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Abstract: In this paper, the direct differentiation of generalized-α time integration is derived, equa-
tions are introduced and results are shown. Although generalized-α time integration has found
usage, the derivation and the resulting equations for the analytical sensitivity analysis via direct
differentiation are missing. Thus, here, the sensitivity equations of generalized-α time integration via
direct differentiation are provided. Results with generalized-α are compared with Newmark-β time
integration and their sensitivities with numerical sensitivities via forward finite differencing in terms
of accuracy and performance. An example is shown for each linear structural dynamics and flexible
multibody dynamics.
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1. Introduction

Analytical design sensitivity analysis is developed in this paper for the generalized-α
family of time integration. After deriving and introducing design sensitivity using direct
differentiation, results are compared with numerical differentiation via forward differencing
in terms of accuracy and computational effort.

Efficient sensitivity analysis is the centerpiece of efficient and effective gradient-based
design optimization. Other uses of sensitivity analysis include uncertainty analysis and
quantification, e.g., the adjoint variable method applied to the sensitivity analysis with
respect to uncertain and random variables was developed in [1]. Overviews of design
sensitivity analysis are provided by [2–6]. In transient problems, sensitivity analysis must
be extended to time integration [7,8], which is handled here by introducing and deriving
the equations for the direct differentiation of the generalized-α family of time integration.

In the dynamic systems addressed, the transient response (response in time domain)
is of interest and therefore a temporal discretization is applied. The calculation of the
system responses, here position, velocity and acceleration, can be carried out with explicit
or implicit time integration methods. Implicit time integration allows for larger time steps
than explicit methods, which is bounded by the Courant criterion to remain stable [9].

Newmark introduced an implicit integration scheme, now referred to as Newmark-β,
in 1959 with two integration parameters γ and β [10]. The Hilber–Hughes–Taylor (HHT)
method was introduced in 1977 to improve upon Newmark with the additional integration
parameter α f for numerical damping [11], while the Wood–Bossak–Zienkiewicz (WBZ,
also known as simply Bossak or Wood) introduced the parameter αm [12]. Generalized-α
was introduced by Chung and Hulbert in 1993 [13] to generalize all these methods with
the integration parameters αm, α f , β and γ. These methods can be generalized via a
single implementation which is therefore referred to as the generalized-α family of time
integrators. In the generalized-αmethod, for which the family is named, all parameters can
be controlled by a single value, namely the spectral radius at infinity %∞ ranging from zero,
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being the highest amount of damping, to unity, being none [13]. It should be noted that
we differentiate between the variants of the Greek letter rho: % is used here for the spectral
radius at infinity, while ρ is used below for density. The mapping of %∞ to αm, α f , β and γ
is shown below. The choice of this value can affect the response for a given time step, see,
e.g., [14].

Generalized-α time integration has found usage in both nonlinear structural dynamics
and multibody dynamics. Multibody dynamics addresses the dynamic response with
kinematic constraints. Rigid multibody dynamics considers the bodies rigid, while flexible
multibody dynamics allows for the deformation in the bodies of the system. Applications
are shown including both linear structural dynamics and flexible multibody dynamics.

This paper is concerned with the sensitivity analysis of dynamic problems, which is
used when one or more parameters affect the system responses. The calculation of the
system responses is referred to here as primal analysis so that it may be distinguished from
the sensitivity analysis. This is of interest for the efficient design optimization via gradient-
based optimization algorithms in addition to investigating the sensitivities themselves or
for uncertainty analyses. Methods for sensitivity analysis include analytical, numerical,
complex step and algorithmic approaches [5].

Analytical sensitivities can be derived either manually (by hand) or via the automatic
differentiation [15,16] of the implemented code. The automatic differentiation and manual
differentiation of rigid multibody systems are compared in [17]. Although prone to human
error and not automatic, the former represents an exact and one of the fastest methods for
sensitivity analysis [18]. Manual sensitivity analysis requires high implementation effort,
but the resulting code is typically highly reusable and must therefore only be derived and
implemented once. Due to its physics- and knowledge-based nature, in addition to its
increased transparency, hand differentiation is preferred by the authors.

This study limits itself to analytical sensitivity analysis, which is further divided into
direct differentiation (also known as forward sensitivity analysis) and the adjoint variable
method (also known as backward sensitivity analysis). Generally, it can be said that direct
differentiation is more efficient than the adjoint variable method if the number of design
variables is less than the number of functions to differentiate, i.e., in optimization, the
sum of the number of objective functions (one in case of single objective optimization)
and the number of constraints. Due to its nature, the adjoint variable method must be
performed after the time integration of the primal analysis and integrated backwards
in time. Thus, the adjoint variable method, in contrast to direct differentiation, needs
dedicated solver routines to integrate backwards in time and cannot reuse primal forward
time integration [7,8]. Furthermore, for nonlinear analysis, the system matrices must be
stored or recalculated when integrating backwards in time. Therefore, direct differentiation
is chosen in this work. The reader is referred to the following literature for the adjoint
variable method: [19–30].

A number of studies have been carried out for sensitivity analysis in transient struc-
tural dynamics and multibody dynamics. Early works on sensitivity analysis with transient
structural dynamics include [31], which bridges sensitivities in static and dynamic analysis
via the adjoint variable method, including maximum-value objectives and constraints.
In [32], sensitivity analysis with the adjoint variable method and direct differentiation is
introduced for time-averaged and time-specific constraints. The German-language mono-
graph [33] clearly demonstrates the analytic sensitivity analysis of transient linear dynamics
with Newmark-β time integration, providing all necessary equations for implementation,
which also includes the sensitivity of the duration of a dynamic operation. The adjoint
variable method for transient structural dynamics with Newmark-β time integration is
derived by [34]. The adjoint variable method and direct differentiation of nonlinear and
transient problems is handled by [35] in which the crucial aspects of the nonlinear solver
for sensitivity analysis are introduced.

