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Abstract: The timely detection of faults that occur in industrial machines and components can
avoid possible catastrophic machine failure, prevent large financial losses, and ensure the safety of
machine operators. A solution to tackle the fault detection problem is to start with modeling the
condition monitoring signals and then examine any deviation of real-time monitored data from the
baseline model. The newly developed deep long short-term memory (LSTM) neural network has a
high nonlinear flexibility and can simultaneously store long- and short-term memories. Thus, deep
LSTM is a good option for representing underlying data-generating processes. This paper presents a
deep-LSTM-based fault detection method. A goodness-of-fit criterion is innovatively used to quantify
the deviation between the baseline model and the newly monitored vibrations as opposed to the
mean squared value of the LSTM residual used in many reported works. A railway suspension
fault detection case is studied. Benchmark studies have shown that the deep-LSTM-based fault
detection method performs better than the vanilla-LSTM-based and linear-autoregression-model-
based methods. Using the goodness-of-fit criterion, railway suspension faults can be better detected
than when using the mean squared value of the LSTM residual.

Keywords: fault detection; deep long short-term memory; railway vehicle suspensions

1. Introduction

The timely detection of faults that have occurred in railway suspensions is of great
significance in terms of health management and maintenance optimization [1]. A fault,
if not addressed in time, will keep propagating and may lead to a catastrophic failure
of the railway, causing a huge financial loss and threatening the safety of train crew
and passengers.

A solution to tackle the fault detection problem is to model the vibration signals in
a data-driven manner and then examine the deviation of real-time monitored vibration
data from the baseline model. In this context, vibration signals refer to the vibration signals
collected when the machine is healthy. The deviation is often measured by a score. The
score is then typically compared to a decision limit. When the score exceeds the limit, the
machine is categorized as faulty. Fault detection in the industrial machine health monitoring
discipline has a close theoretical similarity with the concepts of anomaly detection, novelty
detection and outlier detection [2] in application scenarios like medical diagnostics [3] and
video surveillance [4].

Many vibration modeling approaches are available, such as the Gaussian mixture
model [5], information metrics such as entropy [6], one-class support vector machine that
takes features as inputs (also referred to as the safety domain method) [7], nearest neighbors,
clustering analyses [8], autoencoders [9], and time-series models [10]. In this paper, time
series models are focused on, given that modeling vibration as a time series avoids any
additional steps such as domain transformation or feature extraction and thus reduces the
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complexity of fault detection. Another reason that they are studied is that by using time
series models, the sequential (spatial) features of the vibration signal can be fully modeled.

Linear time series models are widely used for vibration modeling and thus for fault
detection. Linear models include autoregression (AR), moving average (MA), autoregres-
sion and moving average (ARMA), etc. Assaad et al. [11] used the AR model to represent
the vibrations of a multistage planetary gearbox under constant operating conditions. Gear
wear was detected by deriving condition indicators from AR residuals. Yip [12] used the
ARMA model to represent the vibration of a three-stage planetary gearbox under constant
operating conditions. Health indices were calculated from residuals to determine gear
wear trends. Chen et al. [13] proposed a sparse linear parameter varying AR model to
represent the vibrations of a fixed-axis gearbox under variable speed conditions. However,
data-generation processes (DGPs) may be nonlinear, especially in sophisticated systems
like railway vehicles.

Many nonlinear time-series models have been developed in recent decades. One
of the easiest ways to account for nonlinearity is to add interaction product terms into
linear time-series models. The so-called nonlinear autoregressive and moving average
(NARMA) model belongs to this category. The NARMA model was proposed by Kim
et al. [14] to represent the structural vibrations of a three-story building structure. A
more recent model called the generalized nonlinear autoregressive model (GNAR) was
proposed by Ma et al. [15] to represent the vibrations of a rolling bearing. This model can be
extended to the GNARMA model by adding the MA part and the corresponding interaction
product terms. This GNAR model is more flexible than NARMA given the existence of
higher-order interaction product terms. The interaction product terms, however, restrict
the nonlinear model from representing the nonlinearity of real-world DGPs. Other types of
nonlinear terms are available and can be used in a nonlinear time-series model to achieve a
higher modeling accuracy with computational efficiency. In the fields of ecology, finance,
and economics, a widely studied nonlinear time-series model is the so-called functional-
coefficient autoregressive (FAR) model (also known as state-dependent autoregressive
model) proposed by Chen and Tsay [16] and Cai et al. [17]. The FAR model depends
on the choice of a single lagged variable as a model-dependent variable. This limits
its applications. A generalization of this FAR model allows for an adaptive search of
the dependent variables. This generalized FAR model was proposed by Fan et al. [18].
Furthermore, Ma and Song [19] proposed a varying index coefficient model (VICM) that
contains different indexes for each smooth function. When configuring the predictors as
lagged responses, the VICM becomes the VICAR (varying index coefficient autoregression)
model. The resulting VICAR model is even more flexible than the GFAR model.

