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Abstract: An extended flexible job scheduling problem is presented with characteristics of technology
and path flexibility (dual flexibility), varied transportation time, and an uncertain environment.
The scheduling can greatly increase efficiency and security in complex scenarios, e.g., distributed
vehicle manufacturing, and multiple aircraft maintenance. However, optimizing the scheduling puts
forward higher requirements on accuracy, real time, and generalization, while subject to the curse
of dimension and usually incomplete information. Various coupling relations among operations,
stations, and resources aggravate the problem. To deal with the above challenges, we propose a
multi-agent reinforcement learning algorithm where the scheduling environment is modeled as
a decentralized partially observable Markov decision process. Each job is regarded as an agent
that decides the next triplet, i.e., operation, station, and employed resource. This paper is novel in
addressing the flexible job shop scheduling problem with dual flexibility and varied transportation
time in consideration and proposing a double Q-value mixing (DQMIX) optimization algorithm
under a multi-agent reinforcement learning framework. The experiments of our case study show that
the DQMIX algorithm outperforms existing multi-agent reinforcement learning algorithms in terms
of solution accuracy, stability, and generalization. In addition, it achieves better solution quality for
larger-scale cases than traditional intelligent optimization algorithms.

Keywords: production planning and scheduling; multi-agent reinforcement learning; flexible job
shop; path flexibility; technological flexibility

1. Introduction

Flexible job shop scheduling (FJSP) is regarded as an effective measure to deal with the
challenge of mass personalized and customized manufacturing in the era of Industry 4.0,
and is widely extended to many real applications [1]. In this paper, we focus on a kind
of extended FJSP, which considers both technology and path flexibility (dual flexibility),
varying transportation times among stations, and an uncertain environment. This extended
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FJSP is termed FJSP-DT (FJSP with dual flexibility and transportation time variation).
FJSP-DT occurs in real complex scenarios, such as distributed automobile assembly schedul-
ing, multiple aircraft maintenance scheduling, and robot scheduling in a warehouse sorting
center, etc. FJSP-DT takes the following characters into consideration and is abstractly
depicted in Figure 1.

Figure 1. Illustration of FJSP characterized by dual flexibility and varied transportation time in an
uncertain environment.

1. Dual flexibity. FJSP-DT considers both technology and path flexibility. As shown
in Figure 1, the blue operation may be processed before the red operation, or vice
versa, which results in technology flexibility. The same operations can be processed
by different robots, e.g., the orange operation can be processed by Robot m1 or
Robot m4, hence leading to path flexibility.

2. Varied transportation time. One job needs to be processed through multiple stations,
and the transportation time between operations varies depending on the distance
between stations.

3. Cooperative gaming and uncertain environment. Multiple jobs coordinate their op-
erations to achieve shorter makespan employing preempt resources, such as robots,
stations, etc. The environment also suffers from uncertain factors, e.g., robot failures.

Based on the thorough survey of [2] and papers related to JSP published after 2022
(e.g., [3–10]), we classified the works related to FJSP into 23 categories by the factors consid-
ered (shown in Table 1), such as machine availability, routing, varied transportation time,
etc. It can be concluded that there is a lack of FJSP studies that take all the characteristics
above into account. It is necessary to conduct in-depth research due to the importance of
FJSP-DT applications. However, solving FJSP-DT faces significant challenges.

1. Generalization. The scheduling algorithm should be adaptable to changing conditions,
such as altered operation sequences, modified stations, robot distributions, or varying
job quantities.

2. Real-time. Due to the uncertainty of the environment, the scheduler needs to respond
in real time (in seconds) to robot failures and make real-time scheduling.

3. Accuracy. Significant operational risks may arise in the application scenario correspond-
ing to FJSP-DT. In automobile assembly scheduling, poor coordination between opera-
tions may lead to collisions. Therefore, the algorithm needs to ensure operational safety.

4. Curse of dimensionality. The solution space expands as the number of agents and re-
sources (such as robots, and stations) increases, resulting in a computational dilemma.
Here, M, S, and T are used to represent the sets of robots, stations, and time respec-
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tively. N and O represent the sets of agents and operations respectively. The solution
space of FJSP-DT is A|N|×|O||M|×|S|×|T| which causes an explosion in combinations.

The methods of solving FJSP-related problems fall under three categories: mathemati-
cal programming, meta-heuristic algorithms, and reinforcement learning. Mathematical
programming mainly applies to small-scale problems due to its long computation time [11].
Therefore, more than 60% of the publications applied evolutionary algorithms (meta-
heuristic) to overcome the challenge [12]. However, these methods require high computa-
tional costs and result in unsuitability for large-scale, real-time scheduling problems [13].

Table 1. Literature related to job shop scheduling problems (JSP).

Type Number 1

Classical JSP 68
Dynamic JSP 48
JSP considering the machine availability 52
Flexible JSP with alternative machines (FJSP) 225
JSP with alternative routings 32
JSP considering batches 39
JSP considering setup times 69
JSP considering transportation time 1
JSP with nondeterministic or non-constant processing time 32
Distributed JSP (DSJSP) 25
JSP with dual-resource constraints (DRJSP) 30
JSP considering energy and pro-environment 132
JSP with a prior job 5
JSP with dependent jobs 2
JSP with no-wait constraint for operations on the same job 18
JSP with blocking constraint for capacities of buffer 8
JSP with reentrancy 9
JSP with preemption 2
JSP considering overtime work 2
JSP with limited buffer capacity 2
JSP considering outsourcing (subcontracting) 6
JSP considering robot or automated guided vehicle (AGV) 28
FJSP with worker cooperation flexibility 1
FJSP with technology and path flexibility (FJSP-DT) -

1 The statistics in the table refer to papers published between 2016 and 2023. Specifically, data before 2022 is
referenced from [2], while the rest of the data is obtained through Google Scholar search, https://scholar.google.
com/ (accessed on 10 December 2023).

Reinforcement learning has been widely applied to solve numerous optimization
problems in the real world [14], and was regarded as one of the top five most promising
algorithms [15] to solve JSP due to its strong self-learning ability. Since the Deep Q-Network
was proposed, multi-agent reinforcement learning (MARL) has been a focused piece of
research in solving FJSP. To map FJSP to the MARL-solving architecture, each job or robot
is regarded as an agent in the scheduling environment, where multiple agents cooper-
ate and learn their policies. After offline training, the MARL algorithm can be deployed
online to make decisions based on real-time observations. Consequently, MARL has the
great potential to model complex workshop scheduling problems [16], and can achieve
real-time computation and adaptability [17]. Therefore, we adapt MARL to solve the
FJSP-DT problem with several adaptive improvements in architecture design, value func-
tion calibration, etc. The main contributions of our paper can be summarized as follows.

1. The FJSP-DT abstracted from real and complex scenarios is proposed. As far as our
literature review is concerned, the problem is new and needs to be fully investigated.
The FJSP-DT is modeled as a decentralized partially observable Markov decision
process in that an agent may only observe the information around it in real applications.

https://scholar.google.com/
https://scholar.google.com/
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Then, the MARL-based method can be applied to achieve high adaptability and
real-time decisions.

2. We build an adaptive and stable multi-agent learning framework by combining a
graph convolutional network (GCN) and the actor–critic structure. GCN extracts
embedding graph’s structural features and represents system states in non-Euclidean
space, thereby degrading dimension curses and adapting to various scheduling envi-
ronments. The actor–critic structure can update the network parameters in a single
step without running an episode, making it faster than the policy gradient algorithm.

