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Abstract: Data-based equipment fault detection and diagnosis is an important research area in the
smart factory era, which began with the Fourth Industrial Revolution. Steel manufacturing is a
typical processing industry, and efficient equipment operation can improve product quality and cost.
Steel production systems require precise control of the equipment, which is a complex process. A
gearbox transmits power between shafts and is an essential piece of mechanical equipment. A gearbox
malfunction can cause serious problems not only in production, quality, and delivery but in safety.
Many researchers are developing methods for monitoring gearbox condition and for diagnosing
failures in order to resolve problems. In most data-driven methods, the analysis data set is derived
from a distribution of identical data with failure mode labels. Industrial sites, however, often collect
data without information on the failure type or failure status due to varying operating conditions
and periodic repair. Therefore, the data sets not only include frequent false alarms, but they cannot
explain the causes of the alarms. In this paper, a framework called the Reduced Lagrange Method
(R-LM) periodically assigns pseudolabels to vibration signals collected without labels and creates
an input data set. In order to monitor the status of equipment and to diagnose failures, the input
data set is fed into a supervised learning classifier. To verify the proposed method, we build a test
rig using motors and gearboxes that are used on production sites in order to artificially simulate
defects in the gears and to operate them to collect vibration data. Data features are extracted from the
frequency domain and time domain, and pseudolabeling is applied. There were fewer false alarms
when applying R-LM, and it was possible to explain which features were responsible for equipment
status changes, which improved field applicability. It was possible to detect changes in equipment
conditions before a catastrophic failure, thus providing meaningful alarm and warning information,
as well as further promising research topics.

Keywords: hot strip mill; gearbox; fault detection; support vector machine; random forest; pseudolabeling;
machine learning; supervised learning

1. Introduction

To produce steel products, the steel industry requires a complex production system
with multiple types of equipment and precise control. Integrated steelworks, in particu-
lar, operate in harsh environments with high temperatures and pressure, as well as a lot
of dust and moisture. There are significant economic losses if an unplanned shutdown
happens in steel production equipment, thereby adversely affecting product quality, de-
livery, and safety. Therefore, it is crucial to detect equipment anomalies early and handle
them proactively before catastrophic failures. The steel industry spends 10% to 20% of its
production costs on equipment maintenance, so minimizing unplanned breakdowns is
essential [1,2].

There was USD 4.9 trillion worth of physical assets in the US steel industry. Average
maintenance spending was between 5% and 8% of total costs, with the best performers
spending less than 2% to 3%. The steel industry wastes more than USD 180 billion in
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excess maintenance spending annually. According to the Federal Energy Management
Program, predictive maintenance can save 8% to 12% more than is saved with preventive
maintenance (PM). Furthermore, predictive maintenance has been shown to recover 10% of
investment costs, thus reducing maintenance costs by 25%, reducing unplanned shutdowns
by 70%, reducing downtime by 45%, and improving productivity by 25% [3].

A gearbox is a fundamental component of rotating machinery that transmits power
between the shafts used in steel mills, power turbines, automobiles, and airplanes. As a
result, fault detection and diagnosis (FDD) for gearboxes is essential to prevent mechanical
malfunctions that could damage the systems. Among single-equipment failures, gearbox-
related failures were found to be the highest in one steel company at 38%. As the types
of steel produced become more diverse, machines operate at higher loads than they were
designed for. A sudden failure of a gearbox can cause quality defects, expensive repairs,
and even accidents. The health of a gearbox can be confirmed by measuring the vibrations,
acoustics, heat, and iron content in lubricants. Among these, vibration signals are the most
widely used because they contain a lot of information from inside the mechanical equip-
ment. In order to monitor gearbox conditions and detect defects early, various technologies
such as artificial intelligence and signal processing are being researched [4–13]

It is crucial to maintain desirable performance in industrial processes where a variety
of faults can occur. For most industries, FDD is an important control method because better
processing performance is expected from improving the FDD capability. There are two
main functions [14]:

• Monitoring the behavior of a process (variables);
• Identifying faults, their characteristics, and their root causes.

As early as the 1970s, equipment condition monitoring and diagnosis attracted interest
and research, but the original data did not allow for effective equipment maintenance policy
decision making. In the 1980s, breakdown maintenance (BM) dominated, and PM followed
in the 1990s. Since 2000, condition-based maintenance (CBM) and prognostics and health
management have become mainstream. In recent years, smart technologies such as the IoT,
machine learning (ML), and artificial intelligence (AI) have made it possible to collect and
store large amounts of data at very low costs, and computing power has skyrocketed with
parallel processing in GPUs. The equipment maintenance environment is undergoing a
major transformation due to improvements. According to the German National Academy
of Science and Engineering, the Fourth Industrial Revolution (Industry 4.0) will increase
industrial productivity by 30%. It is essential to establish an economical equipment mainte-
nance policy in light of this paradigm shift in manufacturing [15–17]. In particular, steel
manufacturing equipment must be reliable and must have a long lifespan to reduce eco-
nomic losses due to unplanned breakdowns. With the help of the IoT, big data, and AI, it
is possible to monitor and predict the status of equipment. In accordance with changes
in the industrial environment, methods in and perspectives on equipment maintenance
strategy have changed and are more important today than ever. On real industrial sites,
most companies perform BM and PM, not proactive and predictive maintenance. According
to survey results, predictive maintenance is only carried out for certain core equipment,
and companies want to invest time and resources in it, but the majority of resources are
used for preventive and breakdown maintenance instead [18].

The steel manufacturing industry generates and stores large amounts of data on
their equipment for efficient maintenance, but it is difficult to use these data to maintain
equipment. The reasons are as follows.

• Steel-making plants continually switch between a load state (where they exert force
for processing) and an idle state where they do not. Without a distinction between
equipment operating conditions, it is difficult to detect changes in equipment status
from the collected data. This difficulty can be overcome by eliminating noise in the data,
recording the exact time of an occurrence (time stamping), and compiling event data.

• The data collected in the field on vibrations, temperatures, electric current, and debris
inside the oil are often collected separately from the meta data (event data) that
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indicate the equipment’s operating condition. The equipment data collected cannot
be labeled as failure or normal states, thus making it difficult to apply a supervised
learning algorithm.

• When parts of the equipment are replaced, overhauled, or repaired, the characteristics
of that equipment are altered. Because of this, the data on equipment status are not
accurate, so they must be collected again to reflect the current normal status.

