of this module
is shown in Figure 4. Without a dimensionality reduction, the ECA module captures
local cross-channel interactions by considering each channel and the convolution kernel
size, k, after performing the global average pooling step. This approach, compared to
dimensionality reduction operations, achieves better results with lower complexity. Here,
the convolution kernel size represents the coverage range of local cross-channel interactions.

To avoid manually adjusting the convolution kernel size, k, an adaptive method
was employed to determine its size, as shown in Equation (17), allowing the coverage
of interactions (i.e., kernel size) to be proportional to the channel size. Consequently, k
was adaptively determined through mapping from the vector channel dimension, C. In
the proposed health status recognition model, this module reweighted the feature map
outputted by the MLFE in the channel dimension, enhancing the sensitivity to fault features
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and suppressing irrelevant features, thus improving the accuracy of the health status
recognition.

k =

∣∣∣∣ log2(C)
γ

+
b
β

∣∣∣∣
odd

(17)

where odd represents the closest odd number, γ and β are set to 2 and 1, respectively, and C
represents the number of channels.
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3.3. The Proposed Network Structure

The intelligent diagnostic network architecture constructed in this study is shown in
Table 1. Due to the lack of consideration for different scale feature maps in the original
capsule network, it was necessary to recognize the complex structural features of the
machinery equipment for the health state identification. This led to the presence of signals
with different fault frequencies and irregular noises in the collected signals. The irregular
noise was preliminarily separated using the signal processing method proposed in this
article. However, special attention still needed to be paid to the different scale fault features
of the signals. Therefore, the main idea behind constructing this model in this study was to
extract feature maps of different sizes through the proposed MLFE module and concatenate
these feature maps in the channel direction to form a feature map containing different-sized
features. Then, this feature map was passed through the ECA module to assign different
weights to different-sized features, thereby enhancing the importance of relevant features
and suppressing irrelevant features, improving the fault diagnostic performance.

The MLFE module mainly consisted of four convolutional layers, two max-pooling
layers, four upsampling layers, and a fusion layer. The convolutional layers had kernel
sizes of 64, 128, 256, and 256, all with a kernel size of 3 and a stride of 2. In the max-pooling
layers, the pool size and stride were both set to 2. Between the convolutional and pooling
layers, the ReLU layer was used to introduce nonlinearity between the layers, addressing
the gradient vanishing problem and maintaining the model’s convergence in a stable state.

To address the issue of the mismatched sizes of feature maps, different upsampling
factors were used for feature maps of different sizes. Following the MLFE module, the ECA
module was employed to adaptively reweight the feature maps of different sizes. Finally,
the reweighted feature maps were fed into the capsule network for classification.

During the training process, the model’s loss function was a mixture of the capsule
network’s reconstruction loss and margin loss. The training was conducted using a batch
size of 5. The Adam optimizer was employed for updating the model parameters in the
backward pass, with the learning rate of Adam as:

lr =


0.001, 0N < e ≤ 0.5N

0.0001, 0.5N < e ≤ 0.8N
0.00001, 0.8N < e ≤ N

(18)
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where N is the preset total iterations number, which is set to 30; e represents the current
iteration number. When e is small, a larger lr can speed up the model convergence, while a
smaller lr can stabilize the model in the later stages of training.

Table 1. Model structure of the proposed intelligent diagnosis method.

Layers Types Output Size Last Layer

Input Input layer Input (64,64,3) \

MLFE module

Conv1 Conv(64,3,2) (32,32,64) Input layer
Activation1 Relu (32,32,64) Conv1

Conv2 Conv(128,3,2) (16,16,128) Activation1
Activation 2 Relu (16,16,128) Conv2

Pooling1 MaxPool(2,2) (8,8,128) Activation 2
Conv3 Conv(256,3,2) (4,4,256) Pooling1