3. A double Q-value mixing algorithm (DQMIX) under the above framework is proposed
to address the challenge of fast convergence and high adaptability. The algorithm com-
bines an unrestricted optimal network with a monotonic mixing network to improve
exploration and exploitation capabilities. It also integrates mechanistic constraints
into data-based learning, mitigating the curse of dimensionality by eliminating invalid
actions. In addition, the reward function is designed as a function of reduction in
makespan estimation to mitigate the learning challenges caused by sparse feedback.

2. Related Works

In this section, we will focus our review on the research about reinforcement learning
in applications to the optimization of JSP, including single-agent reinforcement learning
and multi-agent reinforcement learning.

• Single-Agent Reinforcement Learning (SARL): The algorithm only contains one agent
that makes all the decisions for a control system.

• Multi-Agent Reinforcement Learning (MARL): The algorithm comprises multiple
agents that interact with the environment through their respective policies.

2.1. SARL for Scheduling

SARL virtualizes an agent interacting with the scheduling environment, learning a
scheduling policy, and then making decisions. The early paper applying SARL to JSP may
be traced back to Zhang and Dietterich (1995) to learn a heuristic evaluation function over
states [18]. Subsequently, Aydin and Öztemel (2000) [19] applied reinforcement learning
to choose dispatching rules depending on the current state of a production system. Since
the proposal of Deep Q-Network (DQN), using SARL to solve JSP has attracted more
and more attention.

2.1.1. SARL with Value Iteration

Waschneck et al. (2018) [20] applied the DQN algorithm to solve a dynamic and flexible
production problem with the objective of maximizing plant throughput. The proposed
model took machine availability and processing characteristics as states and mapped
the states to the station selection. Luo (2020) [21] developed an optimization algorithm
based on Double DQN (DDQN) for dynamic FJSP with order insertion. The algorithm
can select appropriate scheduling rules according to the job state and obtain a plan better
than the general scheduling rules. Lang et al. (2020) [22] combined the DQN algorithm
with discrete event simulation to solve a flexible job shop problem with process planning.
Two independent DQN agents are trained. One agent selects operation sequences, while
the other assigns jobs to machines. Du et al. (2021) [6] considered an FJSP with time-of-use
electricity price constraint and dual-objective optimization for the makespan and total price
and proposed a hybrid multi-objective optimization algorithm of estimation of distribution
algorithm and DQN to solve the problem. Li et al. (2022) [5] presented dynamic FJSPs
with insufficient traffic resources (DFJSP-ITR). They proposed a hybrid DQN (HDQN) that
includes double Q-learning, prioritized replay, and a soft target network update policy
to minimize the maximum duration and total energy consumption. Gu et al. (2023) [23]
integrated DQN method into a scalp swarm algorithm (SWA) framework to dynamically
tune the population parameters of SWA for JSP solving.
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2.1.2. SARL with Policy Iteration

Wang et al. (2021) [24] considered the uncertainties, such as the mechanical failure of
the job shop, and proposed a dynamic scheduling method based on the proximal policy
optimization (PPO) to find the optimal scheduling policy. The states are defined by the job
processing state matrix, the designated machine matrix, and the processing time matrix
of the operations. An action set is defined as the operation selected from the candidate
operation set, and the reward is related to machine utilization. The results showed that the
proposed approach based on reinforcement learning obtained comparative solutions and
achieved adaptive and real-time scheduling.

The application of SARL to solve the scheduling problem has some limitations. Firstly,
FJSP-DT occurs in an uncertain environment, and the information obtained by the agent is
likely to be incomplete, which is difficult for SARL to handle since SARL depends on global
information. Secondly, SARL does not tackle communication and collaboration between
jobs or machines, resulting in the loss of important scheduling information [16]. Thirdly, the
action space of SARL expands with the number of jobs or machines [25], and a high action
dimension can pose a challenge to policy learning. Research shows that the performance of
policy gradient methods gradually lags as the action dimension increases [26].

2.2. MARL for Scheduling

MARL aims to model complex worlds where each agent can make adaptive decisions,
realizing competition and cooperation with humans and other agents, and is attracting
more and more attention in academia and industry [27].

From the perspective of the multi-agent system’s training paradigm, agents’ training
can be broadly divided into distributed and centralized schemes.

• Distributed Training Paradigm (DTP): In the distributed Paradigm, agents learn inde-
pendently of other agents and do not rely on explicit information exchange.

• Centralized Training Paradigm (CTP): The centralized paradigm allows agents to ex-
change additional information during training, which is then abandoned during tests.
Agents receive only the locally observable information and independently determine
actions according to their policies during execution.

2.2.1. MARL with DTP

Regarding works on MARL with DTP, Aissani et al. (2009) [28] applied MARL for
adaptive scheduling in multi-site companies. The supervisor agent sends requests to
inventory agents and resource agents at different sites for a solution in the company’s
multi-agent system. The inventory agent asks the resource agent to propose a solution.
The resource agent then starts its decision-making algorithm based on the SARSA (state–
action–reward–state-action) algorithm using the data system (the resource state, task du-
ration, etc.) and sends back a solution. Martínez et al. (2020) [29] proposed a MARL
tool for JSPs where machines are regarded as agents. This tool allows the user to ei-
ther keep the best schedule obtained by a Q-learning algorithm or modify it by fixing
some operations to satisfy certain constraints. The tool then optimizes the modified so-
lution, taking into account the user’s preferences and using the possible alternatives.
Hameed et al. (2020) [30] presented a distributed reinforcement learning approach for
JSPs. The innovation of this paper is that the authors modeled various relationships within
the manufacturing environments (robot manufacturing cells) as graph neural networks
(GNN). Zhou et al. (2021) [31] proposed a new distributed architecture with multiple
artificial intelligence (AI) schedulers for the online scheduling of orders in smart factories.
Each machine is taken as a scheduler agent, which collects the scheduling states of all
machines as input for training separately and executes the scheduling policy, respectively.
Popper et al. (2021) [32] proposed a distributed MARL scheduling method for the multi-
objective optimization problem of minimizing energy consumption and delivery delay in
the production process. The basic algorithm is solved by PPO, which regulates the joint
behavior of each agent through a common reward function. The algorithm can schedule any
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number of operations. Burggräf et al. (2022) [7] presented a deep MARL approach with
distributed actor-critic architecture to solve dynamic FJSPs. The novelty of this work lies
in parameterizing the state and action spaces. Zhang et al. (2022) [8] constructed a multi-
agent manufacturing system (MAMS) with the capability of online scheduling and policy
optimization for the dynamic FJSP. Various machine tools are modeled as agents capable of
environmental perception, information sharing, and autonomous decision making.

2.2.2. MARL with CTP

Wang et al. (2021) [33] proposed a flexible and hybrid production scheduling prob-
lem and introduced a multi-agent deep reinforcement learning (MADRL) scheduling
method called Multi-Agent Deep Deterministic Policy Gradient (MADDPG). Similarly,
Wang et al. (2022) [9] introduced a modeling method of the decentralized partially Markov
decision process (Dec-POMDP) for the resource preemption working environment (PRE),
and applied QMIX to solve the PRE scheduling problem, where each job is an agent who
selects its action according to current observation. Jing (2022) [10] designed a MARL
scheduling framework based on GCN, namely a graph-based multi-agent system (GMAS),
to solve the FJSP. First, a probabilistic model of the directed acyclic graph of the FJSP
is constructed from the product processing network and workshop environment. Then,
the author modeled the FJSP as a topological graph prediction process and adjusted the
scheduling policy by predicting the connection probabilities between the edges.

