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Abstract: In this work, the analysis of the acoustic emission (AE) signal in grinding processes is
addressed. The proposed analysis method decomposes the acoustic signal into three frequency ranges.
The total energy of each range is determined, as well as the highest frequency. Different grinding
experiments were carried out, according to a full factorial design of experiments (DOE), in which feed
speed, depth of cut, and transversal step (table cross feed) were varied. Arithmetic average roughness
Ra and the material removal rate (MRR) were determined. It was observed that Ra depends mainly
on the transversal step, followed by feed speed and the interaction between the transversal step
and depth of cut, while MRR is greatly influenced by the transversal step. According to multi-
objective optimization with the Derringer–Suich function, in order to simultaneously minimize Ra
and maximize MRR, a transversal step of 9 mm per longitudinal pass, feed speed of 20 m/min, and
depth of cut of 0.020 mm should be selected.

Keywords: flat grinding; acoustic emission; EMD; roughness; MRR

1. Introduction

Surface grinding is an abrasive machining process for flat surfaces. Specifically, in
traverse grinding, a grinding wheel turns while the table where the workpiece is placed
combines transversal and longitudinal movement, provided by feed speed (in a recip-
rocating movement) and the cross-feed or transversal step, respectively [1,2]. Two main
differences between abrasive machining processes and cutting processes are that in abrasive
machining processes, much smaller chips are produced, and a higher amount of energy
is required in abrasive machining processes to remove the same material volume. This is
mainly attributed to negative rake angles and rubbing and plowing between the wheel and
the workpiece [2]. In addition, the cutting-edge geometry in abrasive machining processes
is stochastic rather than deterministic.

Machining processes provide different acoustic emission (AE) signals depending on
the used process parameters. Nowadays, the use of AE signal analysis for the analysis
of machining processes is increasing. Based on the obtained sound signal, it is possible
to non-invasively supervise the machining process, i.e., it is possible to control it without
interrupting the operation of the machine tool. For example, the condition of the machine
and the degree of tool wear can be checked. Adeniji et al. [3] developed a real-time and
non-destructive evaluation quality technique for the monitoring of conducted machining
processes based on AE signals, wavelet transform, and deep neural networks. They
integrated an AE sensor into the cutting tool holder to maintain constant signal attenuation
during cutting. Barylski and Sender [4] paid extensive attention to the possibility of creating
automated numerically controlled machines which, in addition to other sensors, contain
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acoustic sensors and computational algorithms used to supervise machining processes.
Fernando Chacón et al. [5] stated that tool wear is a critical aspect that requires real-time
monitoring, for instance, using AE analysis, to reduce costs and the scrap received in
machining processes. Rimpault et al. [6] concluded that cutting forces and AE signals
depend strongly on tool wear. They used fractal analysis and found variations in tool wear.
Gómez et al. [7] studied a drilling process with different degrees of tool wear and found
relationships between acoustic emission (AE) and torque. Kuntoglu et al. [8] stated that
indirect tool condition monitoring systems can use sensors situated around the cutting area
to check the wear condition of a cutting tool without intervention in the cutting zone. Murat
et al. [9] confirmed the high precision of the analysis method using AE signals for drill
wear level classification from sharp to completely worn drill. Nahornyi et al. [10] proposed
using the generated sound during machining as the operational information needed for the
adaptive control of the metalworking process and also for early monitoring and diagnosis
of the condition of the machined materials. Sio-Sever et al. [11] presented a prototype of
a system for estimating the milling parameters from an AE signal using AI procedures.
Zhang et al. [12] studied a new deep learning model to identify tool wear. The force signal
was transformed into a two-dimensional image using continuous wavelet transform and
short-time Fourier transform. The generated images were then fed into a convolutional
neural network (CNN) model for further analysis. The accuracy of the proposed tool wear
state recognition method was above 90%. Ho et al. [13] defined a new direction for the
monitoring of the machining process using machine learning tools to analyze recorded
data during machining, such as cutting force, acceleration, sound, image, etc.