Neural networks, ranging from the AR neural network [20,21] to the recurrent neural
network (RNN) [22], have recently been a popular choice for nonlinear time-series model-
ing. An AR neural network requires proper determination of the order of lagged inputs.
An RNN, on the other hand, does not require determination of the order of lagged inputs.
Conventional RNNs are only capable of looking back approximately ten time steps, due
to the fed-back signal either vanishing or exploding [23]. The long short-term memory
(LSTM) neural network was proposed to cope with the vanishing or exploding problem
by introducing an intermedia cell state [24–26]. As a result, LSTM can simultaneously
store long- and short-term information. Therefore, LSTM is a good option for vibration
time-series modeling. LSTM, especially when multiple LSTM layers are stacked and thus
form so-called deep LSTM, has proven to be successful in many disciplines [27–30]. Chal-
lenges associated with (deep) LSTM, however, are proper architecture selection and training
hyperparameter determination. Improper architecture selection and training hyperparam-
eter determination will lead to inaccurate modeling of the time series. Researchers have
used random search [31] and grid search [32] to select the architecture and determine the
training hyperparameters. The validation error was usually used as a criterion to guide the
random/grid search.
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Over the past decade, researchers have strived to improve standard LSTM, and several
variants of LSTM have been reported, including gated recurrent units (GRUs) [33], LSTM
with coupled forget and input gates [31], LSTM with peephole connections [31], and other
mutations [34]. However, Greff et al. [31] observed that none of these variants could
significantly improve standard LSTM.

LSTM and its variants have been used for fault detection in recent years. Yokouchi
et al. [35] present a method for anomaly detection in railway vehicle air-conditioning units
using LSTM networks. This approach involves learning from normal operational data to
build a predictive model and then to predict normal data, establishing a distribution of
prediction errors. Rustam et al. [36] propose a method for detecting railway track faults
using machine learning and deep learning models, in which acoustic data are analyzed
to identify different types of railway track faults. Eunus et al. [37] combine convolutional
autoencoders, a ResNet-based RNN, and LSTM to analyze images of railway tracks for
detection. Wang et al. [38] applied single-layer LSTM to model fixed-axis gearbox vibration
signals and used the residual to detect a bore crack. They also compared the LSTM
residual with spectral kurtosis demodulation, resonance demodulation, and unified change
detection, and found that the LSTM residual performs better when detecting small cracks.
Liu et al. [25] presented a nonlinear predictive (NP) GRU-based denoising autoencoder for
bearing fault diagnoses. Its performance was compared with many other autoencoders.
For acoustic anomaly detection, Marchi et al. [24] examined LSTM, BLSTM, and MLP when
acting as a basic AE, a compressed AE, and a denoising AE, and when configured as NP or
not, respectively. They found that the NP-BLSTM-DAE performs the best. However, LSTM
has not been used to model railway vibration responses yet, and thus its performance has
not been comprehensively assessed in this context.

In this paper, the novelty is, for the first time, the introduction of deep LSTM to
model railway vehicle vibration responses. The grid search method is adopted for LSTM
architecture selection and training hyperparameter determination based on minimizing the
validation error. Once a deep LSTM model is identified to model the vibration response,
it is used to detect railway suspension faults by examining any deviation from newly
monitored vibration data in the baseline deep LSTM model. Furthermore, a goodness-of-fit
criterion is innovatively utilized for quantifying the deviation between the baseline model
and the newly monitored vibration data. Previous works used the mean squared error
(MSE) [25,38], which essentially is a Euclidean distance [24] between the predicted vibration
and newly monitored vibration data. It is found that better fault detection results can be
obtained by using the goodness-of-fit criterion.

The structure of this paper is as follows: Section 2 details the fundamentals of deep
LSTM; Section 3 presents the deep-LSTM-based fault detection method; Section 4 demon-
strates the performance of the deep-LSTM-based fault detection method on a railway
suspension; and the concluding remarks are drawn in Section 5.