In contrast to DTP, CTP shares information among agents through a centralized
evaluation function, making learning more stable and leading to fast convergence. There-
fore, regarding the solving method for FJSP-DT, MARL integrated with the CTP training
paradigm bears the great potential of agility, adaptability, and accuracy, and is the focus of
study therewith.

3. Problem Description and Model Formulation

This section describes the FJSP-DT problem and its modeling as a decentralized
partially observable Markov decision process.

3.1. Problem Description

There are |M| robots in the FJSP-DT workshop and |S| stations. In the workshop,
a total of |N| jobs need to be processed and job ni has |Oi| operations. The relationships
between two operations may be sequential, parallel, or conflicted. The processing time tjk
of the operation oij depends on the robot mk. There exists a subset of robots Mj to satisfy
the processing requirements of the operation oij. Each robot covers a subset of stations.
Multiple robots can share the same station. The transportation time τpq from the station sp
to the station sq for the next operation needs to be considered. The notations formulating
the problem are given in Table 2.

Table 2. Notations.

Symbol Definition

N A set of |N| jobs, N = {n1, n2, . . . , n|N|}.
ni The ith job in the set N.
O A set of all jobs’ operations, O = {o1, o2, . . . , o|O|}.
S A set of all stations for processing, S = {s1, s2, . . . , s|S|}.
sk The kth station in the set S.
M A set of |M| robots, M = {m1, m2, . . . , m|M|}.
mk The kth robot in the set M.
Oi A set of operations for job ni , Oi = {oi1, oi2, . . . , o|Oi |}.
oij The jth operation of job ni .
Mj A set of robots that can support operation oj, Mj = {mj1, mj2, . . . , m|Mj |}.
mjk The kth robot that can support operation oj.
Ml A set of robots that the station sl can cover.
mlk The kth robot that the station sl can cover.
Sk A set of stations that the robot mk can reach.
skl The lth station that the robot mk can reach.
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There are some assumptions as below.

• All jobs are available after release dates.
• A robot can only process one job at a time.
• Each operation can only be processed on one robot at a time.
• Each operation cannot be interrupted during processing.
• There is no buffer in the station, and each station can only accommodate one job at a time.

3.2. Dec-POMDP Framework

FJSP-DT can be regarded as a cooperative multi-agent Markov game due to the jobs’
cooperative scheduling objective. A fully cooperative multi-agent task can be formulated
as a decentralized partially observable Markov decision process (Dec-POMDP), described
by a tuple ⟨N ,S ,A,P , R,O, Ω, γ⟩, where:

• N = {1, . . . , n} is the set of n > 1 agents;
• S is a set of states denoting all joint states possible by the multi-agents;
• A = ×i∈NAi is the set of joint actions, where Ai denotes the set of actions for agent i;
• P is the transition probability function;
• R = R(s, a) is the reward function, mapping states and joint actions to real numbers;
• O = ×i∈NOi is the set of joint observations, where Oi is the set of observations

available to agent i;
• Ω is the observation probability function;
• γ ∈ [0, 1) is a discount factor.

The agents and environment interact at each time step. t = 0, 1, 2, · · · . s ∈ S describes
the true state of the environment, and the state at time step t is denoted by st. The action
for agent i is denoted by ai ∈ Ai. At every time step t, each agent i takes an action ai

t,
leading to one joint action a =

[
a1, a2, . . . , an]T , a ∈ A at every time step. In the fully co-

operative setting, all agents share the same reward function R1 = R2 = · · · = Rn = R(s, a).
The state transition function P = P(s′|s, a) : S × A × S → [0, 1] describes the dynam-
ics of the environment. The observation function Ω(s, a) : S × A → O specifies the
probabilities p(o|a, s′) of joint observations. Due to the partial observability, each agent
only draws individual observations oi ∈ Oi, defined by the observation function Ω(s, a).
The observations for agent i at time step t are denoted as oi

t. At every time step, the
environment emits one joint observation o =

[
o1, . . . , on]T , o ∈ O. The number of joint

observations is |O| = |O1 ×O2 × · · · × On| = Πi|Oi|, and the number of joint actions is
|A| = |A1 ×A2 × · · · × An| = Πi|Ai|. And then, both state and action explosions occur.

Each agent has an action–observation history τi ∈ H ≡ (O ×A)∗. At time step t,
the action–observation history for agent i is denoted by τi

t = [ai
0, oi

1, . . . , ai
t−1, oi

t]
T . A joint

action–observation history τ =
[
τ1, . . . , τn]T denotes the action–observation histories of all

agents. We refer to the state, action, observation, reward, and action–observation variables
at time step t as St, At, Ot, Rt, and Ht, respectively.

The stochastic policy for agent i is denoted by πi(ai|τi) : H × A → [0, 1], then a
multi-agent policy will be denoted by π(a|τ) = (π1, . . . , πn).

A centralized training and decentralized execution paradigm [25] is adopted in our
learning algorithm. Each job is taken as an agent. During training, each agent can access the
environment state s and all agent’s observations o and their histories τ. However, during
execution, each agent can only access its own observations oi and action–observation
history τi to determine its action according to its policy. The modeling for FJSP-DT under
the Dec-POMDP framework will be detailed in Sections 3.3–3.5.

3.3. State and Observations

The states and observations, including four 4 factors: job, operation, station, and
robot, are high-dimension data. Hence, graph-embedding technology is applied to repre-
sent states and observations. Then, GCN is applied to compress states and observation
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dimensions, since it is effective in reducing the computational cost of large and sparse
embedding graphs.

The graph can be defined as G = {V, E, C, X} with |V| = |N|+ |O|+ |S|+ |M| nodes
and |E| edges. vi ∈ V denotes the ith node of the graph; e(vi, vj) ∈ E denotes the edge
between the node vi ∈ V and the node vj ∈ V. C ∈ R|V|×|V| denotes the adjacency matrix,
and the element cij ∈ C represents the weight of the edge e(vi, vj). The feature matrix of the
nodes is represented by X ∈ R|V|×p, where p denotes the dimension of the feature vector.
The schematic diagram of G is shown in the lower left part of Figure 2.

The types of nodes for our problem include four categories: job, operation, station,
and robot. We utilize the following form to represent the feature matrix.

X=


j11 . . . j|N|1 m11 . . . m|M|1 s11 . . . s|S|1 o11 . . . o|O|1
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
j1p . . . j|N|p m1p . . . m|M|p s1p . . . s|S|p o1p . . . o|O|p

, (1)

where j, m, s, and o represent job, robot, station, and operation, respectively, and p is
the number of features. The features of the job include the job type, the number of op-
erations remaining, and the total remaining processing time of all unfinished operations.
The features of the operation include the operation type and the processing time.
The features of the station and the robot include the node type and the remaining oc-
cupancy time.

The edges between operations, robots, or stations do not change during processing.
However, the edges between jobs and operations, jobs and robots, and jobs and stations
change as machining progresses. Hence, the weights of those dynamic edges are updated
during machining, which reflects the current state of the availability of robots and stations,
each job’s location, and the machining progress.