Activation 3 Relu (4,4,256) Conv3
Conv4 Conv(512,3,2) (2,2,512) Activation 3

Activation 4 Relu (2,2,512) Conv4
Pooling2 MaxPool(2,2) (1,1,512) Activation 4

Upsamlping1 Upsampling(2,2) (32,32,128) Pooling2
Upsamlping2 Upsampling(4,4) (32,32,128) Upsamlping1
Upsamlping3 Upsampling(16,16) (32,32,512) Upsamlping2
Upsamlping4 Upsampling(32,32) (32,32,512) Upsamlping3

Fusion1 Contact (32,32,1280) Upsamlping4
BN1 BN (32,32,1280) Fusion1

Activation 5 Relu (32,32,1280) BN1

ECA module

Pooling3 GAP (1280) Activation 5
Reshape1 Reshape (1,1,1280) Pooling3

Conv5 Conv(2,2,1) (1,1,1) Reshape1
Activation6 Sigmoid (1,1,1) Conv5

Fusion2 Multiply (15,15,256) Activation6

Capsule
network

Primary capsule Primarycap (14,16) Fusion2
Digit capsule Digitcap (14) Primary capsule

4. The Proposed Technological Framework

To obtain more discriminative feature information and improve the identification ac-
curacy, an efficient intelligent identification method for the health status of the joint module
of an unmanned platform based on the FMD and MLFE-ECA-Capsnet was proposed. The
overall diagnostic process was divided into four stages: vibration data acquisition, data
processing based on FMD-CWT, model training based on MLFE-ECA-Capsnet, and intelli-
gent fault diagnosis. Figure 5 shows the entire flowchart of the proposed fault diagnosis
framework. The specific steps of our method can be summarized as follows:

(1) Vibration data collection. Firstly, the vibration data of the joint module of the un-
manned platform were collected through an accelerometer installed on the upper end
of the module’s casing.

(2) Data processing based on FMD-CWT. The collected vibration data were processed
through the FMD to extract effective signal components. The extracted compo-
nents were then transformed into two-dimensional RGB images containing signal
time–frequency features using the CWT. These data were then randomly divided into
training and testing samples in a certain proportion.

(3) Model training based on MLFE-ECA-Capsnet. The training samples were input into
the MLFE-ECA-Capsnet for model training, utilizing the adaptive optimizer Adam
and L2 regularization to optimize the training process and alleviate overfitting during
model training.



Machines 2024, 12, 79 12 of 23

(4) Intelligent fault diagnosis. The testing samples were input into the trained MLFE-
ECA-Capsnet to achieve the automatic fault recognition of mechanical faults and
output the final diagnostic results.
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5. Experimental Verification

The effectiveness of the method for the fault diagnosis of the joint module of unmanned
platforms was verified through laboratory experiments. In addition, a comparative analysis
was conducted with existing popular methods to validate the advantages of the proposed
method. This article concludes with a discussion and outlook.

5.1. Experimental Platform and Data Preparation
5.1.1. Experiment and Dataset Construction

In order to verify the effectiveness of the multi-sensor intelligent diagnosis frame-
work proposed in this section, a simulated experimental platform for the joint module of
unmanned platforms was constructed, and relevant signals were collected. As shown in
Figure 6, the simulated experimental platform is driven by a motor and the rotating speed
can be controlled by a frequency converter. The intermediate transmission part consists
of a high-speed stage planetary gearbox and a low-speed stage planetary gearbox. An
accelerometer (DYTRAN) used for measuring vibration signals was arranged in a direction
perpendicular to the axis on the flange disk of the joint module. During the experiment,
the motor speed was set to 2600 r/min and the sampling frequency was 25.6 kHz.

During the experiment, a total of 6 types of experimental data under different health
conditions were collected, including normal state (NOR), high-speed stage gear tooth
missing (HSGTM), high-speed stage planetary carrier-bearing inner race fault (HSPBIRF),
high-speed stage planetary carrier-bearing outer race fault (HSPBORF), high-speed stage
planetary carrier-bearing cage fault (HSPBCF), and low-speed stage gear tooth missing
(LSGTM). In the experiment, there were 100 samples for each condition. The ratio of the
training, validation, and test sets was 0.7:0.1:0.2, as shown in Table 2.
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Table 2. Experimental dataset.