2. Fundamentals

In this section, deep LSTM is first introduced, and then the designed approach for
proper architecture selection and training hyperparameter determination based on mini-
mization of the validation error is presented.

2.1. Deep LSTM

LSTM is a special type of RNN. A unique innovation of LSTM is the introduction of
an internal cell state to avoid the gradient vanishing or exploding problem [23], as shown
in Figure 1. The inputs of an LSTM block are input features xt (dimensions Nx × 1), the
cell state Ct−1 (dimension Nh × 1), and the hidden state ht−1 (dimensions Nh × 1). The
outputs of an LSTM block are the cell state Ct (dimensions Nh × 1) and the hidden state ht
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(dimensions Nh × 1) at time t. This input information will first pass through the forget gate
as follows, which determines the information to throw away from the cell state Ct−1.

ft = σ
(

W f xt + R f ht−1 + b f

)
, (1)

where ft is the output of forget gate, which is of size Nh × 1; Wf (Nh × Nx) is the input
weight matrix; Rf (Nh × Nh) is recurrent weight matrix; bf (Nh × 1) is the bias vector for the
forget gate; and σ(·) denotes sigmoid activation.

Figure 1. An LSTM block.

The next step is the input gate output it (of size Nh × 1), which decides what new
information is to be stored in the cell state.

it = σ(Wixt + Riht−1 + bi), (2)

where Wi (Nh × Nx) is the input weight matrix; Ri (Nh × Nh) is the recurrent weight matrix;
and bi (Nh × 1) is the bias vector.

Then, the cell state is updated:

C̃t = tanh
(
Wgxt + Rght−1 + bg

)
, (3)

Ct = ft × Ct−1 + it × C̃t, (4)

where C̃t denotes the candidate cell state which is of size Nh × 1; tanh(·) is the hyperbolic
tangent activation function; Wg and Rg are the input and recurrent weights, respectively,
where Wg is of size Nh × Nx and Rg is of size Nh × Nh; and bg (Nh × 1) is the bias vector.
The earlier state Ct−1 is multiplied element-wise by ft, thereby discarding the information
that was decided to be forgotten. Then, the candidate value C̃t is added and scaled by it,
which denotes how much information we decided to update each state value with.

The last step is updating the output gate and hidden state:

ot = σ(Woxt + Roht−1 + bo), (5)

ht = ot × tanh(Ct), (6)

where ot denotes the output vector, which is of size Nh × 1; Wo and Ro are the input
and recurrent weights; Wo is of size Nh × Nx, where whereas Ro is of size Nh × Nh; and
bo (Nh × 1) is the bias vector.

When applied to time series representation, xt may be input. x̂t+1 at time t + 1 is
obtained from aggregation of the hidden state ht.

x̂t+1 = Wc
Tht, (7)

where Wc is the weight matrix of size Nh × 1 and T denotes the transpose operation.
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Figure 2 shows deep LSTM for time series representation. In this case, multiple LSTM
layers are stacked. The hidden state output from the lower LSTM layers is treated as an
input in higher layers. Note that vanilla LSTM refers to the basic LSTM neural network
structure with only one LSTM layer (Nl = 1). Compared to deep LSTM, vanilla LSTM is
much simpler and less complex.

Figure 2. Deep LSTM for time-series modeling.

Let W = [Wf
T Wi

T Wg
T Wo

T Wc
T] T, R = [Rf

T Ri
T Rg

T Ro
T]T, and

b = [bf
T bi

T bg
T bo

T]T, where Nl denotes the number of LSTM layers, the superscript l in
Wl, Rl, bl denotes the associated weight matrices for the lth layer, and the loss function is
described as

loss =
1
N

N

∑
t=2

(x̂t − xt)
2 + λ

Nl

∑
l=1

(∥∥∥Wl
∥∥∥+ ∥∥∥Rl

∥∥∥+ ∥∥∥bl
∥∥∥), (8)

where N is the length of the data sequence, λ is an L2 regulator, and ∥·∥ denotes the L2
norm. The training problem becomes:(

Wl , Rl , bl
)
= augmin

Wl ,Rl ,bl
loss f or l = 1, 2, . . . , Nl (9)

The Adam [39] is usually employed to solve this training problem.

2.2. Architecture Selection and Training Hyperparameter Determination

Proper architecture selection and training hyperparameter determination are impor-
tant. The grid search method is adopted for architecture selection and training hyperpa-
rameter determination based on minimization of the validation error.