The adjacency matrix C, combining the feature matrix X of the embedding graph, is
of high dimension, and introduces difficulty for network parameter optimization there-
with. Hence, GCN [34] is adopted to extract the structural features of the graph which is
aggregated with node features to generate new node representations. Then, those new
representations can be input into the network for learning. This GCN-based approach
can not only improve the representation ability of node features but also compress the
network’s parameter size and speed up optimization.

A GCN layer can be described as

H(h+1) = ρ
(

D̃−
1
2 C̃D̃−

1
2 H(h)W(h)

)
, (2)

where C̃ = C + I|V| is the self-ring adjacency matrix of the graph G, and I is an identity
matrix with vertices. The element d̃i,i in the matrix D̃ is equal to ∑j c̃i,j. H(h) is the input
matrix of the h layer of the GCN, and the input of the first layer (h = 0) is the feature matrix
X of the nodes. W(h) is a learnable parameter matrix in the hth layer.

Equation (2) represents the multi-layer GCN. In this equation, we take the normalized
self-ring adjacency matrix D̃−

1
2 C̃D̃−

1
2 as the operator of the feature matrix. Therefore, the

graph embedding matrix is denoted as

X̃ = D̃−
1
2 C̃D̃−

1
2 X, (3)

where X is the feature matrix of the nodes, and X̃ is the embedding graph matrix as input
of the learning model.
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Figure 2. The scheduling algorithm architecture of solving the FJSP-DT using the DQMIX.

3.3.1. State

The state includes information about all jobs. According to Equations (1) and (3), at
time step t, state St can be represented by the following form,

St = D̃−
1
2

t C̃tD̃
− 1

2
t Xt, (4)

which is a matrix that can be flattened into a vector before inputting into the network.
The state is utilized during algorithm training.
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3.3.2. Observations
In Dec-POMDP, each agent cannot fully observe other agents’ information. Thus, each

agent’s original observations are defined as a subgraph Gi = {Vi, Ei, Ci, Xi}, where we
exclude other jobs’ nodes and edges except job ni. Its feature matrix can be rewritten to

Xi =


ji1 m11 . . . m|M|1 s11 . . . s|S|1 o11 . . . o|O|1
...

...
. . .

...
...

. . .
...

...
. . .

...
jip m1p . . . m|M|p s1p . . . s|S|p o1p . . . o|O|p

. (5)

Then, the transformed observation matrix of agent i can be represented as

Oi
t = D̃i

t
− 1

2 C̃i
tD̃

i
t
− 1

2 Xi
t. (6)

The observation defined by (6) is required during algorithm execution besides the training period.

3.4. Actions

At each decision point, the agent must choose a station and a robot as an action, called
station–robot pair. Each agent needs a matrix to represent its action space, and the joint
action space of multiple agents should be represented with a three-dimensional tensor. This
high-dimensional action space will cause difficulties in learning policies.

Some mechanistic constraints are introduced to reduce the action space. In general, a
robot can only reach some of the stations, so the number of accessible station–robot pairs
is cut down. For example, if the workshop has 20 robots and 20 stations, and a robot
can only reach 4 stations, then the number of station–robot pairs can be reduced to 80
(20× 4), far less than 400 (20× 20). Furthermore, fewer feasible station–robot pairs satisfy
the constraints of operation precedence and the availability of robots and stations in the
machining process. Those constraints will further reduce the number of alternative actions
during model training.

Therefore, we adopt mechanic constraints to pick out feasible station–robot pairs as
each agent’s action space. Suppose that the number of possible combinations is K; then, the
action set is represented as

Ai = {a1, a2, · · · , aK, aK+1, aK+2, aK+3, aK+4} (7)

See Table 3 for the details. At time step t, the possible actions for agent i are denoted
Ai

t ⊆ Ai.

Table 3. The description of actions.

Action Description

ai(i ≤ K) Specifying a station and a robot are available for the agent to perform
the next operation.

aK+1 Performing the transportation action. If the current station cannot sup-
port the next operation, the agent must move.

aK+2 Staying on processing. The agent must not be interrupted to carry out
other things.

aK+3 Taking a wait action. The agent performs nothing.
aK+4 Representing stop. At this point, the agent has completed all operations.

3.5. Reward

The reward function guides the agent to minimize Cmax or maximize −Cmax, or
c− Cmax, where Cmax denotes the maximum completion time of all jobs, which determines
the makespan, c is a constant. However, the scheduling in FJSP-DT is a sparse reward
task, and we cannot accurately compute the actual makespan Cmax until all jobs’ tasks are
completed. Thus, the agents cannot receive real rewards at each decision epoch. This brings
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forward learning challenges. To address this challenge, we estimate the makespan (ECmax)
at each step that is utilized to evaluate the quality of each agent’s action [35].

ECmax = max
(

ECi
j

)
1≤i≤|N|,1≤j≤|O|

, (8)

where ECi
j denotes the estimated completion time of the operation oi,j.

We employ ECmax(t) to symbolize the ECmax at time step t. The immediate reward
function is designed as a function of reduction in ECmax.

rt(s, a) = ECmax(t)− ECmax(t + 1). (9)

At t = 0, a constant c is set as an initial value, namely EC0
max = c. Maximizing

the immediate reward function (9) at each time step is equivalent to maximizing the
accumulated reward c− Cmax.

The estimated completion time of a certain operation is equal to the processing time
of that operation plus the estimated completion time of its preceding operation, which is
represented as follows:

ECi
j = ECi

j−1 + tj, (10)

where ECi
j−1 denotes the estimated completion time of the operation oi,j−1, which is the

previous operation of the current operation oij. The variable tj denotes the processing
time of the current operation oij. We estimate tj by averaging a set of processing times
{tj1, tj2, . . . , tjk}, where 1, . . . , k are indices of the robots that can support the operation oj.

If Cmax exceeds Cup which is the upper bound set by the human planner, the solution
is poor, and a negative reward should be given. On the contrary, Cmax being less than Cup
indicates the solution is acceptable, and a positive reward should be given. Therefore, the
modified reward function is represented as

rt(s, a) =


ECmax(t)− ECmax(t + 1) if t < |T| and ECmax(t) ≤ Cup,(
Cup − Cmax

)
× α if t = |T| and ECmax(t) ≤ Cup,

−Z if ECmax(t) > Cup.

(11)

where T =
{

1, 2, · · · , Cup
}

, Z > 0, α > 0,
(
Cup − Cmax

)
× α denotes a non-negative reward

between the upper bound of the makespan and Cmax. It encourages the agents to find good
policies to reduce Cmax as much as possible.

4. Algorithm

This section describes the DQMIX algorithm optimizing the above Dec-POMDP model.
We expound it from four aspects: algorithm overview, agent network, critic network, and
loss function.

4.1. Algorithm Overview

DQMIX addresses the challenges of FJSP-DT scheduling through three designs.

1. We utilize a learning algorithm to satisfy the real-time and adaptive requirements
of FJSP-DT scheduling. The scheduling procedure of FJSP-DT is modeled as a Dec-
POMDP model, and a real-time scheduling policy that can adapt to an uncertain
environment is obtained through reinforcement learning.

2. Regarding accuracy, we propose double critic networks to assist agent training, en-
hancing the stability and quality of learning. In addition, a MASK layer is added in
the DQMIX output, which outputs a set of feasible actions based on the current state
and conflicted relationships, ensuring that the output actions are accurate.