In a steel production site, it is unlikely that the same failure mode will occur multiple
times in a short period of time. Additionally, failure diagnosis research can be carried
out on a small laboratory-scale test rig, but there is a problem in that monitoring and
diagnosing the condition of equipment actually operating in the field is difficult. We
propose a pseudolabel method for monitoring and diagnosing equipment status changes
using the powerful classification performance of supervised learning. We then show that
equipment abnormalities can be diagnosed and monitored through the classification of
data collected from actual field equipment.

In summary, this study has the following contributions:

• Unlabeled vibration data can be pseudolabeled and used to monitor changes in
equipment conditions using a supervised learning classifier.

• It is possible to reduce false alarms due to periodic changes in equipment operating
under normal conditions.

• We confirm the timing of equipment condition changes.
• A quantitative analysis was performed, and relationships between independent and

dependent variables are explained to determine which features affect equipment
abnormalities.

This paper is organized as follows. Section 2 presents related work. In Section 3, we
explain the equipment condition monitoring procedure and present the algorithm for
it. The theoretical background for the method in this paper is introduced in Section 4.
The experimental setting and results are reported in Section 5. Finally, Section 6 presents a
discussion and our conclusion.

2. Related Work

One steel manufacturing company investigated more than 1000 equipment failures
over two years in order to analyze equipment diagnosis. They found that 22% of the in-
spections were inadequate, 21% required detailed equipment diagnosis (e.g., for gear wear
due to equipment fatigue), 17% were regular inspections for damage to gearboxes and
bearings, and 17% of the failures were due to an insufficient number of inspections. Insuffi-
cient replacements accounted for 5% of failures, while failures that could not be predicted,
such as internal leaks in hydraulic cylinders, the deterioration of semiconductor materials,
and natural disasters, accounted for 35%. Through equipment inspections and monitoring,
65% of all failures could be prevented, and equipment status information could be compre-
hensively analyzed through equipment condition monitoring and diagnosis to determine
the optimal maintenance time before an equipment failure occurs. An economic equipment
maintenance strategy can be developed to prevent unplanned equipment breakdowns.

Kumar [4] analyzed comprehensive CBM. They classified methods into those for
vibration, noise, debris from wear, and temperature, and they emphasized the importance
of vibration analysis by introducing various features in the time domain and frequency
domain, along with their physical interpretations. According to existing research, super-
vised learning techniques are used 88% of the time when analyzing equipment failure data,
and unsupervised learning techniques are used 12% of the time [15]. Under supervised
learning, fault identification studies are conducted based on labels indicating whether or
not faults exist in the data. The purpose of unsupervised learning is to detect anomalies.
A regression model was constructed to analyze abnormal conditions on ships and changes
detected with unlabeled data through statistical methods, such as regression analysis, time
series analysis, and probabilistic models.
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Tran and Yang [14] pointed out the limitations of existing approaches in failing to
consider a comprehensive system. Several industrial applications were evaluated by using
two case studies to propose intelligent CBM for rotating machinery. There are a number
of studies based on classification using support vector machines (SVMs) to monitor, di-
agnose, and predict abnormalities in equipment. Various patterns can be found with an
SVM, and the extracted patterns can be classified into fault types based on their features.
Using SVM approaches for monitoring machine status and diagnosing faults, Widodo
and Yang [19] discussed future developments in SVMs, which are more expertise- or
problem-oriented. Banerjee and Das [20] discussed a fault diagnosis problem for dynamic
motor conditions. They developed an approach for classifying fault signals by combining
information extracted with an SVM and short-term Fourier transform (STFT) based on
data obtained from multiple sensors. Park et al. [21] proposed a new approach to fault
detection and extraction based on a cubic spline regression method, which was used to
find step changing points, and SVM algorithms were used to build a classifier. In particu-
lar, they considered coefficient parameters multiplied by each cubic spline regression of
the process features, which were then used as input for the development of the classifier.
Wang et al. [22] proposed a method for diagnosing ball bearing abnormalities using a
SVM and Mahalanobis distance. Shin et al. [23] proposed anomaly detection in a high
dimension using a support vector machine to find the hyperplane of the maximum margin
in high-dimensional space.

There are numerous steps involved in developing a machine learning model and
implementing it in actual operations. It requires experts from diverse fields to define
the problem, collect data, preprocess the data, develop the model, evaluate it, and apply
it to the service. In auto-ML, inefficient tasks are automated as much as possible so that
productivity and efficiency are increased as often as possible. In particular, research has been
conducted for a long time on technologies that can effectively develop high-quality models
by minimizing model developer intervention in the processes from data preprocessing to
algorithm selection and tuning [24–26]. With the development of auto-ML, defining the
problem well and collecting the right data that accurately reflect reality are becoming more
important than deciding which classifier to select.

Deep learning has rapidly replaced existing machine learning algorithms, such as
SVMs and decision trees (DTs), as deep learning research began to produce results. Deep
learning has spread rapidly because of its high performance and the ease in solving
problems by automating feature engineering (the most important machine learning step).
Machine learning requires the creation of good features from the data, whereas deep
learning examines all the features concurrently. The use of the features of deep learning is
being researched for monitoring and diagnosing equipment problems. Even though deep
learning produces excellent results, we do not know how they are achieved. In order to
overcome these limitations, explainable AI has been researched. In spite of excellent results,
a learning model can only be made more usable if its interpretation can be improved. As a
result, traditional methods that are easy to interpret must still be useful. Hong et al. [27]
and Lu [28] proposed a new data fusion method based on physics-constrained dictionary
learning to improve the efficiency of data collection and the accuracy of fault diagnosis.
Miao et al. [29] proposed a sparse representation block that extracts the impulse component
of the vibration signal and converts the time domain signal to the sparse domain through
sparse mapping of the convolution graph.