Label Types of Faults Training/Validation/Test Samples

0 HSPBCF 70/10/20
1 HSGTM 70/10/20
2 HSPBIRF 70/10/20
3 LSGTM 70/10/20
4 NOR 70/10/20
5 HSPBORF 70/10/20

5.1.2. Time–Frequency Representation

Table 3 shows the rotational frequency of the experimental platform at the experi-
mental speed and the fault frequencies of the planetary carrier-bearing inner and outer
races. Figure 7 shows the original signal of the inner race fault. It is difficult to identify
the impact features in the time domain from Figure 7a, and also challenging to find any
fault information in Figure 7b. Therefore, it was hard to determine whether the bearing
was damaged using only the original signal analysis. By using FMD processing on the
vibration signal of the inner race fault as shown in Figure 7a, where the FMD modulus
and filter length are set to 1 and 40, the decomposition result of the FMD is shown in
Figure 8. It is clear from Figure 8a that relevant impact components can be observed.
Figure 8b displays the envelope spectrum of the decomposed modal components. The
fault frequency, fi, and its harmonics can be clearly observed in Figure 8b, indicating the
presence of an inner race fault in the bearing of the joint module of the unmanned platform.
This detection result is consistent with the actual situation of the experimental platform.
Therefore, the FMD method can effectively remove interference components and extract
richer fault information.

Table 3. Comparison of four classification models.

f r1 (Hz) f r2 (Hz) fi (Hz) fo (Hz)

8.58 43.33 87.75 65
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Figure 7. The vibration signals of the inner race fault in the (a) time domain and (b) its envelope
spectrum.
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Figure 8. (a) FMD decomposition mode and (b) its envelope spectrum.

Figure 9 shows the raw signal of the outer race fault. Due to noise interference, it is
difficult to observe the relevant frequency of the outer race fault in Figure 9. Therefore,
efficient signal processing techniques are needed. The outer race fault vibration signal is
processed using the FMD method, as shown in Figure 10a, where the FMD modulus and
filter length are set to 3 and 20, respectively. Figure 10 shows the decomposition result of
the FMD. In the first modal component, we can clearly see the characteristic frequency of
the outer race fault, fo, and its harmonic components.
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Figure 9. (a) Time domain of the outer race fault vibration signal and (b) its envelope spectrum.



Machines 2024, 12, 79 15 of 23

Machines 2024, 12, x FOR PEER REVIEW 15 of 24 

Figure 9. (a) Time domain of the outer race fault vibration signal and (b) its envelope spectrum. 

Figure 10. (a) FMD decomposition mode and (b) its envelope spectrum. 

In order to demonstrate the superiority of the feature modal decomposition (FMD) 
method compared to other signal decomposition algorithms, this study employed the 
comprehensive index (CI) (see Equation (19)) for a quantitative assessment of the decom-
position performance of each algorithm. CI is defined as the product of the average slope 
at each order and the ratio of average feature energy, providing a comprehensive evalua-
tion metric for the efficiency of each method. 

m mCI Kur FER= ×  (19)

( ) ( )( ) ( ) ( ) ( )
4

1

4

1
2 3

,

N m m
nm m

total

u n u n A f A f A fNKur FER
Aσ

=
− + +

= =


 (20)

where mKur  and mFER represent the kurtosis and feature energy ratio of the m-th
mode component, respectively; N denotes the signal length; ( )mu k  and σ  are the 
mean and standard deviation of the m-th mode component, respectively; f denotes the 
fault frequency; A(f), A(2f), and A(3f) are the amplitudes corresponding to the envelope 
spectrum’s first three harmonic frequencies; and Atotal is the total amplitude of the enve-
lope spectrum. CI can concurrently assess the impulsiveness and cyclostationarity of the
mode components, with larger CI values indicating a better decomposition performance.