3. The MARL architecture is adopted to reduce the dimensionality of action space.
Each job agent only needs to choose actions based on their own observations, and
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each agent model only needs to output a 1 × |Ai| dimensional vector instead of
n× |Ai| dimensional vectors. The GCN network layer is designed to compress the
number of input parameters from |V| × |V| × p to |V| × p, which further alleviates
the dimensionality curse.

As shown in Figure 2, the DQMIX scheduling framework includes the FJSP-DT work-
shop environment and MARL networks.

The FJSP-DT workshop environment is depicted in Figure 1, consisting of stations,
robots, and jobs. We view the workshop state as a graph, with stations, robots, jobs, and
operations as the nodes of the graph, and the state of the nodes and edges representing
the processing state. We treat the job as an agent, and it determines the station and robot
required for each job.

The MARL network comprises n agent networks and two critic networks, namely the
mixing network and the optimal network.

The agent networks of DQMIX refer to the agents’ policy models. The critic networks
provide global guidance for the collaboration of the agents. It assists in optimizing the
parameters of the agent networks during training.

The learning process of DQMIX is described as follows.

• Firstly, an environment instance is generated according to FJSP-DT.
• Secondly, starting at time t = 0, each agent chooses an action ai

t based on its own
observation oi

t and its own policy. The actions of all agents form the joint action
vector at.

• Thirdly, according to the processing state st and scheduling action at at time t, the
environment updates the processing state st+1 and observations ot+1 at time t + 1.
The environment outputs a reward r according to the reward function, and stores the
tuple (st, ot, at, st+1, ot+1) as a POMDP instance in the experience memory.

• Next, the agents continue to interact with the environment until all jobs’ tasks are
completed, or the makespan exceeds Cup.

• Finally, when the scheduling ends, a complete POMDP chain is formed, and the
environment gives the final reward r.

The agents repeat the above steps to obtain samples and update network parameters.

4.2. Agent Network

For each agent, there is one agent network that represents its action-value function
Qi(τi, ai). The agent network includes a graph convolutional network (GCN) layer, a
recurrent neural network (RNN) layer, a fully connected network (FCN) layer, and a
MASK layer.

The GCN layer aggregates the state features of the job graph and adjacency matrix
information into a transformed state matrix.

The RNN network receives the GCN output and the action–observation history τi
t−1

at time step t and outputs a hidden vector.
The FCN layer takes the hidden vector as input and outputs an action-value vector

Qi
t(o

i
t, τi

t , ·) of dimension |Ai|.
The MASK layer is applied to constrain the agent network output to a valid ac-

tion vector. The valid action vectors Ai,avail for agent i at each step are given by the
scheduling environment, and they are represented as a vector consisting of 0 and 1,
Ai,avail = [· · · , 0, · · · , 1, · · · ]T , where 1 denotes the available action and 0 denotes the
unavailable action. Then, the action value vector output by the MASK layer can be
represented as

Qi,avail
t (oi

t, τi
t , ·) = Qi

t(o
i
t, τi

t , ·) + (1−Ai,avail)×M, (12)

where M is a large negative number (e.g., M = −1× 108).
All agent networks share parameters for speeding up networks’ training.
Each agent utilizes the agent network to choose its action at each decision point by

estimating action values for a given observation.
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The action values chosen from the agent network outputs also are taken as input for the
mixing network. The joint action is calculated by the argmax operator and the joint hidden
feature vector τ is calculated by the sum of agent networks’ hidden features. The joint
action and the joint hidden feature vector are taken as the input of the optimal network.

4.3. Critic Network

DQMIX integrates two critic networks: the mixing network and the optimal network,
improving the fitting ability of QMIX [36].

4.3.1. Motivation of Proposing Double Critic Networks

QMIX is a MARL algorithm proposed in 2018 [36]. Although widely used, it may
not achieve optimal solutions in solving non-monotonic problems due to its structural
constraint of monotonicity [37]. To avoid the limitations of QMIX, QTRAN [37] introduces
a joint action-value function to replace the mixing function in QMIX, which improves
the fitting performance. However, it may not perform well in some complex multi-agent
tasks [38]. WQMIX [39] adds an optimal value function to narrow the bias caused by QMIX,
but the optimal value function in WQMIX contains a hyperparameter, which increases the
learning uncertainty during training.

DQMIX integrates the monotonic function Qmix while introducing a new joint action-
value function Q∗ without any restrictions. Q∗ is an optimal joint action-value function of
the state, the action–observation history, and the joint action. Qmix is a mixing value func-
tion, the same as the monotonic value function in QMIX. They are represented as follows:

Qmix = f (s, [Qi]), (13)

Q∗ = f (s, τ, a). (14)

where τ represents the joint action–observation history and [Qi] represents the agent utilities.
The above design mainly lies in two considerations.

1. The non-negative monotonicity of the mixing value function should be kept when the
optimal policy has been recovered, consistent with the goal pursued in cooperative
games. Each agent’s marginal return with the optimal policy is non-negative, i.e.,

∂Qmix(s, [Qi]
)

∂Qi
(
τi, ai

) ≥ 0. (15)

2. To overcome the limitations of Qmix when the optimal policy has not yet been recov-
ered, a joint action-value function Q∗(s, τ, a) is introduced. Q∗(s, τ, a) is a function of
state s, action–observation history τ and joint action a. It reduces the dependencies on
agents’ utilities.

According to the above analysis, we introduce Theorem 1 [37,40] to improve QMIX
and reformulate the decomposition condition of the joint action-value function as the value
decomposition theorem (VDT).

The VDT says if and only if there is a joint action-value function Q∗′(s, τ, a) satisfying
the conditions (16)–(19), the real action-value function Q∗(s, τ, a) can be decomposed into
a set of individual action-value functions {Qi}i∈N .

Qmix(s, τ, â) = Q∗(s, τ, â), (16)

Qmix(s, τ, a) ≥ Q∗(s, τ, a), (17)

∂Qmix(s, τ, a)
∂Qi(τi, ai)

≥ 0, ∀i ∈ N, (18)

â =

[
argmax

ai

Qi(τi, ai)

]
i∈N

. (19)
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The literature [40] provides detailed proof. The following conditions can be deduced
by substitution based on the above conditions:

Q∗(s, τ, â) = Qmix(s, τ, â) ≥ Qmix(s, τ, a) ≥ Q∗(s, τ, a). (20)

Equation (20) satisfies the individual global maximization (IGM) principle [37].

4.3.2. Mixing Network

The mixing network is a feedforward neural network that takes the agent networks’
outputs as input and mixes them monotonically. To enforce the monotonicity constraint
of (15), the weights (but not the biases) of the mixing network are restricted to be non-
negative. The non-negative weights are produced by a set of hypernetworks [41] with the
state as input.

4.3.3. Optimal Network

The true joint action-value function is approximated by the optimal network Q∗.
The optimal network is not restricted to be monotonic by using non-negative weights. There-
fore, we can simplify the architecture by inputting agents’ observations (represented as a
hidden feature vector τ), the joint action at, and the state (if necessary) st into the network.

We construct the network above to improve scalability and sample efficiency as follows.
Since the joint action space is ×i∈NAi, it requires high complexity to find an optimal
action as the number of agents n grows. The optimal joint action is sampled from all the
agent networks by decentralized policies with linear-time individual argmax operations.
The optimal network shares parameters from the agent networks, which enhances good
sample efficiency.

4.4. Loss Function

We design the loss functions according to VDT as below.