Seo and Yun studied hot strip rolling mill equipment status and diagnosis [30,31].
The study reported in [30] used partitioning around medoids, a type of K-medoids cluster-
ing, for monitoring equipment status. Based on silhouette width, they quantified clustering
performance and monitored the point when a new cluster captured abnormal equipment
behavior. Seo and Yun also used an autoencoder (AE) to learn data assumed to be nor-
mal [32]. A method of monitoring equipment status was used to detect changes in AE
model reconstruction errors after a data set of interest was inserted into the model. Due to
the lack of labels in the data collected from the production site, an unsupervised learning



Machines 2024, 12, 127 5 of 22

method was chosen. To overcome these problems, Seo et al. [33] proposed a pseudolabeling
method named the Lagrange Method for equipment monitoring. A labeled data set is used
to diagnose equipment problems, which are then entered into a classifier, and the classifica-
tion accuracy is monitored. The proposed method has a tendency, however, to generate
alarms in sections considered normal and judging as abnormal some conditions that change
periodically in accordance with equipment operations. Their proposed method also has
a disadvantage in that it responds to accumulated changes in equipment condition. This
means the possibility of false alarms is high, and it can be difficult to know about such
changes in real time. Furthermore, there was no explanation for what variables were influ-
ential in cases where classification accuracy was high, which made it difficult to interpret
the results intuitively. An improved pseudolabeling method is proposed in this paper that
reduces false alarms and accurately captures changes in equipment status over time. It
addresses the following issues:

• When an artificial failure is created, labeled, and then analyzed, it is unlikely to
produce the same results in the field.

• When a methodology cannot be applied directly at the production site because only
vibration signals are collected without normal presence-and-absence labels.

• When fault alarms are inevitable if the equipment characteristics include repeated
accelerations, decelerations, and stopping while operating, and they are subject to
temporary influences from the surrounding environment.

• When normal states of the equipment constantly change, whether because of regular
repairs, overhauls, oil replenishment, or minor repairs.

The purpose of this paper is to demonstrate that pseudolabels can be applied to
unlabeled time series data to create a classifier that monitors and diagnoses equip-
ment abnormalities.

3. Equipment Condition Monitoring
3.1. The Proposed Reduced Lagrange Method

As shown in Figure 1a, the Lagrange Method (LM) can be expressed in a manner
similar to a traditional recurrent neural network (RNN). The left side of the equal sign is
the LM’s overall structure, which is illustrated by three blue arrows:

• The first arrow indicates that the input data set is entered into the classifier (C).
On the right side of Figure 1a, you can see the unfolded tasks for each time sequence.
[X(i), X(j)] describes the structure of the input data set and refers to normal and
abnormal data sets, respectively. Data set X(i) in the ith time sequence is labeled
normal up front. Data set X(j) in the jth time sequence is labeled abnormal later. In the
data structure, you can see that the first data sets are all the same, X(0), which indicates
that you have a data set that can be considered normal. The data sets prepared for
each time sequence are considered abnormal and are used as input for the classifier.

• The second arrow indicates that the evaluation metric is created and stored in the
classifier. A pseudolabeled data set is input, and the classifier stores the classification
performance. A(t) represents the classification evaluation performance of the classifier
at time sequence t0.

• The topmost arrows execute the classifier repeatedly. C(·) and tn denote the classifier
and the nth time sequence, respectively.

Figure 1b illustrates the Reduced Lagrange Method (R-LM). Unlike the LM, data set
X(0), which is considered normal and pseudolabeled as normal, is used only k times as
a normal data set. In the kth time sequence, the normal data set changes to X(t+k) and is
maintained k times. Round 1 is denoted by X(0), thereby maintaining a normal data set k
times. For each time sequence, a predesigned data set is constructed and used as input for
the classifier. Values for the classification performance metric (e.g., accuracy) generated
by the classifier are saved and analyzed. The series of processes is repeated for each time
sequence within a round. Each round has k repetitions, which must be determined by
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the user. A fixed data set that is pseudolabeled as normal is used k times within a round.
In Round 1, the data structure of X0 is a pseudonormal data set, which is used k times. This
way, the fixed data set can be labeled as normal, and the next data set can be labeled as
abnormal, thereby resulting in a data set that can be input into the classifier. No classifier
will be able to differentiate between the two data sets if they are derived from the same
homogeneous group. Data can be classified by using a classifier if equipment conditions
change and the data in the data sets change. Classification accuracy will increase when
equipment changes are large, so it can be used as a diagnostic tool to diagnose equipment
problems. In order to determine k, the user must take into account the characteristics of the
equipment and how quickly the alarm must sound. The LM does not set the k value, so it
continues to use data from one point in the past as a normal label. There are limitations
to this approach, because the range of normal states may shift periodically depending
on operating conditions where field equipment repeats acceleration and deceleration.
The normal data set from the equipment needs to reflect normal maintenance activities
such as overhauls, minor repairs, and oil changes.

Input data set

Classifier

Evaluation

Unfold

C

Time sequence

Data structure

C C

…

C C C C

…

…

…

…

…

…

…

…

…

…

…

(a) Lagrange Method.

Input data set

Classifier

Evaluation

Unfold

C

Time sequence

Data structure

C

Round 1 Round 2

C

…

C C C C

…

…

…

…

…

…

…

…

…

…

…

…

(b) Reduced Lagrange Method (proposed).

Figure 1. The concepts of (a) the Lagrange Method and (b) the Reduced Lagrange Method.

3.2. Procedure for Equipment Monitoring and Fault Detection

It is necessary to prepare an input data set in order to monitor the condition of the
equipment. These are the data sets labeled normal (N) and abnormal (A) for input. The in-
put data pair should be normalized so that the mean is 0 and the standard deviation is
1, and then the data set should be divided into training, validation, and testing data sets
at a certain ratio. In order to calculate relative variable importance, use a random forest
(RF) algorithm and sort in descending order. In order to train a classifier, the variables
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ranked in the top 10 are used. The evaluation metric should be calculated using testing data.
For each time sequence, k classifier operations are performed, and the evaluation results are
calculated. A normality test is performed on the data set that contains the evaluation results.
A p value less than 0.05 suggests that the sample did not originate from a normal distribu-
tion, and, therefore, the equipment condition has changed. If the p value is greater than 0.05,
we can say that it follows a normal distribution, meaning no characteristics have changed.
If the average value of the accumulated evaluation result is greater than 0.7, an alert is gen-
erated; if it is greater than 0.8, an alarm is generated, and if it is greater than 0.9, a warning
signal is generated. This content can be expressed with the Algorithm 1. Figure 2 shows
the procedure for equipment monitoring and fault detection. First, after data acquisition,
preprocessing is performed, and features are extracted. After performing pseudolabeling,
the data set is divided into train, test, and validation data to learn a classification model
and monitor equipment abnormalities by reviewing evaluation indicators.