The sensitivity analysis of multibody systems is often limited to the governing equa-
tions and often not extended to the nonlinear solver or time integration. Exceptions to
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this can be found for direct differentiation with the divide-and-conquer-based modal
superposition method in [36]; for direct differentiation and the adjoint variable method
with general formulations of differential–algebraic equations in [37]; for direct differen-
tiation and the adjoint variable method of ordered differential equations in [38]; and for
the adjoint variable method with the floating frame of reference formulation in [20]. The
adjoint variable method of the governing equations in descriptor form and for generic
optimization functions is shown by [21] for several time integration methods, including the
backward difference formula, Newmark-, Adams–Bashforth–Moulton and diagonally im-
plicit Runge–Kutta. The derivation of the adjoint variable method based on generalized-α
time integration and applied to the finite-element-based formulation is provided by [39].
The transient response sensitivity analysis of localized nonlinear behavior using Newmark-
β [40].

Higher-order sensitivities can also be of interest, especially in cases of a low number
of degrees of freedom and design variables. Second-order sensitivities via the adjoint
variable method with the Runge–Kutta–Fehlberg method are shown in [41]. Second-order
sensitivities for multibody systems with the adjoint variable method and differential–
algebraic equations are shown in [42]. Higher-order sensitivities are used in [43,44] to
develop a surrogate model for optimization. This work is limited to first-order sensitivities,
as required by gradient-based optimization, although the equations provided can be readily
extended to higher-order derivatives.

The scope here is thus the investigation of the direct differentiation of the generalized-α
method. A method in this regard is introduced in [45], yet the needed equations are not
derived and shown. The present work builds upon and extends the works to generalized-
α. The authors developed Newmark-β sensitivities in [7,46], which are in turn based
on [33,34]. In this paper, Newmark-β serves as a comparison to the developed method for
generalized-α.

This work first generally introduces generalized-α time integration and its equations.
Afterwards, the sensitivity equations are introduced for structural dynamics and flexible
multibody dynamics, respectively. A numerical example is shown for each and the results are
provided for both the primal and sensitivity analyses in comparison with Newmark-β time
integration. We close with a conclusion, including a discussion of this work. Furthermore, a
detailed derivation of the effective system matrices is provided in the Appendies A and B.

2. Sensitivity Analysis with Generalized-α Time Integration

In this section, we introduce the equations for an acceleration-form (a-form) of
generalized-α time integration using a predictor–corrector scheme and extend this for
sensitivity analysis. The acceleration-form refers to the formulation, where the accelera-
tion is the primary variable (i.e., the variable for which it is being solved), and contrasts
with the displacement-form (d-form) in which the displacement is the primary variable.
The predictor–corrector scheme allows for nonlinear terms in the governing equation in
which the predicted values are updated in the nonlinear solver, e.g., Newton–Raphson, and
then corrected.

In this work, we extend the well-established generalized-α time integration method
to include design sensitivity analysis, which is defined by the differentiation with respect
to the design variables (but could include other parameters, e.g., uncertain parameters).
Sensitivity analysis is carried out here by directly differentiating both the equations of
the time integration as well as the governing equations. We consider both linear struc-
tural dynamics as well as flexible multibody dynamics, which is intrinsically nonlinear.
After introducing the general equations for generalized-α time integration and its sensitivi-
ties, the domain-specific governing equations for linear structural dynamics and flexible
multibody dynamics are given. Flexible multibody dynamics is shown using the specific ap-
proach developed in [7,47,48] with an index-1 approach and the floating frame of reference
formulation.



Machines 2024, 12, 128 4 of 35

2.1. Generalized-α Time Integration

The method for primal and sensitivity analysis with generalized-α time integration
is introduced in the following. This is based on Newmark’s equations for the updated
position q and velocity vectors q̇ with the calculated value of the acceleration vector q̈,

q
n+1

= q
n
+ ∆tq̇

n
+

(
1
2
− β

)
∆t2q̈

n︸ ︷︷ ︸
predictor q

pred

+ β∆t2q̈
n+1︸ ︷︷ ︸

corrector

, (1)

q̇
n+1

= q̇
n
+ (1− γ)∆tq̈

n︸ ︷︷ ︸
predictor q̇

pred

+ γ∆tq̈
n+1︸ ︷︷ ︸

corrector

, (2)

where γ and β are the Newmark integration parameters. Though the simulation is evalu-
ated at the times tn and tn+1, values at intermediate points are interpolated. The position
q and velocity q̇ use time tn+1−α f and the acceleration q̈ uses time tn+1−αm , giving the
approximations by linear interpolation (see Figure 1),

t n−
1 tn

t n+
1−

α f

t n+
1−

αm t n+
1 t n+

2

q̈n−1

q̈n

q̈n+1

q̈n+2

α f

αm

q̈n q̈n+1

time t

Figure 1. Time integration with — acceleration, — γ = 0.5, — γ = 0.75.

q
n+1−α f

=
(

1− α f

)
q

n+1
+ α f q

n
, (3)

q̇
n+1−α f

=
(

1− α f

)
q̇

n+1
+ α f q̇

n
, (4)

q̈
n+1−αm

= (1− αm)q̈n+1
+ αm q̈

n
, (5)

where αm and α f are integration parameters. A predictor–corrector scheme is used in order
to accommodate the nonlinear calculation and state-dependency of the system parameters,
i.e., the system matrices with respect to position and velocity. The predicted state variables
with Newmark’s equations are

qpred = q
n
+ ∆tq̇

n
+

(
1
2
− β

)
∆t2q̈

n
, (6)

q̇pred = q̇
n
+ (1− γ)∆tq̈

n
, (7)
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and we calculate q̈
n+1

using the effective system equations (see below for an explanation of
structural dynamics and flexible multibody dynamics, respectively). The predicted values
are then corrected with Newmark’s equations,

q
n+1

= q
pred

+ β∆t2q̈
n+1

, (8)

q̇
n+1

= q̇
pred

+ γ∆tq̈
n+1

. (9)