L(s, τ, a, r, s′, τ′; θ) = Lstar + λoptLopt + λnoptLnopt. (21)

Lstar(; θ) = (Q∗(s, τ, a)− y)2. (22)

Lopt(; θ) =
(

Q∗(s, τ, â)−Qmix(s, τ, â)
)2

. (23)

Lnopt(; θ) =



(
Qmix(s, τ, a)− y

)2
if c1, (24a)(

Qmix(s, τ, a)−Qclip(s, τ, a)
)2

if c2, (24b)(
Qmix(s, τ, a)−Q∗(s, τ, a)

)2
if c3, (24c)

where Q∗ denotes the output of the optimal network; Qmix denotes the output of the
mixing network; Qclip denotes a clip function; a denotes the joint action vector per-
formed by the agents; â denotes the optimal joint action vector calculated by the argmax
operator with the maximum value of the agent networks; c1 denotes y > Q∗(s, τ, a);
c2 denotes y ≤ Q∗(s, τ, a) and Q∗(s, τ, a) < Q∗(s, τ, â); c3 denotes y ≤ Q∗(s, τ, a) and
Q∗(s, τ, a) ≥ Q∗(s, τ, â).

y = r + γQ∗(s′, τ′, â′; θ−), (25)

â =

[
argmax

ai

Qi(τi, ai; θ)

]n

i=1

, (26)

â′ =

[
argmax

ai′
Qi(τi′, ai′; θ−)

]n

i=1

, (27)
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where y denotes the output of the target network of the optimal network, θ− denotes
the parameter of the target network, and â′ is the optimal actions maximizing the agent
network output Qi(τi′, ai′) for i ∈ N.

Qclip(s, τ, a) = clip
(

Qmix(s, τ, a), Q∗(s, τ, a), Q∗(s, τ, â)
)

. (28)

Equation (28) is used to enforce the output of the mixing network between the evalua-
tion action value Q∗(s, τ, a) and the optimal action value Q∗(s, τ, â).

Equation (22) makes the optimal network maximize the reward as far as possible,
and Equation (23) ensures that the optimal network and the mixing network are optimal
at the same time. The equations in (24) make two networks track each other when per-
forming non-optimal action. If the joint action value is underestimated, Equation (24a)
makes the mixing network track the true value. If the joint action value is overestimated,
Equations (24b) and (24c) keep the gap between the mixing network output and the optimal
network output to the extent that satisfies the necessary conditions of VDT.

The training scheme consists of two loops: the outer loop is used to complete sufficient
training steps, while the inner loop is used to complete an MDP instance, i.e., an episode.
The details are presented in Algorithm 1.

Algorithm 1 DQMIX Algorithm.
1: Initialize network parameters θ, learning rate α, discount rate γ, exploration rate ϵ, replay buffer D, batch size

b, the max number of episodes M, the current episode e = 0, the max number of steps in one episode Cup, the
number of jobs n. Create environment model E.

2: while e < M do
3: Reset environment E, initialize state st, observations o0 = {oi

0}n
i=1, action–observation history

τ−1 = {τi
−1}n

i=1, available action set Aavail
0 = {Ai,avail

0 }n
i=1, episode data d, the current step t = 0;

done = False.
4: while t < Cup do
5: Receive the state st and observations ot available actions Aavail

t from E, set the agent i = 0.
6: while i < n do
7: Choose action by

ai
t =

{
randomly choose an action from Ai,avail

t if random() < ϵ;
argmax Qi,avail(oi

t, τi
t−1, ·) otherwise;

8: put ai
t to action vector at, i← i + 1

9: end while
10: Execute actions at in E to get r, st+1, ot+1, done;
11: Update available action set Aavail

t+1 ;
12: Store (st, ot, at,Aavail

t , r, st+1, ot+1,Aavail
t+1 , done) to d;

13: if done then
14: break
15: end if
16: st ← st+1, ot ← ot+1,Aavail

t ← Aavail
t+1 , t← t + 1

17: end while
18: Store episode data d to replay buffer D;
19: if the size of D more than the least size then
20: Sample a batch of b episodes from D;
21: Compute [Qi ], y, Q∗, Qmix ;
22: Update network parameters θ by minimizing loss with loss function (21).
23: end if
24: e← e + 1
25: end while

5. Case Study

The experiments evaluate the performance of the proposed algorithm in terms of
solution quality, convergence, scalability, and generalization. The time efficiency of the
experiments is not measured because the well-trained DQMIX can solve problems in real
time. The ablation experiments are performed to investigate the effectiveness of GCN
and the reward function. The following experiments run on the computer with the GPU
model of Tesla V100. Tesla V100 is manufactured by NVIDIA Corporation, an American
technology company based in Santa Clara, CA, USA.
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5.1. Case Description and Algorithm Settings
5.1.1. Case Description

A typical application for the FJSP-DT is aircraft maintenance scheduling. In the
FJSP-DT, we consider aircraft as jobs. Therefore, we set up four typical cases, namely N3,
N6, N8, and N12, representing three, six, eight, and twelve jobs, respectively. N3 is a small
case, and N6, N8, and N12 are medium-to-large-sized cases. The base settings are given in
Table 4. The detailed settings of N3 are given in Figure 3 and Tables 5–7.

Table 4. Case parameters.

Case Number
of Jobs

Number
of Operations

Number of
Stations

Number of
Robots Cup LB 1

N3 3 12 5 5 18 13
N6 6 41 22 35 90 54
N8 8 55 22 35 100 58

N12 12 83 22 35 120 66
1 The lower bound of the makespan.

Figure 3. Process diagram.

Table 5. Alternative machines.

Operation Alternative Robots (Processing Time)

1 M1(1), M4(1)
2 M3(5), M4(5), M5(5)
3 M1(4), M2(4)
4 M2(1), M3(1), M5(1)

Table 6. Robots to stations.

Robot Available Stations

M1 S1, S4, S5
M2 S2
M3 S2, S3, S5
M4 S4
M5 S2, S3, S5

Table 7. Transportation time.

Station S1 S2 S3 S4 S5

S1 0 1 1 2 2
S2 1 0 1 1 2
S3 1 1 0 1 1
S4 2 1 1 0 1
S5 2 2 1 1 0
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5.1.2. Experimental Settings

To validate the effectiveness of the proposed algorithm, we selected four represen-
tative algorithms that can solve the FJSP and its extended problems, namely hGATS [42],
hGAVNS [43], MGA [44], and MILP. We make adaptive modifications to the original imple-
mentation of hGATS, hGAVNS, and MGA. The initialization parameters for each algorithm
are set as follows: population size is 200, crossover probability is 0.85, mutation probability
is 0.15, maximum iteration is 1e4, and maximum stagnation generation is 50. Each algo-
rithm utilizes a different random seed to run each case three times, and the average of the
results from each iteration is taken as the evaluation result. The MILP model is solved using
the open-source solver CBC programming. Solver CBC stands for the “constrained binary
optimization” solver. It is an open-source software library used for solving optimization
problems with linear and nonlinear constraints. The CBC solver is widely used in various
fields such as operations research, engineering, finance, and logistics to find the optimal
solution to complex problems.