#1 #2 #3 #4 · · · #44 #45 #46

( Vibration signal from sensors = 46 files )

w=500
· · ·

w=500 w=500 w=500 w=500 w=500 w=500 w=500

#1

27,600 27,600 27,600 27,600 27,600 27,600

( w : window size=500 )

#1 #2 #3 #4 · · · #44 #45 #46

Step 1 Step 2 Step 3 Step 4 · · · Step 8 Step 9 Step 10

27,600

6000ea 6000 6000 6000 6000 60006000

Rearrange into 10 steps

· · ·

· · ·

Time-domain and frequency-domain features
(Mean, SD, RMS, … , Crest…, P1, P2, … , P14 ) 

The number of columns = 25ea

The number of rows = 6000ea

Pseudo-labeling
as Normal (PN)

· · ·

X(1) X(2) X(3) X(4) · · · X(98) X(99) X(100)

n=276 n=276 n=276 n=276 n=276 n=276 n=276

Dividing into 100ea time seq. which are unit dataset.

t1 t2 t3 t4 t98 t99 t100

Test Train 
Pseudo-labeling as
Abnormal (PA) 

Data acquisition

Data pre processing

Extracting features

Pseudo-labeling

Classifier 
Training

Classifying
Model

Evaluation
results

Normality 
test

Eval. metric
analysis

Data structure ~ [X(1), X(4)]

Equipment
monitoring and
fault detection

Valid. TestTrain Valid.

The number of rows =

Time sequence =   

Equipment
monitoring 
and fault
detection

Figure 2. The proposed procedure for equipment monitoring and fault detection.
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Algorithm 1 Procedure for equipment condition monitoring based on the R-LM.

Input:
Input data set structure defined as D = [X(i), X(i+k))].
where X(i) is a data set pseudolabeled normal in the ith time sequence.

X(i+k) is a data set pseudolabeled abnormal in the (i + k)th time sequence.
For each iteration k:

Xi is fixed during k iterations
When kth iteration is completed, (i + k)th data set is normal data set, DN(i+k)
1: Normalize data set X(i) and X(i+k) as N(0, 12)

2: Separate training, validation, and testing data at a certain rate
3: Compute the variable importance using random forest, then sort in descending order
4: Train supervised learning classifier C(·) using variables ranked in the top 10
5: Compute performance evaluation metrics and save result A(t)n
6: Iterate k processes

Perform normality test on evaluation results (A = [A(t)1, A(t)2, · · · , A(t)n · · · , A(t)k]]).
Average evaluation results (Ā): Alert if Ā > 0.7, Alarm if Ā > 0.8, Warning if Ā > 0.9
Output:
Alert, Alarm, Warning from normality test and averaged evaluation results

4. Theoretical Background
4.1. Random Forest

In this section, we briefly review random forest. By combining multiple classifiers,
RF estimates the final result by averaging or voting. It is derived from the bagging algo-
rithm and the stochastic subspace method, which were both proposed by Leo Breiman in
2001 [34]. In 1984, Breiman and Stone introduced the CART (classification and regression
tree) decision tree algorithm, which is the basic classifier for the RF algorithm. To select
feature attributes, the algorithm uses the Gini index minimum criterion, as opposed to the
ID3 decision tree algorithm and the C4.5 decision tree algorithm. In order to define the
purity of the data set, D, we need to consider the following [7,35]:

Gini(D) =
|y|

∑
k=1

∑
k′=k

pk pk′ = 1 −
|y|

∑
k=1

p2
k (1)

The Gini index is defined as follows:

Giniindex(D, α) =
|ν|

∑
ν=1

|Dν|
|D| Gini(Dν) (2)

The RF algorithm follows a flow similar to the classic bagging algorithm:

• Bootstrap resampling is run k times on the original sample data set, thus collecting a
fixed number of samples each time, taking them back out after each sampling, and then
obtaining K subsample sets.

• The CART algorithm is used to generate a decision tree for each subsample set. If
feature fi from the ith subsample set contains C categories, the Gini index is calculated
as follows: In the case that the feature fi from the ith subsample set contains C
categories, the Gini index is calculated as follows:

Gini( fi) =
C

∑
j=1

pj pj′ = 1 −
C

∑
j=1

p2
j (3)

where pj is the probability of category Cj. As a result of Equation (3) below, a smaller
Gini value indicates a higher level of purity. In the decision tree, the feature with the
smallest Gini value is split.
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• Based on Step 2, each subsample set generates a decision tree, and the decision trees
of all the subsample sets form a random forest. Each decision tree is pruned according
to the minimum Gini criterion by automatically selecting M features from feature set
T containing M features as the attribute separation.

• A majority voting algorithm is used to analyze and vote on the results of the final
RF algorithm.

4.2. Support Vector Machines

The SVM is a computational learning method that is based on the statistical learning
theory developed by Vapnik in 1999. The SVM uses a high-dimensional dot product space
called a feature space, which maps original input spaces onto a high-dimensional plane
called a hyperplane, which is calculated to maximize the generalization capability of the
classifier to maximize its accuracy. It is possible to find the maximal hyperplane using
optimization theory and statistical learning theory as an approach that respects insights
provided by the latter. In addition, SVMs are capable of handling very large feature spaces,
since their training takes place in a manner such that the dimensions of a class vector do not
have as high of an impact on the performance of the SVM as they do on the performance
of a conventional classifier. As a result, the SVM is particularly effective in classification
problems that involve a large number of variables. Furthermore, fault classification will
be improved due to the fact that fault diagnosis need not be limited by the number of
features a fault can possess. Additionally, SVM-based classifiers are typically trained so
that the empirical risk or structural misclassification risk is minimized, whereas traditional
classifiers are usually trained so that the structural risk is minimized [36].