Researchers are also involved in the analysis of the influence of machining parameters
on the vibrations obtained. For example, Huda [14] detected chatter in turning processes by
analyzing AE. Nikhare et al. [15] stated that, over time, a cutting tool reaches its end-of-life,
which increases the cutting force and thus produces more vibration and noise. Nourizadeh
et al. [16] described that the sound generated by tool holder vibration will result in a low-
frequency sound, while the sound generated by the friction mechanism is a high-frequency
signal. They also described that the sound generated by metal deformation produces a
mid-range frequency signal. They also showed that the main portion of the energy in a
machining process is consumed for metal deformation. Papacharalampopoulos et al. [17]
stated that there are several mechanisms for the inspection of tool wear, especially using
the AE method. The obtained signals can be affected by tool geometry, machine vibrations,
and noise. Perrelli et al. [18] proposed two algorithms for chatter detection, from the
calculation of two chatter indicators, based on Power Spectral Density and Wavelet Packet
Decomposition analysis of the monitored signals.

As for the operation of abrasive machining processes, Chen and Wang [19] observed
that bivariate empirical mode decomposition (BEMD) and Hilbert transform are reliable
methods for processing simulated and experimental chatter signals obtained during the
CNC grinding process because of good behavior in terms of processing nonstationary
and nonlinear signals. Leaman [20] observed that using empirical mode decomposi-
tion (EMD) is a complementary signal processing technique in gearbox analysis. Amar-
nath and Praveen Krishna [21] stated that EMD extracted from sound signals provides
good diagnostic information due to its ability to decompose signals into high- and low-
frequency modes. Deja [22] showed that utilizing microphones as audible sound sensors
is a suitable approach for monitoring a single-side lap grinding process. Sender and Buj-
Corral [23] reported that the AE signal analysis can be used to assess the correct operation
of abrasive stones in honing processes. Liao [24] monitored the grinding wheel condi-
tion using AE signals, which were extracted with discrete wavelet decomposition and
autoregressive models.

Regarding the surface finish, Pilny et al. [25] described the surface roughness obtained
in the polishing process and found a correlation between decreasing AE amplitude and
surface roughness Ra. Mirifar et al. [26] studied the connection between AE signals and
grinding outputs, e.g., surface roughness and grinding forces, using neural networks.
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Nguyen et al. [27] proposed a prediction technique for surface roughness in grinding
processes by decomposing the original AE signals into intrinsic mode functions (IMFs) with
the empirical mode decomposition (EMD) method. Hatami et al. [28], using a corundum
wheel of grit 46, checked that the lowest average surface roughness value (0.70 µm) was
obtained using a feed rate of 100 mm/s (6 m/min), while the highest value (0.87 µm)
was obtained using a feed rate of 300 mm/s (18 m/min). Demir et al. [29] confirmed
that, when using depth of cut of 0.04 mm and 0.05 mm, the Ra obtained with an 80-grain
wheel was better by 30, 80, and 400% than those for 60, 46, and 36-grain wheels. Wang
et al. [30] showed that surface roughness tended to increase gradually with the increase
in cutting depth and workpiece feed speed. Wen et al. [31] found that, as grinding depth
decreases, the grinding force of coated micro-grinding tools is continuously reduced, which
decreases the impact of the tools on the surface of a specimen; and the surface roughness
of the specimen is thus reduced. Ying et al. [32] stated that, when the grinding depth
increased from 0.01 mm to 0.05 mm, the surface roughness profile parameter Ra increased
from 0.13 µm to 0.19 µm, because the contact time between abrasive particles and samples
prolongs as the grinding depth increases. They also stated that the number of abrasive
particles that participate in grinding in the grinding area increases, thus increasing the
overall grinding force. This makes particles easier to pull out [33]. However, some authors
report a decrease in roughness with feed speed, for example, Ruzzi et al. [34] as well as Ma
et al. [35], who also found a decrease in roughness with depth of cut. As for the transversal
step or table cross-feed, Patel et al. [36] found that it has an important effect on roughness,
when grinding EN8 steel with alumina of grit size 60.