The hyperparameters include the number of layers Nl and the number of hidden states
in each layer, the minimal batch size, the maximum epochs, the L2 regulator λ, and the
learning rate. For efficiency reasons, the number of hidden states is assumed to drop by
half from a low layer to its succinct higher layer.

The procedure to determine these architecture and training hyperparameters is:

(1) Configure search candidate sets for each hyperparameter. For instance, the set for
Nh1 is = [10:10:100 150:50:1200], where 10:10:100 denotes a sequence from 10 to 100
with an increment of 10.

(2) Use training data to train deep LSTM given specific hyper-parameter values, and then
obtain the validation error.

(3) Repeat step (2) until all possible combinations of hyperparameters are evaluated.
(4) Find the combination of hyperparameters that gives the minimal validation error.

Note that when the number of combinations of hyperparameters is large, a genetic
algorithm may be employed to find the optimal hyperparameters.
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3. Deep-LSTM-Based Fault Detection Method

Figure 3 illustrates the procedure of deep LSTM for fault detection. First, the sensors
and the data acquisition systems are installed, which are essential prerequisites. Next, the
collected data are utilized to train the deep LSTM model. Following training, additional
monitoring data are gathered and fed into the previously trained deep LSTM, resulting in
an estimated series. The detection criterion is then determined by comparing the similarity
between the estimated time series and the actual collected data. Finally, with the established
criterion and a decision limit in place, fault detection is feasible.

Figure 3. Deep-LSTM-based fault detection method.

In this paper, the goodness-of-fit, fit, criterion is used between the estimated time-series
data and true collected data for fault detection:

f it = 1 −
N

∑
t=2

(xt − x̂t)
2

/
N

∑
t=2

(xt − xt)
2 , (10)

where xt is the mean value of the collected data. This fit criterion measures the discrepancy
between the expected time series generated by deep LSTM and the true collected series. As
deep LSTM was trained using data collected in a healthy state, the expected time series
would have a high fit with data collected under a healthy state. Once the health state
changes, deep LSTM is no longer a good representation of the underlying DGP, and thus
the modeled time series would have low agreement with the collected data.

As for the detection threshold, different threshold values will lead to the true positive
rate (TPR) and the false positive rate (FPR). In this paper, we plot the receiver operating
curve with the TPR against the FPR across all possible threshold values. The specific detec-
tion threshold is determined by the users based on their tolerance to the TPR and the FPR.

4. Detection of Railway Vehicle Suspension Faults

In this section, the deep-LSTM-based method is applied to railway suspension fault
detection. A comparison with the AR-based fault detection method is also made.
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4.1. Railway Vehicle Dynamics Model

A railway vehicle suspension model [40–42], as depicted in Figure 4, is used for
generating vertical railway suspension dynamic responses. The model has six degrees of
freedom: the bounce Z and pitch β of the car body and the two bogies (front and back). The
equations of motion are given in [42], as well as the parameters.

Figure 4. Vehicle dynamics model.

The assumptions made in the model are:

• The car body is symmetric and rigid.
• The bogies have a symmetric and rigid body.
• The wheel is modeled as a massless point that follows the rail surface.
• The damping and stiffness are fixed constants.

4.2. Simuluation Configuration

The suspension fault detection relies on analyzing car body vibrations. The dynamic
model is solved by an improved Newmark method [41]. The track irregularity is modeled
as Gaussian white noise (mean = 0 and standard deviation = 0.002 m), following ref. [40].
The train speed v is 72 km/h, and the sampling frequency fs is 10 Hz. Car body vibrations
are generated under four health states: healthy state and states with a 10% reduction,
20% reduction, and 30% reduction in the stiffness of the secondary suspension Ksz1 from
its nominal value due to faults like material deterioration. Under each health state, 200
segments were generated as testing data. For training and validation purposes, 50 segments
were generated under the healthy state. Each segment lasts 50 s. Table 1 summarizes the
data for training, validation, and testing.

Table 1. Simulated data.