Given the data input xi (i = 1, . . . , M), M is the number of samples. In this case, there
are two classes of samples: positive and negative. Each class is associated with labels yi = 1
for positive and yi = −1 for negative. A linear data set can be separated from the given
data set by determining the hyperplane f (x) = 0:

f (x) = wTx + b =
M

∑
j=1

wixi + b = 0 (4)

where w is the M-dimensional vector, and b is a scalar. It is defined by the scalar b and
vector w where the separating hyperplane is located. By using f (x), a decision function is
created for classifying input data as positive and negative. It is necessary for a distinctly
separated hyperplane to satisfy the following constraints:{

f (xi) = 1, if yi = 1
f (xi) = −1, if yi = −1

(5)

or it can be presented in the complete equation:

yi f (xi) = yiwTx + b ≥ 1 f or i = 1, 2, ..., M (6)

The optimal separate hyperplane creates the maximum distance between the plane
and the nearest data, i.e., the maximum margin. A solution to the following optimization
problem can be obtained by considering the slack variable, ξi, and the error penalty, C,
in the noise:

Minimize
1
2
∥w∥2 + C

M

∑
i=1

ξi (7)

subject to

{
yi(xi) = yiwTx + b ≥ 1 − ξi i = 1, ..., M
xii ≥ 0 i = 1, ..., M

(8)

where ξi measures the distance between the margin and the examples xi that lie on the
wrong side of the margin.
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It is possible to apply SVMs to nonlinear classification tasks, as well using kernel
functions. A high-dimensional feature space is used to map the data to be classified where
linear classification is possible. A linear decision function is obtained in dual form by
mapping the n-dimensional input vector x onto an l-dimensional feature space using the
nonlinear vector function Φ(x) = (Φi(x), ..., Φl(x)):

f (x) = sign(
M

∑
i,j=1

αiyi(ΦT(xi) · Φ(xj)) + b) (9)

In high-dimensional feature spaces, complex functions can be expressed, but they also
generate problems. Overfitting occurs because of the high dimensionality and the large
vectors. Kernel functions can be used to solve the latter problem. K(xi, xj) is a function that
returns the dot product of the feature space mappings of the original data points, which is
defined as (ΦT(xi), Φj(xj)). In the feature space, it is not necessary to explicitly evaluate Φ
when applying a kernel function, and the decision function will be

f (x) = sign(
M

∑
i,j=1

αiyiK(xi, xj) + b) (10)

linear kernels, polynomial kernels, and Gaussian kernels are some of the kernel functions
used in SVMs. In order for the training set examples to be classified correctly, the kernel
function must be chosen carefully. This paper evaluates and formulates radial, linear,
sigmoid, and polynomial functions.

4.3. Model Performance Evaluation Metrics

In order to properly estimate their capabilities, it is crucial to thoroughly examine the
diagnostic abilities of several machine learning algorithms while accounting for variables
such as model complexity, computational needs, and parameterization. For this reason, it is
necessary to use defined criteria for assessing performance and discriminating between
candidates. The F1 score, accuracy, sensitivity, precision, and false alarm rate are among
these parameters. With these measurements, we can objectively compare and assess the
performance of various models, thus allowing us to make informed decisions based on
their individual benefits and drawbacks [35,37]. These are some of the evaluation metrics
that have been used in studies: Equations (11)–(14).

Accuracy =
TP

TP + FP + TN + FN
(11)

Precision =
TP

TP + FP
(12)

Speci f icity =
TN

TN + FN
(13)

Sensitivy =
TP

TP + FN
(14)

True positive (TP) indicates that the model accurately predicted a true outcome. False
positive (FP) indicates the model predicted a true outcome, but the actual outcome was
false. False negative (FN) indicates that the model’s predicted a false result, while the actual
result was true. True negative (TN) indicates the model accurately predicted a false result.
The accuracy of a model is often used to evaluate its performance, but accuracy has several
drawbacks. In unbalanced data sets, one class is more common than the others, and the
model will label observations based on this imbalance. If 90% of the cases are false and
only 10% are true, there is a high possibility that the model would have an accuracy of
around 90%. Precision is calculated as the number of true positives over the total number of



Machines 2024, 12, 127 11 of 22

positives predicted by the model. This metric allows you to calculate the rate at which your
positive predictions actually come true. Sensitivity (also known as recall) is the percentage
of actual positive outcomes compared to all true positive predictions. It is possible to
evaluate how well our model predicts the true outcome. Specificity is a measure of how
well predicted negatives turned out to be negative.

4.4. Feature Extraction

For ML algorithms to be able to extract essential information from complex data sets,
feature extraction is an important step before training. It can be used to identify key patterns
within the signals, as well as anomalies or outliers. By simplifying the data set, classifi-
cation tasks can be carried out more efficiently [4]. The formulas for common statistical
features that can be extracted from both the time domain and frequency domain are shown
in Tables 1 and 2. Whenever there is a fault in a mechanical system, the stiffness of the
mechanical structures around the fault must change, thereby causing a shock or impulse to
occur. Additionally, this may cause the vibration signals to vary. It is possible to change the
amplitudes and distributions of these time domain signals. As a result, mechanical faults
can be reflected in their time domain wave forms as time domain statistical features. As
shown in Table 1, there are a number of common statistical features in the time domain.
The mean value here represents the average of a signal. The root amplitude, root mean
square, and peak of a time domain signal can be used to assess the vibration amplitude
and energy. In general, mechanical vibration can cause the mean value, root amplitude,
root mean square, and peak to rise when there is a fault. These four characteristics can
be used to determine the severity of a fault as it becomes more severe. It is, however,
not sensitive to weak, incipient faults. A time series distribution in the time domain may
be represented using the skewness, kurtosis, crest factor, clearance factor, shape factor,
and impulse factor. An impulse in vibration signals can be measured by the kurtosis value,
the crest factor, the impulse factor, and the clearance factor. Kurtosis and crest factors can
be used as indicators for incipient faults, because they are robust to varying operating
conditions. Impulse and clearance factors are useful indicators of the sharpness of the
impulses created by a defect contacting the bearing mating surfaces. The kurtosis value is
highly sensitive to early faults. Kurtosis values can also increase gradually as the degree
of severity increases. In contrast, they decrease unexpectedly when the fault is even more
severe. Therefore, kurtosis is insufficient for measuring more severe faults. As shown
in Table 1, different statistical features in the time domain can reflect mechanical health
from different perspectives. They can compensate for each other. For different fault levels,
each indicator contains different fault information. In some cases, even many indicators
cannot accurately reflect the changes in faults. For this reason, it is necessary to extract
more features from rotating machinery to efficiently diagnose faults, and sensitive fea-
tures should also be screened out. The frequency spectra of vibration signals can reveal
abnormal frequencies when there is a fault in machinery, which can reflect the machinery’s
condition. In addition, frequency spectra are more sensitive to incipient faults, as an im-
perceptible change produces a spectrum line in diagnostics, which can be used to extract
some spectral indicators. The frequency domain features may also contain information
that is not present in the time domain, such as fault-related information. These features
in the frequency domain compensate for those in the time domain alone. Table 2 shows
14 common statistical features in the frequency domain. All of them are based on statistics,
so they are called statistical features. p1 , the mean frequency, represents the average of
the amplitudes of all the frequencies in the frequency domain. As fault degrees increase,
the mean frequency must also increase. It may be that features p2, p3, p4, p6, and p11, p12,
and p13 reflect the convergence of the energy of the frequency spectrum. The position of
the dominant frequencies in the frequency spectrum may be shown by features p5, p7, p8,
and p9. Accordingly, these frequency domain features can be used to reflect mechanical
health from a variety of perspectives. There will be vibrations across the entire frequency
spectrum and power spectrum due to different faults. To achieve accurate diagnosis results,
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we need to select suitable statistical features based on the different fault categories [38].
The 11 time domain features of a vibration signal and the 14 frequency domain features
were calculated separately for each signal. According to the specified procedure, all features
were calculated sequentially for each batch: x(n), a signal series for n = 1, 2, ..., N where N
is the number of data points; s(k), a spectrum for k = 1, 2, ..., K where K is the number of
spectrum lines; and fk, the frequency value of the kth spectrum line.