Concerning the material removal rate (MRR), high values up to 80 mm3/mm·s were
reported by König and von Arciszewski [37] for high depth of cut values up to 8 mm. Thus,
the material removal rate is known to increase with depth of cut. Kumar et al. [38] stated
that the optimal combination of parameters is a wheel speed of 850 min−1, a table speed
of 15 m/min, and a depth of cut of 11.94 µm in order to achieve a maximum MRR and
minimum surface roughness. Walton et al. [39] stated that high specific material removal
rates (SRR) of 1000 mm3/mm2·s produce thermal damage on workpieces’ surfaces, with
severe re-hardening burn. Ma et al. [40] reported that the MRR is influenced by many
parameters such as wheel speed, feed speed, dressing, wheel surface, workpiece surface,
etc. For the surface grinding of AISI D3 steel, Singh et al. [41] found that depth of cut was
the main parameter influencing the MRR.

Regarding the energy of the AE signal, Kwak and Ha [33] found that both the peak
value of RMS and the peak value of FFT increased with feed speed in grinding processes.
Yin et al. [42] investigated the relationship between processing parameters and characteristic
parameters of the AE signal including the RMS value, ringing count, and signal spectrum
during grinding. They found that the RMS value of the AE signal increased with grinding
depth and feed velocity and decreased with an increase in grinding wheel linear velocity
when grinding GH4169 superalloy, TC4 titanium alloy, and SiCp/Al composite. Webster
et al. [43] observed that in grinding processes, the normal force/AE ratio had a good
correlation with surface roughness.

In this work, the effect of three flat grinding parameters (feed speed, transversal step,
and depth of cut) on surface roughness and the material removal rate is addressed using
a full factorial design of experiments. Using multi-objective optimization, appropriate
values of the grinding parameters are searched for in order to simultaneously minimize
roughness and maximize the material removal rate. In addition, the acoustic emission (AE)
signal is measured for the different experiments. Each signal is divided into three groups
of signals, and the maximum frequency is determined for each group. Sound signal energy
parameters Ey1, Ey2, and Ey3 are also calculated. The maximum frequency values for each
group conform to a specific pattern for this process. In cases where there was a problem in
the grinding process, the pattern would change, thus allowing us to monitor the process.
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2. Materials and Methods
2.1. Materials

Carbon steel blocks made from St-52 steel of dimensions 50 × 50 × 200 were machined
in a Perfect tangential grinding machine, with a corundum abrasive wheel of grain size 60
(Norton scale). The cutting speed was 30 m/s in all experiments.

2.2. Grinding Experiments

This research consisted of grinding experiments on a flat surface, in which the depth
of cut, feed speed, and transversal step, also known as cross feed, were varied. The acoustic
emission (AE) signal was recorded. In addition, the average surface roughness Ra and
material removal rate (MRR) were determined in all experiments.

In the grinding tests, a three-factor two-level full factorial 23 design plan was used,
with 3 central points, which summarizes 11 layouts. The full factorial design can be
visualized as a cube with an experimental run at each of the cube’s corners. A regression
analysis of the 23 full factorial experiments can fit the following model (1):

y = b0 + b1x1 + b2x2 + b3x3 + b12x12 + b13x13 + b23x23 + b123x123 (1)

where the bs are all regression coefficients.
The b0 term is referred to as the model’s constant. The coefficients b1, b2, and b3 are

called the main effects and the b12, b13, and b23 terms are two-factor interactions. The
coefficient b123 is established as a three-factor interaction.

The grinding experiments are shown in Table 1, together with the Ra and MRR results.
Experiment 9 corresponds to the center point of the design, in which all the variables are
kept at their middle values, i.e., depth of cut of 0.015 mm, feed speed of 16 m/min, and
transversal step of 6 mm per longitudinal pass. Experiment 9 was repeated three times.
The average value for this experiment is presented in Table 1.

Table 1. Parameters: transversal step (mm), feed speed (m/min), depth of cut (mm); responses:
average roughness—Ra, material removal rate—MRR.