For the sensitivity analysis within the generalized-α time integration, we use the direct
differentiation of the approximations

∇qn+1−α f =
(

1− α f

)
∇qn+1 + α f∇qn, (10)

∇q̇n+1−α f =
(

1− α f

)
∇q̇n+1 + α f∇q̇n, (11)

∇q̈n+1−αm = (1− αm)∇q̈n+1 + αm∇q̈n, (12)

where the nabla operator ∇ denotes the design sensitivity, i.e., the total derivative with
respect to the design variables, e.g., for the sensitivity scalar response with respect to the
design variable vector,

∇(·) = d(·)
dx

. (13)

The same direct differentiation is applied to the predictors, which are then defined by

∇qpred = ∇qn + ∆t∇q̇n +

(
1
2
− β

)
∆t2∇q̈n, (14)

∇q̇pred = ∇q̇n + (1− γ)∆t∇q̈n. (15)

After calculating ∇q̈n+1 by use of the effective sensitivity system (see below for
explanation of structural dynamics and flexible multibody dynamics, respectively), the
following correctors are used:

∇qn+1 = ∇qpred + β∆t2∇q̈n+1, (16)

∇q̇n+1 = ∇q̇pred + γ∆t∇q̈n+1. (17)

For a nonlinear analysis, a Newton solver can be integrated into the solving routine.
This is explained with flexible multibody systems below in Section 2.3.

The time integration constants of generalized-α are αm, α f , β and γ and their choice
can lead to a number of established time integration methods, including the Newmark
family of integrators, Hilber–Hughes–Taylor and Wood–Bossak–Zienkiewicz. Therefore,
this can then be referred to as the α-family of time integrators. The equations introduced
above in this section can therefore be generally used within this family. Specifically for the
generalized-α time integration used here, the choice of integration constants can be tied to
a single user-defined parameter, and the spectral radius at infinity %∞ [13],

αm =
2%∞ − 1
%∞ + 1

, (18)

α f =
%∞

%∞ + 1
, (19)

γ =
1
2
− αm + α f , (20)

β =
1
4

(
1− αm + α f

)2
. (21)
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The spectral radius at infinity is sometimes referred to as the (numerical) damping
and is limited to a range of [0, 1]. The value %∞ = 1 returns the Newmark-β retaining
frequencies, which are preserved, while %∞ = 0 annihilates all frequencies above ∆t

T after
one time step in which T is the period of the highest frequency of interest. The results
converge to those without numerical damping when the time step goes to zero. Thus, the
level of numerical damping introduced to generalized-α time integration depends on both
the step size as well as the spectral radius at infinity and the choice is critical for proper
results. A parameter study with a fixed-time step and varying the values of the spectral
radius at infinity is shown in [14]. As the present study develops a general framework for
this methodology, this is not addressed here and the reader is referred to [13,49–51]. In this
paper, we use a moderate value of %∞ = 0.55, though the sensitivity analysis methodology
developed is general and independent of this parameter value.

2.2. Structural Dynamics

The governing equation for linear structural dynamics is defined by the following
second-order equation of motion:

m q̈(t) + d q̇(t) + k q(t)− F(t) = 0, (22)

where m is the mass matrix, d is the damping matrix, k is the stiffness matrix and F is the
external force vector. For linear structural dynamics, the system matrices are constant and
independent of position and time. For the solving scheme, we add the residual force vector
R(t), which is to be zero (to an allowable value) at all times, to the right-hand side. The
α-family of integration methods uses intermediate-point approximations between tn and
tn+1, namely tn+1−α f and tn+1−αm , revealing

Rn+1−α f
= m q̈

n+1−αm
+ d q̇

n+1−α f
+ k q

n+1−α f
− Fn+1−α f

, (23)

where the linear approximation of the intermediate external force is

Fn+1−α f
=
(

1− α f

)
Fn+1 + α f Fn. (24)

The effective equation of motion is defined by

meff q̈n+1 = Feff, (25)

where

meff = (1− αm)m +
(

1− α f

)
γ∆td +

(
1− α f

)
β∆t2k , (26)

Feff =
(

1− α f

)
Fn+1 + α f Fn+

− αmm q̈
n
− d
((

1− α f

)
q̇

pred
+ α f q̇

n

)
− k
((

1− α f

)
q

pred
+ α f q

n

)
. (27)

For the derivation of the effective mass matrix meff and effective force vector Feff for
generalized-αmethod, see Appendix A.1.

The sensitivity analysis is derived using the direct differentiation which is applied to
the governing Equation (23). This reveals the sensitivity of the force balance for the α-family
of integration methods as

∇Rn+1−α f =∇m q̈n+1−αm + m∇q̈n+1−αm +∇d q̇
n+1−α f

+ d∇q̇n+1−α f +

+∇k qn+1−α f + k∇qn+1−α f −∇Fn+1−α f , (28)
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where the intermediate external force sensitivity is found with the approximation

∇Fn+1−α f =
(

1− α f

)
∇Fn+1 + α f∇Fn. (29)

The design sensitivities of the system matrices are three-dimensional matrices and
therefore efficient handling is needed.