Table 1. Time domain statistical features.

Domain Common Statistical Features

Time domain

Xm =
∑N

n=1 x(n)
N

Xsd =

√
∑N

n=1(x(n)− Xm)2

N − 1
Xroot =

∑N
n=1

√
|x(n)|

N

2

Xrms =

√
∑N

n=1(x(n))2

N
Xpeak = max|x(n)| Xskewness =

∑N
n=1(x(n)− Xm)3

(N − 1)X3
sd

Xkurtosis =
∑N

n=1(x(n)− Xm)4

(N − 1)X4
sd

Xcrest =
Xpeak

Xrms
Xclearance =

Xpeak

Xroot

Xshape =
Xrms

1
N ∑N

n=1(|x(n)|)
Ximpulse =

Xpeak
1
N ∑N

n=1(|x(n)|)

Table 2. Feature domain statistical features.

Domain Common Statistical Features

Frequency domain

p1 = xm f =
∑K

k=1 s(k)
K

p2 =
∑K

k=1(s(k)− p1)
2

K − 1
p3 =

∑K
k=1(s(k)− p1)

3

K(
√

p2)3

p4 =
∑K

k=1(s(k)− p1)
4

Kp2
2

p5 = p f c =
∑K

k=1 fks(k)

∑K
k=1 s(k)

p6 =

√
∑K

k=1( fk − p5)2s(k)
K

p7 =

√√√√∑K
k=1 f 2

k s(k)

∑K
k=1 s(k)

p8 =

√√√√∑K
k=1 f 4

k s(k)

∑K
k=1 f 2

k s(k)
p9 =

∑K
k=1 f 2

k s(k)√
∑K

k=1 s(k)∑K
k=1 f 4

k s(k)

p10 =
p6
p5

p11 =
∑K

k=1( fk − p5)
3s(k)

Kp63 p12 =
∑K

k=1( fk − p5)
4s(k)

Kp64

p13 =
∑K

k=1
√
( fk − p5)s(k)
K
√

p6
p14 =

√√√√∑K
k=1( fk − p5)2s(k)

∑K
k=1 s(k)

5. Experiment Validation
5.1. Data Acquisition and Preprocessing

In order to monitor gearbox abnormalities, the test rig was constructed using motors
and gearboxes that are actually used in the field. A speed motor and torque motor were
installed; gearbox 1 was operated at high speed, and gearbox 2 was operated at low speed.
The specifications of the basic motor and gearbox are shown in Figure 3. The preprocessing,
feature extraction, and pseudo labeling processes of the collected data are shown in Figure 2
in Section 3. We set 500 ea of the raw data as one window size, extracted features in the time
domain and frequency domain, divided them into 10 steps, and saved them. At this time,
each step had 27,600 ea of data, and a pseudolabel was given every 276 ea. The 276 ea dataset
was divided into a train, test, and valid set. This data was used to train the classifer [39].
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○ Motor : 37kW, 6 poles○ Inverter : 37kW 2 ea ( Torque control, Speed Control ) ○ Torque : 0~297Nm, Speed : 0~1200rpm
○ Reducer : Gear ratio 1/26.5,18.5kW, 4 stages○ Gears 1&5 on the loading gearbox are artificially defective
○ Sensor Specifications : Sensitivity ( ±10% ) 100 mV/g, Setting time < 2.5s, Spectral Noise at 10Hz 14㎍/Hz,

Spectral Noise at 100Hz, 2.3㎍/Hz

Speed Motor Low-speed shaft High-speed shaft

High-speed shaft Low-speed shaft

Gearbox #1 Gearbox #2

Gearbox with sensors : ①,②

Figure 3. Gearbox test bench scheme.

5.2. Experiment Results

Figure 4 shows how the classification accuracy changed with time for each step.
The black triangles on the graphs indicate changes in the LM’s classification accuracy.
In Step 1, the classification accuracy started at 0.5 and gradually increased, thus reaching
0.9 around time sequence 65. The results are caused by the naturally increased vibration
as the rotation speed of the motor connected to the gearbox increases. The LM has two
limitations: it generates false alarms from normal changes, and it is difficult to detect
changes in the equipment status when smaller changes are accumulating. Classification
accuracy values by the proposed Reduced Lagrange Method are shown in blue (DS) and
magenta (NDS). The proposed R-LM showed classification accuracy values of around
0.5 up to time sequence 60, but the accuracy began to increase only at the point at which the
equipment status was estimated to have changed. The LM can be used to identify changes
in the status of equipment over time when a specific set of data can be maintained with
confidence in a steady state. However, the proposed R-LM responds sensitively to changes
within the predesigned round size interval (k). It is possible to check this in Steps 3 and
4. While the LM’s classification accuracy value increased gently over time, the proposed
R-LM had a constant value around 0.5. Steps 6 and 7 did not show meaningful changes in
the equipment status from either the LM or the proposed R-LM. There was a catastrophic
failure in Step 8. The LM showed a rapid change in equipment status starting at time
sequence 50, which indicated an increase in classification accuracy. The proposed R-LM
also showed rapid changes in equipment status at time sequence 50 and at two peaks.
When the equipment status changed and remained there, the classification accuracy values
from the R-LM were low. This is characteristic of the R-LM, which only responds when
equipment conditions change. The analysis of the vibration signal on the nondrive side
showed high classification accuracy in time sequences 1 to 10 of Step 8. That means that
abnormal signals can be generated before catastrophic failures occur in the equipment.
False alarms may cause field maintenance workers to lose confidence in the equipment
monitoring system, so minimizing false alarms is important. Pseudolabeling provides
limited information for fault detection and diagnosis, because it does not accurately match
normal and abnormal field labels. If event data generated from equipment operation and
maintenance are analyzed with false alarms, they can be reduced. Maintenance resources
can be utilized more efficiently by reducing false alarms. In Table 3, changes are shown
in the accuracy, precision, specificity, and sensitivity. One value is the average of the top
five ranked values of 100 evaluation metrics. When it exceeds 0.7, an alarm occurs, and if it
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exceeds 0.95, a warning occurs. In Step 4, the LM generated false alarms with increasing
classification accuracy, but the proposed R-LM remained within a classification accuracy
of 0.5.
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(b) Step 3 and 4.
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(c) Step 5 and 6.
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Figure 4. (a–d) The evaluation metric step by step.
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Table 3. The evaluation metric results by kernel.