Run Order Transversal
Step (mm)

Feed Speed
(m/min)

Depth of Cut
(mm)

Ra
(µm)

MRR
(mm/min)

1 3 12 0.010 0.447 0.0178

2 9 12 0.010 0.554 0.0310

3 3 20 0.010 0.395 0.0231

4 9 20 0.010 0.442 0.0308

5 3 12 0.020 0.378 0.0202

6 9 12 0.020 0.601 0.0307

7 3 20 0.020 0.350 0.0211

8 9 20 0.020 0.536 0.0300

9 6 16 0.015 0.456 0.0242

2.3. Experimental Setup

Figure 1 shows the tangential grinding machine made by Perfect Machine Co., Ltd.,
(Taichung, Taiwan), model PFG-2550AH, which was used in the experimental tests. This
research was conducted at the Manufacturing Technologies Laboratory of the Barcelona
School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya in Spain.
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Figure 1. Tangential grinding machine used in the experiments: 1—CNC grinder, 2—computer with
Matlab and Audacity software, and 3—control panel of the CNC grinder.

A directional condenser microphone made by Trust company (Dordrecht, The Nether-
lands) model Velica, was mounted in the machining area of the grinding machine (Figure 2)
and used for recording of AE signal. The advantage of directional microphones is that they
record acoustic signals mainly from the direction in which a microphone is placed, which
largely eliminates most acoustic signals that could be recorded from the surroundings.
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Figure 2. Experimental setup. 1—display, 2—workpiece, 3—directional condenser microphone,
4—laptop with a software package (including Matlab, Audacity, Minitab), and 5—control panel.

The selected responses are the energy of the AE signal (Ey1, Ey2, and Ey3), average
roughness Ra, and the material removal rate, MRR (see Sections 2.4–2.6).

2.4. Roughness Measurements

Roughness was measured with a Taylor Hobson (Leicester, UK) Talysurf 2 contact
roughness meter. A Gaussian filter was used with a cut-off length of 0.8 mm. The measure-
ment length was 4.8 mm. The arithmetic average roughness parameter Ra was considered.

2.5. Determination of the Material Removal Rate (MRR)

In order to determine the material removal rate, the height of the blocks before and
after the grinding operation was measured with a Mahr digital micrometer (Figure 3).
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Figure 3. Measurement of the overall dimension of the ground workpiece: 1—measured workpiece
and 2—digital micrometer.

In this work, MRR (mm/min) was considered as the height reduction in the blocks
per time unit.

2.6. Measurement of the AE Signal

The AE signal was recorded with a microphone (see Section 2.3). Figure 4 shows
a laptop with Audacity and Matlab software installed. The laptop is connected to the
directional Trust’s microphone.
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2.7. Analysis of the AE Signal

The proposed analysis method used to decompose the acoustic emission (AE) signal
into three frequency ranges is as follows (Figure 5):

- First, the frequency bands are established. The signal is decomposed into three
different signals, using band pass filters. In this case, the selected frequency ranges
were as follows: for the first band, 150 to 1000 Hz; for the second band, 1000 to 3500 Hz;
and for the third band, 3500 to 10,000 Hz. Other values can be established depending
on the type of machining or machining conditions. Alternatively, IMFs can be used
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instead of the signal. They are obtained with the empirical mode decomposition
(EMD) method.
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- The next step is to measure the power spectrum for the different frequency ranges of
the analyzed AE signals.

- In addition, X is calculated as the frequency of the highest peak of the filtered signal
(in kHz), while Y is the power spectrum in dB.

3. Results and Discussion
3.1. The Material Removal Rate and Surface Roughness

Table 1 summarizes the experiments that were performed, as well as the results of the
grinding tests.

The highest Ra value of 0.601 µm corresponds to experiment 6, with a high depth
of cut of 0.020 mm, low feed speed of 12 m/min, and high transversal step of 9 mm per
longitudinal pass. The lowest Ra value of 0.350 µm was found in experiment 7, with a high
depth of cut of 0020 mm, high feed speed of 20 m/min, and low transversal step of 3 mm
per longitudinal pass. This suggests that, within the ranges studied, not only the feed speed
but also transversal step, also known as cross feed, have an important influence on surface
roughness. This was also reported by Patel et al. [36]. Similar roughness values were
obtained by Hatami et al. [28] with a grinding wheel of grit size 46. According to Demir
et al. [29], the higher cutting depth and feed speed, the greater the number of effective
dynamic grinding edges and the maximum undeformed chip thickness, thus enhancing
the depth of the grinding marks, the grinding force, and the grinding heat. As a result,
the roughness parameter Ra increases. In this work, roughness increases with depth of
cut when a high transversal step is considered (experiments 2 and 6 or experiments 4
and 8). However, when a low transversal step is used, the opposite behavior is observed
(experiments 1 and 3 or experiments 5 and 7). This reduction in roughness with depth of
cut was also reported by Ma et al. [35] for glass–ceramics. On the other hand, in this work,
Ra tends to decrease with feed. This effect was previously reported by Ruzzi et al. [34]
when grinding Inconel. On the other hand, the higher the transversal step, the lower the
overlap between consecutive passes, leading to higher roughness [36]. This phenomenon is
found in the present work, for example, when comparing experiments 1 and 2, 3 and 4, 5
and 6, or 7 and 8.