(a) (b)

0 0.5 1 1.5 2
Time [s]

-30

-20

-10

0

10

20

30

0 50 100 150 200 250 300
Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

fr1 and its harmonics fr2 and its harmonics fo and its harmonics

(a) (b)

M
od

e 
#3

M
od

e 
#2

M
od

e 
#1

fr2

Figure 10. (a) FMD decomposition mode and (b) its envelope spectrum.

In order to demonstrate the superiority of the feature modal decomposition (FMD)
method compared to other signal decomposition algorithms, this study employed the
comprehensive index (CI) (see Equation (19)) for a quantitative assessment of the decompo-
sition performance of each algorithm. CI is defined as the product of the average slope at
each order and the ratio of average feature energy, providing a comprehensive evaluation
metric for the efficiency of each method.

CI = Kurm × FERm (19)

Kurm =
1
N ∑N

n=1(u
m(n)− um(n))

4

σ4 , FERm =
A( f ) + A(2 f ) + A(3 f )

Atotal
(20)

where Kurm and FERm represent the kurtosis and feature energy ratio of the m-th mode
component, respectively; N denotes the signal length; um(k) and σ are the mean and
standard deviation of the m-th mode component, respectively; f denotes the fault frequency;
A(f ), A(2f ), and A(3f ) are the amplitudes corresponding to the envelope spectrum’s first
three harmonic frequencies; and Atotal is the total amplitude of the envelope spectrum. CI
can concurrently assess the impulsiveness and cyclostationarity of the mode components,
with larger CI values indicating a better decomposition performance. Table 4 presents the
decomposition results of three methods (i.e., EEMD, VMD, and FMD) for the outer ring
signal. Apparently, compared with EEMD and VMD, the CI value of the FMD is basically
the largest in each order mode component, except for #2 mode components.

Table 4. CI values of each mode component acquired via various approaches.

Different Approaches Mode #1 Mode #2 Mode #3

FMD 0.0109 0.0038 0.0073
VMD 0.0048 0.0017 0.0057

EEMD 0.0053 0.0041 0.0067

Figures 11 and 12 show the time–frequency diagrams of various health states obtained
before and after using the FMD for signal processing with the continuous wavelet transform.
It is evident from the figures that the time–frequency diagram of the signal processed with
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the FMD method removes the interfering components, making the fault characteristics more
prominent. This directly enhances the diagnostic performance of the fault diagnosis model.
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5.2. Effectiveness Verification of the FMD Method

To illustrate the effectiveness of the data processing methods used, the data before and
after being processed by the FMD were used in the MLEF-ECA-Capsnet for fault diagnosis
in the same proportion. Ultimately, the changes in the loss value and accuracy during the
training process were compared. The changes in the loss value and classification accuracy
during the model training process are shown in Figure 13. From the perspective of the loss
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value, the trend of the loss value change in the dataset before and after FMD processing was
similar, but the processed data showed a faster convergence speed. In terms of accuracy, the
data processed with the FMD method clearly exhibit more prominent fault characteristics
compared to the data before processing, and they can make the model more stable and
accurate during the training process.
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The confusion matrices of the classification results on the test set for these four models
are shown in Figure 14. It can be seen that the model trained on the dataset before FMD
processing achieves an accuracy of only 97.5% on the test set. In contrast, the model
trained on the dataset after FMD processing achieves 100% accuracy on the test set. The
experimental results indicate that preprocessing vibration data with the FMD can effectively
improve the diagnostic performance of the fault diagnosis model.
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5.3. Ablation Analysis

To illustrate the effectiveness of the proposed feature enhancement network, four
classification models were designed for comparison: (1) original CapsNet (M1); (2) Cap-
sNet with an ECA module (M2); (3) CapsNet with an MLFE module (M3); and (4) the
proposed MLFE-ECA-CapsNet (M4). From Table 5, it can be observed that, compared to
the original CapsNet model, the increases in parameters and time consumption caused by
the ECA module are less than that of the MLFE module. The changes in the loss value and
classification accuracy during the model training process are shown in Figure 15. In terms
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of the loss value, M1 has the largest variation, followed by M2. The variation trends of M3
and M4 are similar, but the stable loss value on the validation set of M4 is slightly lower
than that of M3. In terms of accuracy, when the number of training iterations is small, M1
has the lowest training accuracy and M4 has the highest training accuracy. Compared to
M1, the performances of M2 and M3 are improved to varying degrees, with M3 showing
the most significant improvement. The performance of M3 is the most similar to M4, but
M4 converges faster than M3, and with an increase in training cycles, the accuracy of M3
fluctuates to some extent, while the accuracy of M4 is relatively stable.