The effective equation of motion for sensitivities is defined by the differentiation of (25),

meff∇q̈n+1 = Fpseudo, (30)

where
Fpseudo = ∇Feff −∇meff q̈n+1, (31)

and fully expressed by

Fpseudo =
(

1− α f

)
∇Fn+1 + α f∇Fn −∇m

(
(1− αm)q̈n+1

+ αm q̈
n

)
− αmm∇q̈n+

−∇d
((

1− α f

)
q̇

n+1
+ α f q̇

n

)
− d

((
1− α f

)
∇q̇pred + α f∇q̇n

)
+

−∇k
((

1− α f

)
q

n+1
+ α f q

n

)
− k

((
1− α f

)
∇qpred + α f∇qn

)
. (32)

For the derivation of the effective mass matrix meff and effective pseudo force Fpseudo
for the generalized-αmethod, see Appendices A.1 and A.2.

2.3. Flexible Multibody Dynamics

Flexible multibody dynamics is the analysis of mechanical systems consisting of flexi-
ble bodies constrained by kinematic joints modeled with differential–algebraic equations.
This work builds upon the previous work of analytical sensitivity analysis with multibody
dynamics, including [37,52,53]. In addition to the kinematic constraints with respect to
structural dynamics, multibody dynamics also must integrate a nonlinear solver in order to
consider the dependencies of the system matrices and vectors on the state variables. This is
carried out with Newton steps.

The flexible multibody system is modeled with the floating frame of the reference
formulation [54–56]. The generic index-3 differential–algebraic equation for a flexible
multibody system with holonomic constraints is written as follows:

m
(

q, t
)

q̈(t) + d
(

q, t
)

q̇(t) + k
(

q, t
)

q(t) + JT
Φ

(
q, t
)

λ(t) = Fext

(
q, q̇, t

)
+ Fv

(
q, q̇, t

)
, (33)

Φ
(

q, t
)
= 0, (34)

where q, q̇ and q̈ are the generalized position, velocity and acceleration vectors; λ is the
vector of Lagrange multipliers of kinematic constraints; the matrices m, d, and k are the
mass, damping and stiffness matrices; JΦ is the Jacobian matrix of kinematic constraints;
Fext is the vector of external forces; Fv is the quadratic velocity vector; and Φ is the vector
of kinematic constraints at the position level.

Numerical problems related to the solution of index-3 differential–algebraic equa-
tions [57] can be avoided by a number of methods including index reduction, coordinate
reduction, augmented Lagrangian formulation and preconditioning [58–60]. Although
generalized-α time integration is suitable for directly solving index-3 or index-2 differential–
algebraic equations, in this work, we address the problem using index reduction leading
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to an index-1 differential–algebraic equation in which the kinematic constraint function is
differentiated twice with respect to time,

m q̈ + d q̇ + k q + JT
Φ λ = Fext + Fv, (35)

JΦ q̈ = Fc, (36)

where Fc is the right-hand side of acceleration constraints. As index-1 differential–algebraic
equations are susceptible to drift in the kinematic constraints, Baumgarte stabilization [61]
is used. Kinematic constraint drift is stabilized in this method by adding damping and
restoring terms to the acceleration constraint equations that are proportional to the velocity
and position constraints. Details of its implementation, including the sensitivity analysis,
are described in [14,62].

The generalized-α time integration is based on(
m q̈
)

n+1−αm
+
(

d q̇
)

n+1−α f
+
(

k q
)

n+1−α f
+
(

JT
Φ λ
)

n+1−αm
= Fext,n+1−α f

+ Fv,n+1−α f
, (37)(

JΦ q̈
)

n+1−αm
= Fc,n+1−α f

, (38)

with the intermediate approximations of all force terms of the equations of motion. These
intermediate approximations are shown in Appendix B.1. Inserting the intermediate
approximations of the force terms acting on the flexible multibody system leads to the
equations of motion in residual form given by

R1,n+1−α f
= (1− αm)mn+1q̈

n+1
+ αmmn q̈

n
+
(

1− α f

)
dn+1q̇

n+1
+ α f dn q̇

n
+

+
(

1− α f

)
kn+1q

n+1
+ α f knq

n
+ (1− αm)JT

Φ,n+1λn+1 + αmJT
Φ,nλn+

−
(

1− α f

)
Fext,n+1 − α f Fext,n −

(
1− α f

)
Fv,n+1 − α f Fv,n, (39)

R2,n+1−α f
= (1− αm)JΦ,n+1q̈

n+1
+ αmJΦ,n q̈

n
−
(

1− α f

)
Fc,n+1 − α f Fc,n. (40)

In the case of a nonlinear mass matrix, as is the case with the floating frame of reference
formulation, this weighted formulation of the residual equations are first-order accurate.
For a formulation of second-order accuracy, see, e.g., [63], where the dynamic equilibrium
is enforced exactly at the time steps of the simulation. The derived time integration and
its differentiation with the weighted residual formulation can be extended and applied to
further formulations.

The effective equation of motion is defined by[
meff JT

Φ,eff
JΦ,eff 0

][
q̈

n+1
λn+1

]
=

[
Fa,eff
Fc,eff

]
, (41)

where

meff = (1− αm)mn+1 +
(

1− α f

)
γ∆tdn+1 +

(
1− α f

)
β∆t2kn+1, (42)

JΦ,eff = (1− αm)JΦ,n+1, (43)

Fa,eff =
(

1− α f

)
Fext,n+1 + α f Fext,n +

(
1− α f

)
Fv,n+1 + α f Fv,n+

− αm mn q̈
n
−
(

1− α f

)
dn+1q̇

pred
− α f dn q̇

n
+

−
(

1− α f

)
kn+1q

pred
− α f knq

n
− αmJT

Φ,nλn, (44)

Fc,eff =
(

1− α f

)
Fc,n+1 + α f Fc,n − αmJΦ,n q̈

n
. (45)
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The derivations of the effective equation of motion and the terms meff, JΦ,eff, Fa,eff and
Fc,eff are shown in Appendix B.1.