The highest MRR values around 0.0300 mm/min were obtained in experiments 2, 4,
6, and 8, with a high transversal step of 9 mm per longitudinal pass. The lowest MRR
value was reported in experiment 1, with a low depth of cut of 0.010 mm, low feed speed
of 12 m/min, and low transversal step of 3 mm per longitudinal pass. Thus, within the
studied range, the transversal step has an important influence on the MRR. Similar depth of
cut values of 0.012 mm and feed speed values of 15 m/min were used by Kumar et al. [38].
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They reported MRR values between 12.82 g/min and 30.24 g/min, using grit size of 60.
On the other hand, since the specific material removal rate (in mm2/s) is defined as the
product of radial depth of cut and feed rate [44], theoretically, a lower depth of cut or lower
feed rate would lead to a lower specific material removal rate. In this work, a high depth of
cut leads to a higher MRR only when a high transversal step is selected. This suggests that,
at a low transversal step, the overlapping effect reduces the MRR.

3.2. Ey1, Ey2, Ey3, X1, Yy, X2, Y2, X3, and Y3

Table 2 contains the results of the power spectrum and the highest frequency for each
frequency band.

Table 2. Energy levels and highest frequencies for the three frequency groups.

Run Order Ey1
(dB)

Ey2
(dB)

Ey3
(dB)

X1
(Hz)

Y1
(dB)

X2
(Hz)

Y2
(dB)

X3
(Hz)

Y3
(dB)

1 187.33 30.70 85.74 834.62 −37.63 1965.38 −47.82 6483.08 −48.37

2 233.80 156.35 373.87 834.62 −36.12 2213.08 −41.34 6515.38 −43.92

3 724.60 75.60 379.47 818.46 −24.23 1970.77 −47.12 6515.38 −41.52

4 296.08 47.57 154.97 829.23 −33.24 2040.77 −49.40 6477.69 −47.11

5 595.29 315.84 494.91 813.08 −33.63 1992.31 −43.54 6515.38 −46.08

6 650.16 157.10 420.11 823.85 −36.37 2040.77 −43.71 6499.23 −44.29

7 364.03 73.98 277.28 818.47 −28.40 974.62 −36.64 4469.23 −36.92

8 701.53 177.95 402.66 818.46 −32.21 1997.69 −39.25 4113.85 −44.88

9 530.54 220.19 442.63 816.67 −30.93 2006.67 −44.12 5878.21 −43.93

Regarding the energy of the AE signal, in general, values followed Ey1 > Ey3 > Ey2.
The highest frequency value ranges between 813 and 835 Hz (X1), 974 and 2214 Hz (X2),
and 4113 and 6516 Hz (X3) for the first, second, and third frequency groups, respectively.
This signal pattern could be used to compare the flat grinding process with other abrasive
machining processes including cylindrical grinding or honing. According to Nourizadeh
et al. [16], low frequencies could correspond to mechanical elements of the machine such
as the tool holder, while high frequencies would correspond to the friction mechanism
between the grinding wheel and the workpiece. In this work, as a general trend, a higher
depth of cut value leads to lower peak frequencies in the three frequency ranges studied.

3.3. Analysis of the Acoustic Emission (AE) Signal for Experiment 1

In this work, 11 different sound signals were recorded. In Figure 6, as an example, the
original signal registered during the grinding process of experiment number 1 is presented.

