Smooth and Time-Optimal Trajectory Planning for Robots Using Improved Carnivorous Plant Algorithm
Abstract
:1. Introduction
2. Modeling Optimization Problems
2.1. Path Parameterization
2.2. Objective Function Parameterization
3. Optimization Problem Solving
3.1. Feasibility Region Analysis in the Phase Plane
3.2. Trajectory Construction
4. Improved Carnivorous Plant Algorithm
4.1. Carnivorous Plant Algorithm
Algorithm 1 Carnivorous Plant Algorithm |
Input: Objective function , where ; 1: Number of iterations, population size, attraction rate, growth rate, and other parameters. Output: Best solution found by the algorithm. 2: Initialize population with individuals in dimensions; 3: Evaluate the fitness of each individual; 4: Rank individuals according to their fitness values; 5: Determine the best individual as the first carnivorous plant; 6: while stopping criterion not met do 7: Classify the top individuals as carnivorous plants; 8: Classify the remaining individuals as prey; 9: Group the carnivorous plants and prey; 10: /* Growth of carnivorous plants and prey */ 11: for to do 12: for = 1 to do 13: if > random number then 14: Prey is captured and digested; 15: Generate a new carnivorous plant using Equation (27); 16: else 17: Prey escapes; 18: Generate new prey using Equation (28); 19: end if 20: end for 21: end for 22: /* Reproduction of the first carnivorous plant */ 23: for to do 24: Generate a new carnivorous plant based on the first carnivorous plant using Equation (29); 25: end for 26: Evaluate the fitness of each new carnivorous plant and prey; 27: Merge old and newly formed carnivorous plants and prey; 28: Rank all individuals by fitness; 29: Determine the current best individual as the first carnivorous plant; 30: end while |
4.2. Improved Carnivorous Plant Algorithm
4.3. Smooth and Time-Optimal Trajectory Planning Algorithm
5. Simulation and Result Analysis
5.1. Analysis of Performance Improvement of Carnivorous Plant Algorithm
- (1)
- CPA: group iteration = 2; attraction rate = 0.8; growth rate = 2; reproduction rate = 1.8; nCPlant = 20; nPrey = 80;
- (2)
- ICAP: group iteration = 2; attraction rate = 0.8; growth rate = 2; reproduction rate = 1.8; nCPlant = 20; nPrey = 80; Epsilon = 1 × 10−6;
- (3)
- GA: population size = 100; crossover probability, Pc = 0.8; mutation probability, Pm = 0.2;
- (4)
- PSO: population size = 100; learning factor, c = 1.5; learning factor, c2 = 1.5; inertia weight, wmax = 0.8; inertia weight, wmin = 0.4;
- (5)
- ABC: population size = 100.
5.2. Simulation Experiments and Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, C.; Chang, P.; Luh, J. Formulation and optimization of cubic polynomial joint trajectories for industrial robots. IEEE Trans. Autom. Control. 1983, 28, 1066–1074. [Google Scholar] [CrossRef]
- Gasparetto, A.; Zanotto, V. A new method for smooth trajectory planning of robot manipulators. Mech. Mach. Theory 2007, 42, 455–471. [Google Scholar] [CrossRef]
- Gasparetto, A.; Zanotto, V. A technique for time-jerk optimal planning of robot trajectories. Robot. Comput.-Integr. Manuf. 2008, 24, 415–426. [Google Scholar] [CrossRef]
- Wang, F.; Wu, Z.; Bao, T. Time-jerk optimal trajectory planning of industrial robots based on a hybrid woa-ga algorithm. Processes 2022, 10, 1014. [Google Scholar] [CrossRef]
- Machmudah, A.; Parman, S.; Zainuddin, A.; Chacko, S. Polynomial joint angle arm robot motion planning in complex geometrical obstacles. Appl. Soft Comput. 2013, 13, 1099–1109. [Google Scholar] [CrossRef]
- Hou, R.; Niu, J.; Guo, Y.; Ren, T.; Yu, X.; Han, B.; Ma, Q. A novel resolution scheme of time-energy optimal trajectory for precise acceleration controlled industrial robot using neural networks. Actuators 2022, 11, 130. [Google Scholar] [CrossRef]
- Bobrow, J.E.; Dubowsky, S.; Gibson, J.S. Time-optimal control of robotic manipulators along specified paths. Int. J. Robot. Res. 1985, 4, 3–17. [Google Scholar] [CrossRef]
- Shin, K.; Mckay, N. Minimum-time control of robotic manipulators with geometric path constraints. IEEE Trans. Autom. Control. 1985, 30, 531–541. [Google Scholar] [CrossRef]
- Shiller, Z.; Lu, H.H. Computation of path constrained time optimal motions with dynamic singularities. J. Dyn. Sys., Meas., Control 1992, 114, 34–40. [Google Scholar] [CrossRef]
- Verscheure, D.; Demeulenaere, B.; Swevers, J.; De Schutter, J.; Diehl, M. Time-optimal path tracking for robots: A convex optimization approach. IEEE Trans. Autom. Control. 2009, 54, 2318–2327. [Google Scholar] [CrossRef]
- Oberherber, M.; Gattringer, H.; Müller, A. Successive dynamic programming and subsequent spline optimization for smooth time optimal robot path tracking. Mech. Sci. 2015, 6, 245–254. [Google Scholar] [CrossRef]