Evaluation Metric Kernel Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

Accuracy (DS)

Radial 0.6189 0.6384 0.5870 0.5527 0.5847 0.5657 0.5703 0.5745 0.9898 0.7791

Linear 0.6541 0.6842 0.5916 0.5587 0.6013 0.5578 0.5384 0.5518 0.9847 0.7800

Sigmoid 0.5921 0.6097 0.5486 0.5625 0.5671 0.5486 0.5601 0.5532 0.9671 0.7763

Polynomial 0.6111 0.6310 0.5842 0.5648 0.5717 0.5504 0.5578 0.5662 0.9833 0.7796

Accuracy (NDS)

Radial 0.7523 0.5740 0.5754 0.5421 0.6138 0.5893 0.5851 0.5564 0.9884 0.7861

Linear 0.7476 0.5828 0.5712 0.5347 0.5949 0.5379 0.5370 0.5319 0.9921 0.7717

Sigmoid 0.6546 0.5555 0.5587 0.5555 0.5759 0.5620 0.5550 0.5657 0.9773 0.7819

Polynomial 0.6995 0.5675 0.5625 0.5486 0.5837 0.5995 0.5606 0.5657 0.9898 0.7819

Precision (DS)

Radial 0.6235 0.6407 0.5858 0.5568 0.5878 0.5716 0.5772 0.5786 0.9872 0.7796

Linear 0.6667 0.6873 0.5889 0.5593 0.6224 0.5678 0.5427 0.5616 0.9791 0.7839

Sigmoid 0.5932 0.6113 0.5500 0.5638 0.5678 0.5498 0.5586 0.5557 0.9643 0.7777

Polynomial 0.6172 0.6440 0.5798 0.5640 0.5835 0.5537 0.5588 0.5664 0.9794 0.7823

Precision (NDS)

Radial 0.7620 0.5833 0.5788 0.5680 0.6202 0.5950 0.5883 0.5635 0.9830 0.7868

Linear 0.7808 0.5815 0.5736 0.5344 0.6003 0.5412 0.5425 0.5286 0.9893 0.7753

Sigmoid 0.6643 0.5568 0.5624 0.5567 0.5799 0.5632 0.5586 0.5651 0.9640 0.7858

Polynomial 0.7226 0.5662 0.5619 0.5491 0.5871 0.6070 0.5620 0.5665 0.9916 0.7840

Specificity (DS)

Radial 0.6769 0.6722 0.6463 0.7120 0.6796 0.6602 0.6454 0.6315 0.9870 0.8148

Linear 0.7176 0.7593 0.6694 0.6185 0.7176 0.6491 0.6472 0.6352 0.9778 0.8157

Sigmoid 0.6287 0.6454 0.5880 0.6167 0.6028 0.6111 0.5778 0.5917 0.9639 0.8028

Polynomial 0.6806 0.6954 0.6074 0.5870 0.6500 0.6176 0.6287 0.6380 0.9787 0.8306

Specificity (NDS)

Radial 0.7722 0.6796 0.6759 0.7426 0.6769 0.6481 0.6426 0.6259 0.9824 0.8222

Linear 0.8157 0.6509 0.6463 0.5870 0.6824 0.6426 0.7380 0.5981 0.9889 0.8157

Sigmoid 0.6981 0.6028 0.6167 0.5954 0.6102 0.6065 0.6157 0.6009 0.9667 0.8130

Polynomial 0.7620 0.6194 0.6250 0.5861 0.6315 0.6602 0.6204 0.6046 0.9917 0.8259

Sensitivity (DS)

Radial 0.6528 0.6722 0.6926 0.7444 0.6639 0.6361 0.6361 0.6306 0.9963 0.8157

Linear 0.7546 0.7685 0.6722 0.6454 0.6343 0.6250 0.6315 0.6500 0.9917 0.8176

Sigmoid 0.6491 0.6565 0.5926 0.6130 0.6204 0.5944 0.6241 0.5889 0.9759 0.8065

Polynomial 0.6806 0.6833 0.6500 0.5954 0.6296 0.6019 0.6333 0.6343 0.9880 0.8278

Sensitivity (NDS)

Radial 0.7454 0.6657 0.6120 0.7565 0.6898 0.6481 0.6583 0.5963 0.9954 0.8269

Linear 0.7398 0.6463 0.6519 0.5935 0.6528 0.6009 0.6009 0.6546 0.9981 0.8213

Sigmoid 0.6537 0.5981 0.5769 0.5806 0.6009 0.5981 0.5833 0.6056 0.9991 0.8083

Polynomial 0.6944 0.6306 0.6481 0.5917 0.6157 0.6583 0.6222 0.6370 0.9917 0.8139

Alarm Signal *
R-LM ** A At At N At N N N W A

LM ** A A A A A N N N W A

* Alert (At), Alarm (A), Warning (W), Normal (N) . ** Reduced Lagrange Method, Lagrange Method.

5.3. Normality Test for Classification Evaluation Metrics

Based on classification accuracy data, it can be determined that the vibration data
acquired during this time were derived from a homogeneous sample. That means that there
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were no significant changes to the equipment. In Figure 5, we can see that the classification
accuracy data for Steps 1, 2, 3, 9, and 10 are not normally distributed. We performed a
hypothesis test for normality to quantitatively confirm this. Table 4 shows that the steps
with a p value of 0.05 or less are Steps 1, 2, 3, 9, and 10 for the drive side and Steps 1, 2, 3, 5,
9, and 10 for the nondrive side. Since a catastrophic failure occurred in Step 9, it confirmed
that signs of equipment abnormalities had already appeared in Steps 1, 2, and 3. As a
result, the normality test result for the classification accuracy values obtained by assigning
a pseudolabel to the data set and applying the Reduced Lagrange Method can be classified
as abnormal (A) if the p value is less than 0.05, and the result can be classified as normal if
the p value is greater than 0.05. An alarm signal can thus be generated when the status of
the equipment changes.
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Figure 5. (a–c) The Q–Q plot and histogram of classification accuracy.
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Table 4. Normality test results (p values).