With flexible multibody dynamics, the system parameters (matrix- and vector-valued
for ndof > 1) including mass, damping, stiffness, constraints and forces are generally
dependent on state variables. Therefore, a nonlinear solver is needed to solve the system
and the Newton–Raphson method is used here of the following form:

∂R1,n+1−α f
∂q̈

n+1

∂R1,n+1−α f
∂λn+1

∂R2,n+1−α f
∂q̈

n+1

∂R2,n+1−α f
∂λn+1

[∆q̈
n+1

∆λn+1

]
+

[
R1,n+1−α f

R2,n+1−α f

]
= 0. (46)

With the dependencies shown in (33) and (34), and the terms of the Jacobian matrix
(tangent operator) of the residuals with respect to q̈

n+1
and λn+1 are given by

∂R1,n+1−α f

∂q̈
n+1

= (1− αm)

(
β∆t2

∂mn+1
∂q

n+1

q̈
n+1

+ mn+1

)
+

+
(

1− α f

)(
β∆t2

∂dn+1
∂q

n+1

q̇
n+1

+ γ∆tdn+1

)
+

+
(

1− α f

)(
β∆t2

∂kn+1
∂q

n+1

q
n+1

+ β∆t2kn+1

)
+

+ (1− αm)β∆t2
∂JT

Φ,n+1

∂q
n+1

λn+1+

−
(

1− α f

)(
β∆t2 ∂Fext,n+1

∂q
n+1

+ γ∆t
∂Fext,n+1

∂q̇
n+1

)
+

−
(

1− α f

)(
β∆t2 ∂Fv,n+1

∂q
n+1

+ γ∆t
∂Fv,n+1

∂q̇
n+1

)
, (47)

∂R2,n+1−α f

∂q̈
n+1

= (1− αm)

(
β∆t2

∂JΦ,n+1

∂q
n+1

q̈
n+1

+ JΦ,n+1

)
+

−
(

1− α f

)(
β∆t2 ∂Fc,n+1

∂q
n+1

+ γ∆t
∂Fc,n+1

∂q̇
n+1

)
, (48)

∂R1,n+1−α f

∂λn+1
= (1− αm)JT

Φ,n+1, (49)

∂R2,n+1−α f

∂λn+1
= 0. (50)

The derivation of these terms is shown in Appendix B.2.
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The direct differentiation of the equations of motion (39) and (40) leads to the governing
equation of the sensitivity analysis,

∇R1,n+1−α f = (1− αm)∇m
n+1

q̈
n+1

+ αm∇m
n
q̈

n
+

+ (1− αm)mn+1∇q̈
n+1

+ αmmn∇q̈
n
+

+
(

1− α f

)
∇d

n+1
q̇

n+1
+ α f∇d

n
q̇

n
+

+
(

1− α f

)
dn+1∇q̇

n+1
+ α f dn∇q̇

n
+

+
(

1− α f

)
∇k

n+1
q

n+1
+ α f∇k

n
q

n
+

+
(

1− α f

)
kn+1∇q

n+1
+ α f kn∇q

n
+

+ (1− αm)∇JT
Φ,n+1λn+1 + αm∇JT

Φ,nλn+

+ (1− αm)JT
Φ,n+1∇λn+1 + αmJT

Φ,n∇λn+

−
(

1− α f

)
∇Fext,n+1 − α f∇Fext,n −

(
1− α f

)
∇Fv,n+1 − α f∇Fv,n, (51)

∇R2,n+1−α f = (1− αm)∇JΦ,n+1q̈
n+1

+ αm∇JΦ,n q̈
n

+ (1− αm)JΦ,n+1∇q̈
n+1

+ αmJΦ,n∇q̈
n
+

−
(

1− α f

)
∇Fc,n+1 − α f∇Fc,n. (52)

The governing sensitivity equation of the effective system is defined by the differentia-
tion of (41), [

meff JT
Φ,eff

JΦ,eff 0

][
∇q̈

n+1
∇λn+1

]
=

[
Fa,pseudo
Fc,pseudo

]
, (53)

where [
Fa,pseudo
Fc,pseudo

]
=

[
∇Fa,eff
∇Fc,eff

]
−

 ∇meff ∇JT
Φ,eff

∇JΦ,eff 0

[ q̈
n+1

λn+1

]
, (54)

leading to

Fa,pseudo =
(

1− α f

)
∇Fext,n+1 + α f∇Fext,n +

(
1− α f

)
∇Fv,n+1 + α f∇Fv,n+

− (1− αm)∇m
n+1

q̈
n+1
− αm∇m

n
q̈

n
− αmmn∇q̈

n
+

−
(

1− α f

)
∇d

n+1
q̇

n+1
− α f∇d

n
q̇

n
−
(

1− α f

)
dn+1∇q̇

pred
− α f dn∇q̇

n
+

−
(

1− α f

)
∇k

n+1
q

n+1
− α f∇k

n
q

n
−
(

1− α f

)
kn+1∇q

pred
− α f kn∇q

n
+

− (1− αm)∇JT
Φ,n+1λn+1 − αm∇JT

Φ,nλn − αmJT
Φ,n∇λn, (55)

Fc,pseudo =
(

1− α f

)
∇Fc,n+1 + α f∇Fc,n+

− (1− αm)∇JΦ,n+1q̈
n+1
− αm∇JΦ,n q̈

n
− αmJΦ,n∇q̈

n
. (56)