To evaluate the convergence, scalability, and generalization, we utilize two well-known
MARL (MARL) algorithms as baselines: centrally-weighted QMIX (CWQMIX) [39] and
QTRAN [37]. CWQMIX has an unrestricted joint action-value network but takes the action
values of all agents as its input, which is different from DQMIX. QTRAN also has an
unrestricted joint action-value network but does not import a mixing network like DQMIX.
The primary hyperparameters of the MARL algorithms are determined through several
trials. For the N3 case, the algorithms converge better with a learning rate of 5× 10−4

and a batch size of 32, but for the medium and large cases, the learning rate decreases to
5× 10−5, and batch size increases to 128, then the algorithms perform better. The number
of training steps is 1× 10−5 for the N3 case and 3× 10−5 for others. The hidden layer
parameters for each network are shown in Table 8. We considered the matching between
the hidden and input layer dimensions and determined the settings of these parameters
through multiple tests.

Table 8. Model parameters.

Network Parameters

GCN One layer, with the hidden dimension of 512
RNN Two layers, with the hidden dimension of 512 in each layer.
Mixing Network Two layers, with the hidden dimension of 512 in each layer.
Optimal Network Three layers, with the hidden dimension of 512 in each layer.

The reward function of all MARL models is set to

rt(s, a) =


ECmax(t)− ECmax(t + 1) if t < |T| and ECmax(t) ≤ Cup,(
Cup − Cmax

)
× 10 if t = |T| and ECmax(t) ≤ Cup,

−Cup if ECmax(t) > Cup.

(29)

where T is set to the total number of operations in the cases.

5.2. Solution Quality

The solutions of the comparative algorithms for the case of N3, N6, N8, and N12 are
shown in Table 9.

Table 9. Comparison of the makespan between the comparative algorithms.

Case
DQMIX hGATS hGAVNS MGA CWQMIX QTRAN

MILP
BEST MEAN BEST MEAN BEST MEAN BEST MEAN BEST MEAN BEST MEAN

N3 14 14 13 13 13 13 13 14.0 14.0 17.1 14.0 16.2 13
N6 63 64.5 61 63.6 61 62 62 63.3 68.0 83.6 72.0 84.6 -
N8 68 70.3 71 71.6 67 68 70 71 73 75.7 76 78.7 -
N12 81 84.7 85 85.6 85 85.6 83 84 81 85.7 82 89.7 -
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As shown in Table 9, the optimal solution for the case of N3 given by MILP is 13.
hGATS, hGAVNS, and MGA obtain the optimal solution. While it does not reach the
optimal solution, the DQMIX algorithm converges to a good local optimum that is very
close to the optimal solution. For case N8, the performance of DQMIX in terms of makespan
is better than that of hGATS and MGA (shorter makespan is better). For case N12, the
solution quality of DQMIX is better than that of hGATS and hGAVNS. In other cases, the
solution quality of DQMIX is comparable to that of other traditional algorithms. Compared
with the MARL algorithms, the average of the solutions generated by DQMIX is superior
to those of CWQMIX and QTRAN.

From the RPD (30) indicators (shown in Table 10), the deviation of the average solution
obtained by DQMIX from the best-known solution (BKS) does not exceed 10%. Moreover,
as the problem size increases, the deviation becomes smaller, which to some extent indicates
that DQMIX is increasingly superior in solving large-scale problems.

RPD is a common indicator in workshop schedules, represented as

RPD =
∑U

u (makespanu − BKS)/BKS
U

, (30)

where makespanu is the makespan of the uth experiment, and U is the number of experi-
mental runs.

Table 10. Comparison of the RPD for the comparative algorithms.

Case
DQMIX hGATS hGAVNS MGA CWQMIX QTRAN

MILP
BEST MEAN BEST MEAN BEST MEAN BEST MEAN BEST MEAN BEST MEAN

N3 7.7% 7.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 7.7% 31.5% 7.7% 24.5% 13
N6 3.3% 5.7% 0.0% 4.3% 0.0% 1.6% 1.6% 3.8% 11.5% 37.0% 18.0% 38.7% 61
N8 1.5% 4.9% 6.0% 6.9% 0.0% 1.5% 4.5% 6.0% 9.0% 13.0% 13.4% 17.5% 67
N12 0.0% 4.6% 4.9% 5.7% 4.9% 5.7% 2.5% 3.7% 0.0% 8.8% 1.2% 10.7% 81

Previous studies have demonstrated that when faced with large-scale problems that
are beyond the capabilities of mathematical programming methods (such as MILP), intel-
ligent search algorithms (e.g., GA) can still yield near-optimal solutions. While machine
learning algorithms (e.g., reinforcement learning), exhibit strong real-time performance,
their solution quality often requires enhancement. The findings from this section’s experi-
ments demonstrate that the solution quality of the DQMIX model proposed is comparable
to that of advanced intelligent search algorithms (hGAVNS, hGATS, and MGA). Notably,
as the problem scale expands, DQMIX’s solution quality surpasses that of search-based
algorithms (such as those in N12), a trend that warrants further exploration. Secondly,
while DQMIX, CWQMIX, and QTRAN are all reinforcement learning algorithms, the so-
lution quality of DQMIX surpasses that of CWQMIX and QTRAN. This superiority can
be attributed to the fact that DQMIX employs a double Q-value-function optimization
structure, which distinguishes it from CWQMIX and QTRAN.

5.3. Computation Time

Compared to traditional algorithms, such as genetic algorithms, machine learning
models have shorter execution times and can satisfy the requirements of scenarios with
high real-time requirements, such as the scenarios mentioned in this paper.

Table 11 presents the experimental data on training duration and execution duration
of DQMIX model and three intelligent search algorithms (MGA, hGAVNS, hGATS) in the
N8 case. According to the experimental results, the execution duration of DQMIX is in
seconds, while intelligent search algorithms require more than half an hour, and hGAVNS
even nearly an hour. Despite the longer training time required by DQMIX, this is somewhat
compensated by the adaptability of DQMIX (see Section 5.6). A well-trained DQMIX model
can adapt to changes in dynamic environments to some extent, thus meeting the needs
of real-time scheduling in dynamic environments. In contrast, search algorithms must
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recalculate for any instance, with the same training time and execution time, being unable
to satisfy the real-time requirements under the dynamic environment.

Table 11. Training and execution time of each model in N8 case.

Model Training Duration Execution Duration

DQMIX 5.0 h 47.08 min 4.59 s
hGATS 47.77 min 47.77 min

hGAVNS 51.58 min 51.58 min
MGA 32.86 min 32.86 min

5.4. Convergence

Convergence analysis is mainly applicable to the learning algorithms DQMIX, CWQMIX,
and QTRAN.

As shown in Figure 4, the three algorithms show good convergence in the case of
N3. However, while QTRAN shows quick convergence, DQMIX outperforms CWQMIX
and QTRAN in terms of convergence along the tail. In the case of N6, DQMIX demon-
strates faster convergence compared to the other two algorithms, resulting in a shorter test
makespan than QTRAN and CWQMIX. These results indicate that DQMIX is superior to
the other two algorithms in terms of convergence.

5.5. Scalability

Scalability refers to the ability of models to maintain performance as the number of
agents increases. The experimental results are presented in Figure 4c,d.

When the number of agents increases from 3 and 6 to 8 and 12, DQMIX exhibits
stability, while QTRAN and CWQMIX show reduced stability. Additionally, DQMIX
consistently produces superior solutions compared to the other two algorithms, as shown
in Table 9. These findings suggest that DQMIX is more scalable and reliable, while also
giving better solutions than the other MARL algorithms across varying numbers of agents.