The sound signal in Figure 6 shows periodicity, corresponding to the grinding cycles.
The acoustic signal of experiment number 1 was divided into sub-signals (IMFs) of

different frequencies, according to the EMD method, to observe the behavior for specific
frequency values of the recorded signal. Figure 7 shows the original sound signal of
experiment 1, along with the filtered IMF 1.

Figure 8 presents the fast Fourier transform (FFT) of the original acoustic signal of the
first layout, as well as of the filtered IMF 1.
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As previously stated in Section 2.7, the EMD method could be applied, if necessary, to
all the signals in order to reduce noise. However, in the present work, filtered signals were
used without the application of EMD.

Figures 9–11 show the power spectrum of AE signals recorded for the three frequency
ranges, respectively. The maximum energy value of the acoustic signal for a given frequency
range and a specific frequency is also highlighted.
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dominant frequency X = 6.49 kHz and max amplitude value Y = −48.37 dB.

The obtained energy data for experiment 1 is Ey1 = 187.33 dB, Ey2 = 30.70 dB, and
Ey3 = 85.74 dB (Table 2).

3.4. Factorial Regression Analysis

In this section, the statistical analysis is shown for Ra and the MRR.

3.4.1. Model for Ra

The coded coefficients for Ra are shown in Table 3. The R2-sq parameter is 85.01%.

Table 3. Terms, effects, coefficient, SE coefficients, T-value, p-value, and VIF for Ra.

Term Effect Coef SE Coef T-Value p-Value VIF

Constant 0.4629 0.0107 43.39 0.000

Transversal step 0.1408 0.0704 0.0107 6.60 0.007 1.00

Feed speed −0.0642 −0.0321 0.0107 −3.01 0.057 1.00

Depth of cut 0.0067 0.0034 0.0107 0.32 0.772 1.00

Transversal step·feed speed −0.0242 −0.0121 0.0107 −1.14 0.338 1.00

Transversal step·depth of cut 0.0637 0.0319 0.0107 2.99 0.058 1.00

Feed speed·depth of cut 0.0178 0.0089 0.0107 0.83 0.466 1.00

Ct Pt −0.0065 0.0204 −0.32 0.770 1.00

Figure 12 corresponds to the Pareto chart for Ra.
Within the range studied, the Ra roughness profile parameter value depends mainly

on the transversal step, followed by feed speed and the mutual effect of the transversal step
and depth of cut. Transversal step is known to influence surface roughness in flat grinding
processes [36]. Feed speed and depth of cut also affect roughness [33,45].
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3.4.2. Model for the MRR

The coded coefficients for the MRR are shown in Table 4. The R2-sq parameter is
93.27%.

Table 4. Terms, effects, coefficient, SE coefficients, T-value, p-value, and VIF for the MRR.

Constant 0.025587 0.000435 58.78 0.000

Transversal step 0.010075 0.005038 0.000435 11.57 0.001 1.00

Feed speed 0.001325 0.000663 0.000435 1.52 0.225 1.00

Depth of cut −0.000175 −0.000087 0.000435 −0.20 0.854 1.00

Transversal step·feed speed −0.001775 −0.000888 0.000435 −2.04 0.134 1.00

Transversal step·depth of cut −0.000375 −0.000188 0.000435 −0.43 0.696 1.00

Feed speed·depth of cut −0.001225 −0.000613 0.000435 −1.41 0.254 1.00

Ct Pt −0.001421 0.000834 −1.70 0.187 1.00

Figure 13 corresponds to the Pareto chart for the MRR.
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The MRR value depends mainly on the transversal step value followed by the mutual
effect of the transversal step and feed speed. Feed is known to influence the material
removal rate in grinding processes [36,46]. The characteristics of the grains, together
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with the depth of cut influence the type of mechanism that will mainly occur, among
rubbing, plowing, and cutting. Cutting is preferred since it contributes greatly to material
removal [47].

3.5. Multi-Objective Optimization

Table 5 contains the results of the multi-objective optimization using the Derringer–
Suich function. Roughness was minimized, and the MRR was maximized. First, the same
importance was given to both responses. Later, 10 times higher importance was used for
each one of the responses.

Table 5. Results of the multi-objective optimization.