The derivation of the effective mass matrix and the effective constraint Jacobian matrix
is shown in Appendix B.1 and the derivation of the effective pseudo force terms is shown
in Appendix B.3.
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The Newton–Raphson step for the sensitivity analysis is given by
∂∇R1,n+1−α f

∂∇q̈
n+1

∂∇R1,n+1−α f
∂∇λn+1

∂∇R2,n+1−α f
∂∇q̈

n+1

∂∇R2,n+1−α f
∂∇λn+1


[

∆∇q̈
n+1

∆∇λn+1

]
+

 ∇R1,n+1−α f

∇R2,n+1−α f

 = 0. (57)

As shown in [7], the Jacobian of the residual sensitivity with respect to ∇q̈
n+1

and

∇λn+1 reduces to
∂∇R1,n+1−α f

∂∇q̈
n+1

∂∇R1,n+1−α f
∂∇λn+1

∂∇R2,n+1−α f
∂∇q̈

n+1

∂∇R2,n+1−α f
∂∇λn+1

 =


∂R1,n+1−α f

∂q̈
n+1

∂R1,n+1−α f
∂λn+1

∂R2,n+1−α f
∂q̈

n+1

∂R2,n+1−α f
∂λn+1

e, (58)

which reduces the dimensions of the coefficient matrix from
(
nq + nΦ

)
× nx ×

(
nq + nΦ

)
×

nx to
(
nq + nΦ

)
×
(
nq + nΦ

)
. The solution of the resulting equation,

∂R1,n+1−α f
∂q̈

n+1

∂R1,n+1−α f
∂λn+1

∂R2,n+1−α f
∂q̈

n+1

∂R2,n+1−α f
∂λn+1

[∆∇q̈
n+1

∆∇λn+1

]
+

 ∇R1,n+1−α f

∇R2,n+1−α f

 = 0, (59)

is found using the same solving scheme for the nonlinear solver of the primal analysis (46).
Furthermore, both the primal analysis (46) and sensitivity analysis (59) have the same
coefficient matrix, which also allows one to reuse the coefficient matrix of the primal
analysis in the sensitivity analysis without the need for further evaluations.

3. Numerical Results

In this section, numerical results are shown comparing the introduced method for
the sensitivity analysis for generalized-α time integration (primal analysis introduced in
Section 2) with that of Newmark-β. The methods are compared with applications to both
structural dynamics as well as flexible multibody dynamics.

3.1. Structural Dynamics

The linear structural dynamic problem used here as a demonstration example is
based on [64], which has found usage as a benchmark in [65–71]. This unitless problem is
schematically shown in Figure 2. This problem is defined by

k1 k2
q1 q2 q3

F1

m1 m2 m3

Figure 2. Structural dynamics example.

m︷ ︸︸ ︷m1 0 0
0 m2 0
0 0 m3


q̈︷ ︸︸ ︷q̈1

q̈2
q̈3

+

k︷ ︸︸ ︷ k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2


q︷ ︸︸ ︷q1

q2
q3

−
F︷ ︸︸ ︷F1
0
0

 =

R︷︸︸︷0
0
0

, (60)

with the prescribed displacement,

q1 = sin ωt, (61)
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and the unitless values

m1 = 0,

m2 = 1,

m3 = 1,

k1 = 107,

k2 = 1,

ω = 1.2.

The masses m2 and m3 as well as the stiffnesses k1 and k2 are considered design
variables with respect to which the design sensitivities are calculated. The problem consists
of stiff (k1) and flexible (k2) parts that are typical of complex, practical structural–mechanical
systems [64].

Considering the prescribed displacement, this problem can be reduced to two degrees
of freedom,

m︷ ︸︸ ︷[
m2 0
0 m3

] q̈︷︸︸︷[
q̈2
q̈3

]
+

k︷ ︸︸ ︷[
k1 + k2 −k2
−k2 k2

] q︷︸︸︷[
q2
q3

]
−

F︷ ︸︸ ︷[
k1q1

0

]
=

R︷︸︸︷[
0
0

]
, (62)

which we implement in our in-house, Python-based solver framework SIMULI in the time
t = [0, 10] with the initial conditions

q2 = 0,

q3 = 0,

q̇2 = 0,

q̇3 = 0.

As reported in [64], unitless time steps of ∆t = 0.2618 are used, giving the following
values for the ratio step size to the fundamental periods of the system:

∆t
TF

= 0.05,

∆t
T1

= 0.041667,

∆t
T2

= 131.76,

where TF is the fundamental period of the forcing function and T1,2, for the first and second
modes, T1 = 6.283 and T2 = 0.001987.

The results for both Newmark-β and generalized-α time integration methods are
shown in Figure 3 and compared with the exact solution. The exact solution is calculated
via mode superposition per [72]. The numerical damping parameter of generalized-α
time integration is set as %∞ = 0.55. As expected with generalized-α time integration, the
unphysical, high-frequent oscillatory behavior of the response can be avoided. As such,
the beneficial effects of numerical damping with generalized-α time integration can be
clearly seen in the velocity and acceleration of node 2, while maintaining the integrity of
the other responses.
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Figure 3. Responses of the structural dynamic example (unitless) calculated with — Newmark-β and
— generalized-α compared with — exact solution (undermost line).

The sensitivity analysis developed above is applied and these results can be seen
in Figures 4–6. Analytical sensitivity analysis with Newmark-β and generalized-α time
integration methods are also compared with their numerical sensitivity implementations
via finite differencing using a relative perturbation of 10−6.