Table 5. Comparison of four classification models.

Model Parameter Training Time (s)

M1 18,916,325 122.3294
M2 18,916,608 123.5110
M3 24,617,856 200.7728
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The confusion matrix of the classification results on the test set for these four models
is shown in Figure 16. It can be observed that in M1, M2, and M3, 3, 2, and 1 test samples,
respectively, are misclassified as other types, while M4 classifies all samples correctly.
The experimental results indicate that this feature enhancement network can effectively
improve the fault-sensitive feature-mining capability and diagnostic performance of the
CapsNet classifier. Both modules show corresponding improvements in classification
performance and stability. Although the MLFE module increases the time consumption, it
is still acceptable given its role in improving the stability and accuracy of the model. The
experimental results indicate that the MLFE module shows the greatest improvement for
both the classification accuracy and stability of the original Capsnet model. Although the
ECA module also improves the original model to some extent in situations with fewer
feature channels, the accuracy and stability of the improved model (i.e., M2) are closer
to the original model. Therefore, based on the loss and accuracy changes in different
models during the training process and the confusion matrix of the final classification
results obtained in this experiment, the following conclusions can be drawn: (1) the MLFE
module plays a major role in improving the original model; (2) the ECA module can only
have a certain effect on large-scale models with multiple scales; and (3) the MLFE and ECA
modules complement each other, leading to a significant improvement in the classification
performance of Capsnet.
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5.4. Network Comparisons

To validate the superior performance of the MLFE-ECA-Capsnet network model
proposed in this paper, its results for the intelligent diagnosis of unmanned platform
joint modules are compared and studied with the analysis results of other advanced
deep neural network models. These network models are Resnet50 [33], VGG19 [34],
and Densenet121 [35]. The Resnet50 network contains 49 convolutional layers and one
fully connected layer, with its key component being the residual structure, which can
solve the gradient problem. The increase in the number of network layers also improves
the expression of features and consequently enhances the performances of detection or
classification. In addition, the use of 1 × 1 convolutions in the residual structure can
reduce the parameter quantity and, to some extent, the computational load. VGG19
network comprises 16 convolutional layers and 3 fully connected layers. For a given
receptive field, VGG19 uses stacked small convolutional kernels instead of large ones
because multiple non-linear layers can increase the network depth to ensure the learning of
more complex patterns, with fewer parameters. Densenet121 consists of four dense blocks
and one transition layer, achieving efficient feature propagation and reuse through the
combination of dense connections and transition layers, reducing the number of parameters
and computational load, and achieving a good performance in many image classification
tasks. When comparing the abovementioned four network models, the input for all was
the time–frequency map, with the training cycles set to 100 for Resnet50 and VGG19, and
50 for Densenet121, while other hyperparameters remained consistent with the proposed
network model.



Machines 2024, 12, 79 20 of 23

To demonstrate the advantages and stability of the proposed method in the intelligent
diagnosis of voltage signals, ten experiments were conducted using other advanced models
and the proposed method. Figure 17 and Table 6 present the ten diagnostic results of
different models, indicating that the feature-enhanced diagnostic model proposed in this
paper has the best diagnostic effect. The highest accuracy for the ten results is 100%, the
lowest accuracy is 99.33%, and the average accuracy on the test set can reach 99.61%,
with the smallest variance, indicating that the proposed method has the best stability.
Among other classification models, Densenet121 has the highest diagnostic accuracy, with
an average accuracy of 98.88% on the test set. The worst diagnostic performance is by
Resnet50, with the highest accuracy in the ten results being 98.54%, the lowest accuracy
being only 97.29%, and the average accuracy being 98.16%, which is 1.45% lower than
the proposed method, and the standard deviation is the highest, indicating the worst
stability. The results above indicate that, compared with other advanced deep neural
network methods, the feature-enhanced diagnostic model proposed in this paper has a
superior diagnostic performance and good stability.
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Table 6. Accuracy (%) of ten training sessions for different methods.