Training Validation Testing

Health state Healthy Healthy Healthy Ksz1 10% Ksz1 20% Ksz1 30%
Number of segments 50 50 200 200 200 200

4.3. Performance of the Deep-LSTM–Based Fault Detection Method

The deep LSTM model was trained and its hyperparameters were optimized while
minimizing the validation error. The search space was set as follows: number of hidden
layers Nl = [1 2 3 4 5], number of hidden state1 Nh1 = [10:10:100 150:50:1200], L2 regulation
λ = [1 × 10−1 1 × 10−2 1 × 10−3 1 × 10−4], and learning rate [0.001 0.005]. The optimal
deep LSTM model is Nl = 5, Nh = [800 400 200 100 50], λ = 0.01, and learning rate = 0.005.
The minimal batch size was fixed at 128 and the maximum epochs were 500. The algorithm
was executed using a Tesla T4 Graphic Processing Unit. The computational time was 25 h,
26 min, and 27 s.
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The raw car body vibration signals were first standardized. The modeling performance
is quantified using the root mean squared error (RMSE) and mean absolute error (MAE).

RMSE =

√√√√ 1
N − 1

N

∑
t=2

(xt − x̂t)
2, (11)

MAE =
1

N − 1

N

∑
t=2

|xt − x̂t|. (12)

The RMSE and MAE of the trained deep LSTM model are listed in Table 2, which were
measured using healthy testing data.

Table 2. Modeling accuracy measured using healthy test data. The value in parentheses is the relative
ratio to the smallest criterion.

Models Testing RMSE (m/s2) Testing MAE (m/s2)2

AR 0.3814 (108.1) 0.3049 (108.3)
Vanilla LSTM 0.3866 (109.6) 0.3086 (109.6)
Deep LSTM 0.3529 (100.0) 0.2815 (100.0)

For comparison, an AR model with na = 65 is used with the same training data. na was
chosen by minimizing the Bayesian information criterion [43]. The modeling accuracy was
measured using the same testing data. Evidently, deep LSTM is more accurate than the
AR model. Both the RMSE and MAE values are about 8% higher, thanks to deep LSTM’s
highly nonlinear model flexibility. One advantage of the AR model, on the other hand,
is its high efficiency. The consumed central processing unit time was only 3 min and 7 s,
significantly lower than the time of deep LSTM.

The modeling performance of vanilla LSTM (Nl = 1) is also reported in Table 2 for
comparison. It is evident that using deep LSTM is necessary to accurately model the
baseline car body vibrations. In fact, vanilla LSTM performs even slightly worse than the
AR model.

The deep-LSTM-based method was used for fault detection. The goodness-of-fit
values were obtained and are shown in Figure 5. For comparison, Figure 5 also shows the
goodness-of-fit values obtained using the AR model and the vanilla LSTM model. With
the increase in fault severity, the goodness-of-fit value decreases. This implies that the
more severe the fault is, the less similar the car body responses will be to the responses in a
healthy state. Therefore, this goodness-of-fit value can be used for fault detection.

To show the motivation behind selecting the goodness-of-fit value as a fault detection
criterion, instead of the MSE, the MSE value of the deep LSTM residual is presented in
Figure 5. The MSE of the residual, essentially a Euclidean distance [24], has been widely
used by researchers [25,38] as a fault detection criterion. As shown in Figure 5, the MSE
value increases as the fault severity increases. This implies that the more severe the fault is,
the larger the prediction error will be.

However, it is hard to objectively compare the fault detection performance of each
method by observing the goodness-of-fit values and the fault detection performance when
using either the goodness-of-fit value or the MSE. Meanwhile, a suitable fault detection
threshold is also not clear. To this end, the receiver operating curve (ROC) was plot-
ted and the area under the receiver operating curve (AUC) was calculated to provide a
quantitative comparison.



Machines 2024, 12, 116 9 of 13

Figure 5. Detection criterion under each health state: (top row) goodness-of-fit values from deep
LSTM, (second row) goodness-of-fit values from vanilla LSTM, (third row) goodness-of-fit values
from AR, (bottom row) MSE values from deep LSTM.

The ROC was constructed by plotting the true positive rate (TPR) against the false
positive rate (FPR) across all possible threshold values. Consider a test set comprising N
faulty (negative) samples and P healthy (positive) samples. At a specific threshold, TP
samples out of the P healthy samples are correctly identified as healthy, while NP samples
out of N faulty samples fail to be identified. To determine the TPR and FPR at this threshold,
the following equations were used:

TPR =
TP
P

, (13)

FPR =
NP
N

. (14)

By calculating the true positive and false positive rates across various thresholds,
the receiver operating curve can be plotted, with the false positive rate on the x-axis and
the true positive rate on the y-axis. The AUC of this ROC, obtained through numerical
integration, offers a comprehensive evaluation of the model’s fault detection performance
by integrating the true and false positive rates. The AUC, ranging from 0 to 1, serves as
an indicator of model accuracy—the higher, the better. The ROC was obtained using the
MATLAB function roc() and is shown in Figure 6.
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Figure 6. Fault detection performance: (a) Ksz1 10%, (b) Ksz1 20%, (c) Ksz1 30%. False positive rate
denotes a type I error. True positive rate denotes a type II error.