In cases where the Newmark-β time integration shows instability or noise, the numeri-
cal damping allows for usable sensitivities. In some cases, noise—albeit at a much lower
level—persists in the first iterations before being damped out—after approximately 2.5 s
(or approximately 10 iterations). Attention is drawn to those sensitivities susceptible to
stability issues, namely

• sensitivities of position 2 with respect to stiffness 1 and mass 2 (Figure 4);
• sensitivities of velocity 2 with respect to stiffness 1 and mass 2 (Figure 5);
• sensitivities of acceleration 2 with respect to stiffness 1, stiffness 2 and mass 2 (Figure 6);
• sensitivities of acceleration 3 with respect to stiffness 1 and mass 2 (Figure 6).

Generalized-α time integration is not afflicted by this instability, resulting in sensitivi-
ties that can be successfully used in gradient-based algorithms.

Furthermore, generalized-α time integration eliminates the noise in those sensitivities
present when using Newmark-β. This is seen with the following sensitivity responses:

• sensitivities of velocity 2 with respect to stiffness 2 (Figure 5);
• sensitivities of velocity 3 with respect to stiffness 1 and mass 2 (Figure 5).

The analytical and numerical results are, in most plots, nearly exact. There are cases,
however, where the negative consequences of the numerical instability with Newmark-β
are increased. The reader’s attention is especially called to

• sensitivity of velocity 2 with respect to stiffness 2 (Figure 5);
• sensitivity of velocity 2 with respect to mass 3 (Figure 5);
• sensitivity of acceleration 2 with respect to stiffness 2 (Figure 6);
• sensitivity of acceleration 2 with respect to mass 3 (Figure 6).

It can be seen that both analytical and numerical sensitivities with generalized-α
time integration are not negatively affected by numerical instabilities, as is the case with
Newmark-β.

The number of time steps needed for the damping to take effect can be reduced by
reducing the numerical damping parameter %∞ towards zero (i.e., more damping), though
also affecting the physical response to a greater degree. As time continues, the instability
grows, with Newmark-β time integration and therefore a clear advantage can be seen with
generalized-α. It can be clearly seen how gradient-based solvers would struggle to use the
gradient information provided with Newmark-β time integration.
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Figure 4. Position sensitivities ∇q of the structural dynamic example with respect to k1, k2, m2 and
m3 (unitless), analytically calculated with — Newmark-β and — generalized-α compared with those
calculated numerically via finite differencing with — Newmark-β and — generalized-α (undermost
lines). Note: no visible difference between finite differencing and analytical sensitivities.
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Figure 5. Velocity sensitivities ∇q̇ of the structural dynamic example with respect to k1, k2, m2 and
m3 (unitless), analytically calculated with — Newmark-β and — generalized-α compared with those
calculated numerically via finite differencing with — Newmark-β and — generalized-α (undermost
lines). Note: no visible difference between finite differencing and analytical sensitivities.

For our modest case of four design variables, we show an acceleration of two, where
the speedup S is defined by the ratio of computational time for finite differencing tFD to
that of analytical sensitivities tana,

S =
tFD

tana
. (63)

The computational time required for analytical sensitivity analysis represents ap-
proximately the ideal computational effort twice that of the primal analysis, i.e., analysis
without sensitivity analysis. Computation reduction is the same for both Newmark-β and
generalized-α time integration methods, as can be seen in Table 1.
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Figure 6. Acceleration sensitivities ∇q̈ of the structural dynamic example with respect to k1, k2,
m2 and m3 (unitless) analytically calculated with — Newmark-β and — generalized-α compared
with those numerically calculated via finite differencing with — Newmark-β and — generalized-α
(undermost lines). Note: no visible difference between finite differencing and analytical sensitivities.

Table 1. Computational effort for the structural dynamics example.

Time Integration Sensitivity Analysis Calculation Time (s) 1 Speedup 2

Newmark-β None 0.0555 –
Newmark-β Finite differencing 0.2088 –
Newmark-β Analytical 0.1023 2.0410
Generalized-α None 0.0458 –
Generalized-α Finite differencing 0.2122 –
Generalized-α Analytical 0.0993 2.1370

1 Intel Core i5-7200U CPU 2.50 GHz, 2 acceleration of analytical sensitivity analysis with respect to finite differencing.

3.2. Flexible Slider–Crank Mechanism

The slider–crank mechanism, as shown in Figure 7, is modeled with flexible multibody
dynamics using the floating frame of reference formulation. The mechanism consists of four
bodies that are connected by three revolute joints and one prismatic joint, modeled as ideal
joints without friction. The ground and the slider are considered to be rigid, while the crank
and the rod are considered to be flexible and are modeled with Euler–Bernoulli beams.
Figure 8 shows the flexible multibody system of the mechanism. The inertial reference
frame coinciding with the reference frame of the ground is shown in blue. The body
reference frames of the crank, the rod and the slider are shown in red. The undeformed
bodies of the crank and the rod are shown in gray and the deformed bodies are shown
in black, where the points represent the nodes of the finite elements for the geometric
discretization. The coordinates that are investigated in detail for the primal analysis and the
sensitivity analysis are shown in green. The dimensions of the bodies are listed in Table 2.
The bodies are made of steel and Table 3 shows the material properties. A linear elastic
material model with isotropic behavior is applied. In this example, the SI-derived MPa
unit system is used with length in millimeters (mm), mass in tonnes (t), time in second (s),
force in Newtons (N), Angle in radian (rad) and stress in megapascals (MPa).
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Figure 7. Slider–crank mechanism: (a) schematic diagram; and (b) cross-sections.

x

y xC

yC

xR

yR

xS

yS

xS

θC

xC, f

yC, f

θC, f

Figure 8. Flexible multibody system of the slider–crank mechanism with the undeformed bodies in
gray, the deformed bodies in black, the inertial reference frame in blue, the body reference frames in
red and the coordinates that are investigated in green.

Table 2. Geometry of the slider–crank mechanism.