Model Highest Value Minimum Value Mean Value Standard Deviation

VGG19 99.16 98.54 98.85 0.263
Resnet50 98.54 97.29 98.16 0.378

Densenet121 99.37 98.34 98.88 0.366
Proposed method 100 99.33 99.61 0.251

Figure 18 shows the confusion matrix of different methods on the test set. From the
figure, it can be observed that the proposed method has an excellent diagnostic performance
compared to other deep neural network models. The VGG19 model incorrectly classified
a total of nine test set samples into other healthy states, including four samples with a
label of 0, one sample with a label of 2, three samples with a label of 6, and one sample
with a label of 11. The Resnet50 model incorrectly classified four samples with a label
of 0 into other healthy states. The Densenet121 model incorrectly classified four samples
with a label of 0 and two samples with a label of 11 into other healthy states. In contrast,
the proposed method performed excellently on the test set, with only one sample being
misclassified. These results indicate that, compared to other deep neural network models,
the feature-enhanced diagnostic model proposed in this paper demonstrates a superior
diagnostic performance and robustness.
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6. Conclusions

This study proposed an intelligent diagnosis model of a reinforced capsule network
based on a multi-scale feature enhancement module and efficient channel attention module
for the efficient intelligent identification of the health status of unmanned platform joint
modules. Firstly, the collected time-domain vibration signals were filtered using the FMD
and then transformed into time–frequency maps with two-dimensional features through
the continuous wavelet transform based on the Morlet wavelet as the input to the neural
network. In the fault diagnosis stage, the MLFE module, which fused feature maps of
different scales in the feedforward process, and the ECA module, which obtained an
adaptive interaction range with adaptive convolution kernels, enhanced the key channel
features while suppressing irrelevant features. Then, the obtained feature maps were
input into the capsule network to convert scalars into vectors, further obtaining detailed
information of the features, and finally the vector length output by the main capsule layer
was transformed into the diagnosis result. This method not only improved the diagnostic
performance of the diagnostic model, but also prevented problems such as the excessively
long training time and overfitting caused by overly complex network structures. The
effectiveness of the proposed method was verified using vibration signals collected from
a simulated test bench of the joint module of an unmanned platform. The experimental
results show that the proposed feature-enhanced intelligent diagnosis framework has a
high recognition accuracy. The specific conclusions are as follows:
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(1) The time–frequency representation achieved through the continuous wavelet trans-
form based on Morlet after filtering by the FMD method can obtain richer time-domain
and frequency-domain information compared to the original time-domain signal,
which is beneficial for the diagnostic performance of the diagnostic model.

(2) Compared with the original capsule network, the MLFE and ECA modules included in
the proposed method have different degrees of improvement for the original capsule
network, with the MLFE module having the greatest improvement, but with increased
parameters and training times. Overall, the proposed method is a good improvement
compared to the original capsule network.

(3) Compared with other advanced diagnostic networks, the proposed feature-enhanced
diagnostic model exhibits a good performance in terms of its diagnostic accuracy and
diagnostic stability, which also proves the effectiveness of the two proposed modules.

In practical engineering scenarios, acquiring a large amount of labeled fault data is
extremely difficult, which remains a major challenge in the development of state recog-
nition. Furthermore, the complex structure of actual engineering machinery leads to the
complexity of collected signal components and the presence of a large amount of noise.
Therefore, an effective signal processing method for extracting key fault information is par-
ticularly important and should be a focus of the future research in this field. Additionally,
training neural network models requires significant computational resources. Exploring
how to utilize pre-training strategies to reduce the time cost of data processing and ensure
diagnostic accuracy are also issues that need to be addressed in future studies.
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