- Ham, H.; Pham, Q.C. A new approach to time-optimal path parameterization based on reachability analysis. IEEE Trans. Robot. 2018, 34, 645–659. [Google Scholar]
- Barnett, E.; Gosselin, C. A bisection algorithm for time-optimal trajectory planning along fully specified paths. IEEE Trans. Robot. 2020, 37, 131–145. [Google Scholar] [CrossRef]
- Lin, H.I. A fast and unified method to find a minimum-jerk robot joint trajectory using particle swarm optimization. J. Intell. Robot. Syst. 2014, 75, 379–392. [Google Scholar] [CrossRef]
- Gao, X.; Mu, Y.; Gao, Y. Optimal trajectory planning for robotic manipulators using improved teaching-learning-based optimization algorithm. Ind. Robot. 2016, 43, 308–316. [Google Scholar] [CrossRef]
- Huang, J.; Hu, P.; Wu, K.; Zeng, M. Optimal time-jerk trajectory planning for industrial robots. Mech. Mach. Theory 2018, 121, 530–544. [Google Scholar] [CrossRef]
- Sencer, B.; Altintas, Y.; Croft, E. Feed optimization for five-axis cnc machine tools with drive constraints. Int. J. Mach. Tools Manuf. 2008, 48, 733–745. [Google Scholar] [CrossRef]
- Ong, K.M.; Ong, P.; Sia, C.K. A carnivorous plant algorithm for solving global optimization problems. Appl. Soft Comput. 2021, 98, 106833. [Google Scholar] [CrossRef]
- Javidi, M.; Hosseinpourfard, R. Chaos Genetic Algorithm Instead Genetic Algorithm. Int. Arab. J. Inf. Technol. 2015, 12, 163–168. [Google Scholar]
- Mezura-Montes, E.; Coello, C.A.C. Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm Evol. Comput. 2011, 1, 173–194. [Google Scholar] [CrossRef]
- Jamil, M.; Yang, X.S. A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer. Optim. 2013, 4, 150–194. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, X.; Zhou, Y.; Liu, Y.; Zhou, X.; Chen, H.; Zhao, H. An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems. Inf. Sci. 2022, 585, 441–453. [Google Scholar] [CrossRef]
- Li, G.; Chou, W. Path planning for mobile robot using self-adaptive learning particle swarm optimization. Sci. China Inf. Sci. 2018, 61, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, P.; Rakshit, P.; Goswami, I.; Konar, A.; Nagar, A.K. Multi-robot path-planning using artificial bee colony optimization algorithm. In Proceedings of the Third World Congress on Nature and Biologically Inspired Computing, Salamanca, Spain, 19–21 October 2011; pp. 219–224. [Google Scholar]
Function | Dim | Range | Optimal |
---|---|---|---|
10 | [−100, 100] | 0 | |
10 | [−100, 100] | 0 | |
10 | [−100, 100] | 0 | |
10 | [−5.12, 5.12] | 0 | |
10 | [−32, 32] | 0 | |
4 | [−5, 5] | 0.00030 |
Function | Type | CPA | ICPA | GA | PSO | ABC |
---|---|---|---|---|---|---|
F1 | Mean | |||||
Std. | ||||||
F2 | Mean | |||||
Std. | ||||||
F3 | Mean | |||||
Std. | ||||||
F4 | Mean | |||||
Std. | ||||||
F5 | Mean | |||||
Std. | ||||||
F6 | Mean | |||||
Std. |
Kinematics | alpha [rad] | a [m] | d [m] | theta [rad] |
---|---|---|---|---|
Joint 1 | π/2 | 0 | 0.089159 | 0 |
Joint 2 | 0 | −0.425 | 0 | π/2 |
Joint 3 | 0 | −0.39225 | 0 | 0 |
Joint 4 | π/2 | 0 | 0.10915 | −π/2 |
Joint 5 | −π/2 | 0 | 0.09465 | 0 |
Joint 6 | 0 | 0 | 0.0823 | 0 |
Joint i | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Velocity (deg/s) | 160 | 160 | 160 | 160 | 160 | 160 |
Acceleration (deg/s2) | 573 | 573 | 573 | 1146 | 1146 | 1146 |
Jerk(deg/s3) | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
Torque (Nm) | 100 | 100 | 100 | 150 | 150 | 150 |
Torque rate(Nm/s) | 500 | 500 | 500 | 500 | 500 | 500 |
Position No. | Joint No. (°) | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
1 | −27.16 | −1.13 | −66.75 | 6.31 | 17.22 | −32.13 |
2 | 33.52 | −11.10 | −70.92 | −44.91 | −52.19 | −13.37 |
3 | 57.52 | 32.53 | −34.89 | −75.99 | 55.31 | −28.93 |
4 | −6.75 | −54.11 | −10.69 | −57.08 | 69.62 | 58.80 |
5 | −23.62 | 68.46 | −50.35 | 65.07 | −78.60 | 56.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, B.; Liu, C.; Zhang, X.; Zheng, K.; Cao, Z.; Chen, Z. Smooth and Time-Optimal Trajectory Planning for Robots Using Improved Carnivorous Plant Algorithm. Machines 2024, 12, 802. https://doi.org/10.3390/machines12110802
Wei B, Liu C, Zhang X, Zheng K, Cao Z, Chen Z. Smooth and Time-Optimal Trajectory Planning for Robots Using Improved Carnivorous Plant Algorithm. Machines. 2024; 12(11):802. https://doi.org/10.3390/machines12110802
Chicago/Turabian StyleWei, Bo, Changyi Liu, Xin Zhang, Kai Zheng, Zhengfeng Cao, and Zexin Chen. 2024. "Smooth and Time-Optimal Trajectory Planning for Robots Using Improved Carnivorous Plant Algorithm" Machines 12, no. 11: 802. https://doi.org/10.3390/machines12110802
APA StyleWei, B., Liu, C., Zhang, X., Zheng, K., Cao, Z., & Chen, Z. (2024). Smooth and Time-Optimal Trajectory Planning for Robots Using Improved Carnivorous Plant Algorithm. Machines, 12(11), 802. https://doi.org/10.3390/machines12110802