From Figure 6, it can be observed that (1) When the goodness-of-fit value is used
as a fault detection criterion, deep LSTM performs better than the AR and vanilla LSTM
methods in detecting three different railway suspension faults, which is in good agreement
with the modeling accuracy observation. To quantitatively compare the fault detection
performance, the AUC was calculated using the MATLAB function trapz(), and it is listed
in Table 3. Evidently, deep LSTM performs better than the AR and vanilla LSTM methods
in detecting three different railway suspension faults. (2) Using the goodness-of-fit value
for fault detection is much better than using the MSE. When goodness-of-fit values are
used, the deep=LSTM-based method returns AUC values of 0.8128, 0.9899, and 1.000 for
the three different railway suspension faults, respectively. But when using the MSE, the
deep-LSTM-based method only returns AUC values of 0.6462, 0.9450, and 0.9945 for three
different railway suspension faults, respectively. This result confirms the superiority of
using the goodness-of-fit criterion for fault detection.

Table 3. Area under the ROC.

Models Detection
Criterion Ksz1 10% Ksz1 20% Ksz1 30%

AR fit 0.7284 0.9430 0.9979
Vanilla LSTM fit 0.7273 0.9504 0.9976
Deep LSTM fit 0.8128 0.9899 1.0000
Deep LSTM MSE 0.6462 0.9450 0.9945

5. Discussion

In this paper, deep LSTM is, for the first time, used to model the railway vehicle
vibration response. Furthermore, a goodness-of-fit criterion is innovatively utilized to
quantify the deviation between the baseline model and the monitored vibrations.
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It is worth mentioning that a transformer and LSTM have different architectures.
Transformers use an attention mechanism that processes data points in parallel, allowing
them to capture long-range dependencies efficiently. LSTM, a member of the RNN family,
processes data sequentially and uses a gating mechanism to handle long-term and short-
term dependencies. Transformers are well suited for tasks where the context of the entire
sequence is important, like language translation or text generation. LSTM excels in tasks
where sequential data with time dependencies, such as time-series analysis or speech
recognition, are crucial. Transformers often outperform LSTM in handling large datasets
and in complex tasks, especially in NLP. However, LSTM can be more efficient with
smaller datasets and simpler tasks. Moreover, training transformers generally requires
more computational power and memory, especially for longer sequences, due to their
parallel processing nature. Therefore, LSTM is used in our work, and a transformer is not
used for comparison. In the future, we will test the performance of transformers using
experimental data.

Despite the advancements this paper achieved, there are some limitations to consider.
The assumption that the number of hidden states will drop by half from a low layer to its
smaller high layer in deep LSTM may limit the network’s performance. This represents a
potential area for future investigation, where removing this assumption could possibly en-
hance the deep LSTM neural network’s capabilities but would entail higher computational
costs. Moreover, the current study is based on simulated signals. For practical applications,
further validation with experimental signals is necessary. Thus, another direction for future
research involves validating the effectiveness of the presented method on experimental
data, ensuring its reliability and robustness in real-world scenarios.

The temporal evolution of the fault (fault trends) is meaningful and prediction of the
fault ahead of time is essential for decision making in railway vehicle maintenance. The
focus of this paper is primarily on fault detection. We will study the temporal evolution of
faults and try to anticipate the fault ahead of its occurrence in the future.

6. Conclusions

In this paper, a deep-LSTM-based fault detection method is presented for railway
suspensions. The grid search method is adopted for architecture selection and training
hyperparameter determination based on the minimization of the validation error. The
goodness-of-fit criterion is proposed for use in fault detection as opposed the MSE of
LSTM residuals used in many reported works. A benchmark study using railway vehicle
dynamic simulation data has shown that the deep-LSTM-based fault detection method
performs better than the vanilla-LSTM-based and linear-time-series-model-based methods.
Additionally, using the goodness-of-fit criterion can lead to better fault detection results
compared to using the mean squared value of the LSTM residual.

The data and codes associated with this paper are available at: https://github.com/
yuejianchen/LSTM-for-suspension-detection (accessed on 17 December 2023).
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