Importance Transversal
Step (mm)

Feed Speed
(mm/min)

Depth of Cut
(mm)

MRR
(mm/min)

Ra
(µm)

Composite
Desirability

Equal 9 20 0.010 0.0313 0.464 0.7385

10 times higher Ra 3 20 0.020 0.0216 0.330 0.8927

10 times higher MRR 9 20 0.010 0.0313 0.464 0.9464

If both responses are given the same importance, or if the MRR has higher importance,
the recommendation is to use a high transversal step of 9 mm per longitudinal pass, a high
feed speed of 20 mm/min, and a low depth of cut of 0.010 mm. On the contrary, if Ra has
higher importance, a low transversal step of 3 mm per longitudinal pass and a high depth
of cut of 0.020 mm should be selected. Kangharot et al. [48] optimized both the surface
roughness and MRR in flat grinding processes. They recommend using a grit size 46, a
depth of cut 0.20 mm, and a feed rate of 0.5404 mm/s (3.24 mm/min). However, they did
not vary the cross-feed or transversal step.

4. Conclusions

In this work, the surface roughness, material removal rate, and energy of an AE signal
in surface traverse grinding processes are analyzed. The main conclusions are as follows:

1. Analysis of AE signal using filtration in three different frequency ranges is a useful
method to analyze the grinding process. In this case, three modes were considered.
As a general trend, the higher the depth of cut, the higher the energy values. The
highest frequency of each frequency group tends to decrease with the depth of cut.

2. The greatest influence on the Ra parameter is the transversal step followed by feed
speed and the mutual effect of depth of cut and the transversal step.

3. Within the ranges studied, the material removal rate depends mainly on the transver-
sal step.

4. In order to simultaneously obtain low roughness and a high MRR, a high transversal
step and feed speed and a low depth of cut are recommended.

This research will contribute to the future monitorization of the grinding process from
the analysis of the AE signal.

Author Contributions: Conceptualization, P.S., J.Á.-F. and I.B.-C.; Methodology, P.S., I.B.-C. and
J.Á.-F.; Writing—Original Draft Preparation, P.S. and I.B.-C.; Writing—Review & Editing, I.B.-C. and
P.S.; Visualization, P.S.; Supervision, I.B.-C. and J.Á.-F.; Project administration, I.B.-C.; Funding acqui-
sition, I.B.-C. and P.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the Excellence Initiative—Research University project
of Gdansk University of Technology—under the project: DEC-4/2022/IDUB/IV.2/EUROPIUM.

Data Availability Statement: Data are available upon request.

Acknowledgments: The authors thank Alejandro Domínguez and Ramón Casado for their help with
the experimental tests.



Machines 2024, 12, 110 14 of 15

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Klocke, F. Manufacturing Processes 2-Grinding, Honing, Lapping; Springer: Berlin/Heidelberg, Germany, 2009.
2. Liang, S.Y.; Shih, A.J. Analysis of Machining and Machine Tools; Springer: Berlin/Heidelberg, Germany, 2015.
3. Adeniji, D.; Oligee, K.; Schoop, J. A Novel Approach for Real-Time Quality Monitoring in Machining of Aerospace Alloy through

Acoustic Emission Signal Transformation for DNN. J. Manuf. Mater. Process. 2022, 6, 18. [CrossRef]
4. Barylski, A.; Sender, P. The proposition of an automated honing cell with advanced monitoring. Machines 2020, 8, 70. [CrossRef]
5. Ferrando Chacón, J.L.; Fernández de Barrena, T.; García, A.; Sáez de Buruaga, M.; Badiola, X.; Vicente, J. A Novel Machine

Learning-Based Methodology for Tool Wear Prediction Using Acoustic Emission Signals. Sensors 2021, 21, 5984. [CrossRef]
[PubMed]

6. Rimpault, X.; Chatelain, J.F.; Klemberg-Sapieha, J.E.; Balazinski, M. Fractal Analysis of Cutting Force and Acoustic Emission
Signals during CFRP Machining. Procedia CIRP 2016, 46, 143–146. [CrossRef]

7. Gómez, M.P.; Hey, A.M.; Ruzzante, J.E.; D’Attellisc, C.E. Tool wear evaluation in drilling by acoustic emission. Phys. Procedia
2010, 3, 819–825. [CrossRef]
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