Our ablation experiments reveal that DQMIX’s particular network benefits the learning
policies. The optimal network and the mixing network of CWQMIX takes the individual
action values as input, which may restrict the networks’ fitting ability and thus converge to
local optima. On the other hand, QTRAIN does not have a mixing network, which may
cause the network to be unstable. Therefore, compared to the first two algorithms, DQMIX
maintains the mixing network and takes state and action as inputs for the optimal network,
resulting in better solution quality and stability.

5.6. Generalization

During the generalization test, the algorithms that are well trained in a static envi-
ronment are evaluated in a dynamic environment. The test scenarios incorporate factors
such as robot breakdowns, variations in the number of jobs, and changes in operations.
The well-trained models from the N8 case are employed as the test models.

5.6.1. Generalization to Robot Breakdowns

To simulate robot breakdowns, a simulator is deployed where the probability of
robot failure follows the exponential distribution with parameter λ. In this study, we
simulate 150 instances of robot breakdowns. The test solution is computed as an average of
150 solutions.

Table 12 presents the results of the robot breakdown generalization test for the three
algorithms. Overall, the results show that all three algorithms have good generalization
under robot breakdowns. The average makespan of DQMIX is significantly lower than
that of the other two algorithms, which suggests that DQMIX’s solution quality is superior.
However, the solving success rate of DQMIX is slightly lower than that of CWQMIX. This
is because some solutions generated by DQMIX exceed the upper bound of the makespan
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set by the worker. In terms of stability, the MIR of QTRAN is the smallest, and it seems
that QTRAN is the most stable. However, when we take into account the deviation of
the makespan from the optimal solution, as captured by the NMIR metric, we observe
that DQMIX performs better. In fact, DQMIX has both higher solution quality and greater
stability than QTRAN when we consider NMIR.

(a) N3 (b) N6

(c) N8 (d) N12

Figure 4. Test performance of the MARL algorithms. T in the x-axis represents the number of training
time steps, the same in the following.

Table 12. Test with robot breakdowns.

Items DQMIX CWQMIX QTRAN

StaticMakespan 1 69 73 76
Number of instances 2 150 150 150
Makespan mean 3 73.0 78.5 79.3
Makespan variance 6.0 3.7 3.6
MIR 5.7% 7.5% 4.4%
NMIR 5.7% 10.2% 7.2%
Success rate 99.3% 100% 98.7%

1 The makespan solved in the static environment. 2 Cases produced by random seeds on the same exponential dis-
tribution. 3 The makespans solved under robot breakdowns.

MIR (makespan increment rate) is to measure the dynamic scheduling performance [10],
as shown in Equation (31).

MIR =
DynamicMakespan− StaticMakespan

StaticMakespan
. (31)

NMIR (normalized MIR), represented as Equation (32), reflects the deviation of the
makespan solved under the dynamic environment from the best-known makespan.

NMIRi = MIR× StaticMakespani − LB
BestStaticMakespan− LB

. (32)
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where BestStaticMakespan is the best-known makespan solved by algorithms in a static
scheduling environment. LB is the lower bound of the solution, which may be lower than
the optimal solution.

5.6.2. Generalization to Varied Quantity of Jobs

This test investigates the algorithms’ generalization to varying job quantities.
The experiments are performed on the job set of {4, 5, 6, 7, 8}, and the results are shown in
Table 13.

Table 13. Test with varied job quantity.

Cases Number of Jobs DQMIX CWQMIX QTRAN

N4 4 68 65 81
N5 5 68 66 79
N6 6 70 68 81
N7 7 71 79 76
N8 8 81 79 83
Mean - 71.6 71.4 80
Variance - 29.3 49.3 7

According to Table 13, the three algorithms still have generalization for the varied num-
ber of jobs. Specifically, the average of the solutions of CWQMIX and DQMIX are signifi-
cantly lower than QTRAN, indicating that CWQMIX and DQMIX have better generalization.

5.6.3. Generalization to Changes in Operations

This test verifies the generalization of the algorithms to different operation settings.
We constructed 10 cases, each containing 8 jobs, with randomly assigned operations for
each job. The test results are shown in Table 14. According to Table 14, the average solution
of DQMIX is lower than QTRAN and CWQMIX.

Table 14. Test with the variation in operations.

Case DQMIX CWQMIX QTRAN

1 77 73 74
2 89 73 72
3 71 72 88
4 79 72 74
5 68 69 69
6 75 100 72
7 66 100 72
8 69 66 78
9 68 67 71
10 67 100 72
Mean 72.9 79.2 74.2
Success rate 100% 70% 100%

The generalization tests conducted on the three algorithms reveal that DQMIX has the
best generalization.

5.7. GCN Effectiveness Verification

Compared with GCN, we artificially design a state vector and an observation vector,
called state vector representations. DQMIX and DQMIX-NO represent the model based
on the GCN embedding and the state vector representations, respectively. We test the two
models in the cases of N3 and N8 three times on three random seeds, and the results are
shown in Figure 5.
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(a) N3 (b) N8
Figure 5. Test performance for GCN.

According to Figure 5a, we observe that DQMIX-NO outperforms DQMIX in terms of
convergence speed and final solution quality. However, in the N8 case (Figure 5b), DQMIX
converges faster and achieves better results than DQMIX-NO. Additionally, DQMIX demon-
strates greater stability in both cases.

Our experiments show that DQMIX can be as effective as DQMIX-NO in small-scale
cases. However, for larger-scale cases, DQMIX shows better convergence and stability,
which improves the overall training effect. Another benefit of DQMIX is that it requires no
domain expertise for state modeling.

5.8. Ablation on Reward Function

The reward function based on makespan increment estimation is proposed to aid
model training. To verify the effectiveness of the reward function, we make a comparison
with a sparse reward function.

The sparse reward function is defined as follows.

rt(s, a) =


0 if t < |T| and ECmax(t) ≤ Cup,
−Z if ECmax(t) > Cup,(
Cup − Cmax

)
× α if t = |T| and ECmax(t) ≤ Cup.

(33)

The DQMIX model with the sparse reward function is labeled as DQMIX-SPARSE.
We perform ablation with the reward functions in the cases of N3 and N8, and the

results are shown in Figure 6.
Figure 6a shows that in the case of N3, DQMIX achieves better convergence and

solution quality than DQMIX-SPARSE, while in the case of N8 (Figure 6b), the difference
between the two is not significant in terms of convergence. It is worth noting that our
training policy of sampling complete trajectories in batches and using them for learning
may alleviate the negative impact of sparse feedback on model training.

(a) N3 (b) N8
Figure 6. Test performance for reward functions.
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6. Conclusions and Future Work

The paper introduces a complex scheduling problem called FJSP-DT, which has path
and operation sequence flexibility and varied transportation time. FJSP-DT is modeled as
Dec-POMDP, and GCN is applied to compress its states and observations. Mechanistic
constraints are employed to exclude invalid actions and reduce the action space. We propose
a MARL-based DQMIX algorithm to solve FJSP-DT. This algorithm incorporates double
critic networks: the optimal network and the mixing network, enhancing its exploration
and exploitation capabilities. The experimental results demonstrate that DQMIX can obtain
comparable solutions to traditional algorithms. DQMIX shows high convergence and good
generalization in the presence of robot breakdowns, varying quantities of jobs, and changes
in operations.

Our future works will mainly focus on three aspects: (1) improving the scalability of al-
gorithms through data and knowledge fusion-driven methods, (2) refining the reward func-
tion through hierarchical reinforcement learning, and (3) constructing a virtual–physical
integrated system to support aircraft maintenance operations.
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