Sensor Position Test Method Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

Drive Side
Shapiro–Wilk 0.0003 0.0002 0.0000 0.2677 0.0070 0.6323 0.1888 0.0585 0.0000 0.0000
Anderson–D 0.0094 0.0025 0.0038 0.2234 0.0736 0.5098 0.2506 0.2270 0.0000 0.0000
Lilliefors 0.0506 0.0067 0.0168 0.3623 0.2790 0.7019 0.0768 0.1874 0.0000 0.0000

Nondrive Side
Shapiro–Wilk 0.0000 0.2170 0.0156 0.6334 0.0001 0.7534 0.4786 0.7625 0.0000 0.0000
Anderson–D 0.0000 0.1185 0.0951 0.3435 0.0038 0.6461 0.5703 0.6068 0.0000 0.0000
Lilliefors 0.0000 0.0926 0.0181 0.3217 0.0081 0.6831 0.5198 0.4042 0.0000 0.0000

Alarm Signal Normality test * A A A N A N N N A A

* Normal (N) : p value ≥ 0.05, Abnormal (A) : p value < 0.05.

5.4. Variable Importance and Partial Dependence Plot

In binary classification, frequency domain features have a more significant role than
time domain features. The frequency domain features ranked relatively high and were
selected as important features in the variable importance analysis. Through partial de-
pendency analysis, we can confirm the direction of change, as well as the influence of the
variables. A partial dependence plot (PDP) in the time domain is shown in Figures 6 and 7.
A PDP represents how features affect the target variable of the prediction model. The x
axis and the y axis represent the feature value and predicted abnormality, respectively.
Features p1, p4, p6, p9, p10, and p11 were rarely considered abnormal, even when they
increased in value. There are some features that are not related to the target variables even
if their values change. Skewness, kurtosis, crest, shape, impulse, and p7, p8, and p4 are
representative examples. Figure 6a,b show the partial dependence analysis results for each
feature extracted from the NDS. Upon analyzing the features extracted from the vibration
signal on the nondrive side, SD, root, RMS, skewness, and p1 and p12, the target variable
was judged to be abnormal as the feature value increased. When the feature value became
smaller, p6, p7, p8, p9, p10, and p14 tended to be considered normal. There are some fea-
tures that do not have a meaningful relationship with the target variable, no matter how
their values changed. The mean, peak, kurtosis, crest, shape, and impulse, plus p2, p4, p5,
and p11 are examples. Alarms are generated in the field when the vibration average value
(a time domain feature) exceeds a set value. Time domain features are used in the field to
generate alarms, but they have limitations. A frequency domain feature can therefore be
used to predict equipment status changes more accurately than a time domain feature. Data
analysis in the frequency domain is essential, along with data analysis in the time domain.
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Figure 6. (a,b) Partial dependence plot (NDS). Black line: Partial dependence value. Blue line: flattened
trend value
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Figure 7. (a,b) Partial dependence plot (DS). Black line: Partial dependence value. Blue line: flattened
trend value.
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6. Discussion and Conclusions

A new era of data-driven fault detection and monitoring is emerging in the Industry 4.0
age as computing power, the IoT, and big data technologies grow rapidly. A gearbox is one
of the key components used in rotating machinery, along with bearings. An unplanned
shutdown of equipment will negatively affect production, quality, cost, and the delivery
date, as well as safety and the environment. In order to prevent equipment failure, it is
crucial to monitor the equipment’s condition and predict it in advance. In most studies,
failure types were created in advance and analyzed in the lab. This means that laboratory
results will not be as good as field results if they are applied directly to analysis in the
field. Due to the lack of labels in the field, the proposed methodology has limitations in
application and analysis. Currently, a condition monitoring system collects vibration signals
and issues an alarm when the vibration signal exceeds a preset value. Field workers have
little confidence in monitoring systems in this situation, since false alarms are frequently
caused by changes in vibration due to regular operations and periodic equipment repairs.
This paper demonstrated how pseudolabeling techniques can be applied to unlabeled
data and used to monitor changes in equipment conditions. The proposed method makes
the following contributions. First of all, false alarms can be reduced compared to existing
methods. The classification accuracy value was used to identify the point at which the
equipment condition changed. By linking this information to meta data, false alarms can be
further reduced, thereby increasing the reliability of the monitoring system and reducing
maintenance costs. A normality hypothesis test was used to quantitatively determine
whether the equipment status had changed, and its effectiveness was confirmed. Finally,
the relationship between the explanatory variable and the target variable was confirmed
when the explanatory variable changed. By using this method, we were able to compensate
for the limitations of machine learning, which has excellent prediction results without
explaining why such results are obtained. In this study, data indicating abnormalities were
collected without labels from field equipment and were used as input. We proposed a
method and procedure for assigning pseudolabels to the collected data to monitor changes
in the equipment status using a supervised learning classifier. The main goal of an actual
gearbox inspection is to detect and prevent unexpected failures by carefully inspecting
equipment where its condition changes rapidly or continuously. Through accumulated
data, we were able to predict equipment status and prevent sudden breakdowns. Therefore,
by establishing a cost-effective maintenance plan, we can expect industry to become more
competitive. In the future, it will be important to investigate how to determine the number
of k classifier operations within a round.

In the future, equipment condition monitoring and diagnostic performance will be
able to be improved through the following studies:

• It is still necessary to find the optimal combination of hyper parameters used in
pseudolabel analysis, such as the interval between normal and abnormal data sets (d),
the data set window size (w), and the movement interval (s).

• There is a need for research on a hybrid LM, which monitors equipment conditions
with R-LM under normal conditions and switches to LM under abnormal conditiosn
to monitor accumulated changes. The advantages of R-LM and LM will be combined
if a hybrid LM is successfully developed.

• Research that predicts equipment condition changes and categorizes them accord-
ing to their type can reduce false alarms and contribute to the diagnosis of equip-
ment problems.
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