Property Symbol Crank Rod Slider Units

Width w 20 20 30 mm
Height h 30 30 30 mm
Length ` 120 180 40 mm

Table 3. Material properties.

Property Symbol Value Units

Density ρ 7.85× 10−9 t
mm3

Elastic modulus E 210 000 MPa
Poisson ratio ν 0.3 −

The generalized coordinates of a flexible multibody system modeled with the floating
frame of the reference formulation and Euler–Bernoulli beams are given by

q =
[

rT θ qT
f

]T
, (64)

where r is the position of the body reference frame, θ is the orientation of the body reference
frame and q

f
are the nodal displacements in the body coordinates of each node on the

flexible body. Since no damping is considered, the equations of motion of a flexible body
are given by

m q̈ + k q + JT
Φ λ = Fext + Fv, (65)

JΦ q̈ = Fc, (66)



Machines 2024, 12, 128 17 of 35

where the system matrices of the flexible bodies are given by

m =

 mtt mtr mt f
mrr mr f

sym. m f f

, (67)

k =

 0 0 0
0 0

sym. k f f

, (68)

and the system vectors are given by

Fext =

 Fext,t
Fext,r
Fext, f

, (69)

Fv =

 Fv,t
Fv,r
Fv, f

, (70)

with the index denoting translational terms t, rotational terms r and flexible terms f .
For the dynamic simulation of the mechanism, the above-mentioned solver framework

SIMULI is used. The simulation is performed in the time interval t = [0 s, 0.025 s]. For both
generalized-α and Newmark-β time integration, a time step of ∆t = 1× 10−4 s is chosen
for comparison. The resulting values for the ratio step size to fundamental periods of the
system for the first ten non-zero eigenfrequencies are found in Figure 9. The values for the
ratio step size to fundamental periods range from 0.2119 s for first non-zero eigenfrequency
to 3.9919 s for the tenth non-zero eigenfrequency and to 17.1157 s for the twentieth non-zero
eigenfrequency (not pictured in the plot).

0 50 100 150 200 250 300 350

1

2

3

4

crank orientation θC [deg]

ra
ti

o
∆

t /
T

Figure 9. Ratio time step to fundamental periods for the first ten non-zero eigenfrequencies of the
slider–crank mechanism.

For the initial conditions, the angular position and velocity of the crank are defined with

θC = 0 rad,

θ̇C = 150π
rad

s
,

and the initial conditions of the other bodies are derived through the kinematic analysis of
the system. The dimensions of the cross-sections of the crank hC, wC and the rod hR, wR
are used as design variables in the sensitivity analysis.
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The results of the simulation of the coordinates that are highlighted in Figure 8 are
shown in Figure 10. With Newmark-β, vibrations at high frequencies are observed. With
generalized-α, vibrations are observed in the beginning of the simulation that are numeri-
cally damped with ongoing simulation time. In addition to the generalized coordinates,
the maximum stresses on the upper and lower fiber of the beam elements of the flexible
bodies including the crank and the rod are computed. The Kreisselmeier–Steinhauser
function [73,74] is used to approximate the maximum stress value of the bodies at each time
step with a differentiable function and the results are shown in Figure 11. With Newmark-β,
the vibrating behavior of the system causes higher flexible deformation and therefore
unrealistic high stress in the components. The numerical damping with generalized-α leads
to lower maximum stress values and a more realistic stress distribution over time.
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ÿC, f

0 0.01 0.02

−4
−2

0
2
4
·10−3

time t

θC, f

0 0.01 0.02

−100

0

100

time t

θ̇C, f

0 0.01 0.02

−4
−2

0
2
4
·106

time t

θ̈C, f

Figure 10. Responses of the slider–crank mechanism (values in MPa units, i.e., s, mm, mm
s , mm

s2 for
translations and rad, rad

s , rad
s2 for rotations) calculated with — Newmark-β and — generalized-α.
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Figure 11. Maximum stress in MPa on the upper and lower fiber of the crank and the rod over time
in s calculated with — Newmark-β and — generalized-α.

The results of the sensitivity analysis of the coordinates that are highlighted in Figure 8
are shown in Figures 12–14. The analyzed coordinates include the rotation of the floating
frame of the crank θC, the translation in the x direction of the floating frame of the slider
xS and the three flexible coordinates of the node in A on the crank xC, f , yC, f and θC, f . The
design variables used for the sensitivity analysis are the cross-sectional dimensions of the
crank hC, wC and the rod hR, wR.

Similarly to the above, with Newmark-β, the results show a vibrating behavior that
would lead to significant problems when using the sensitivities in gradient-based design
optimization. With generalized-α, the numerical damping leads to usable sensitivity values
after a few time steps. Figure 12 shows that the position sensitivities of the position
and orientation coordinates of the floating frames are less noisy compared to the flexible
coordinates.

Position sensitivities that suffer little from noise are limited to the position and orienta-
tion coordinates of the floating frames with respect to several design variables and include
the following:

• sensitivities of θC with respect to wC and wR;
• sensitivities of xS with respect to hC, wC, and wR.

Position sensitivities with significant noise include the position and orientation co-
ordinates of the floating frames with respect to a few specific design variables as well as
the flexible coordinates with respect to all design variables. The list of noisy responses of
position sensitivities is given in the following:

• sensitivities of θC with respect to hC and hR;
• sensitivities of xS with respect to hR;
• sensitivities of xC, f with respect to hC wC, hR and wR;
• sensitivities of yC, f with respect to hC; wC, hR and wR;

• sensitivities of θC, f with respect to hC, wC, hR and wR.

The sensitivities of the velocities as shown in Figure 13 and the sensitivities of the
accelerations as shown in Figure 14 have noisy responses with Newmark that are damped
with generalized-α for all investigated coordinates and all used design variables. The same
behavior also continues with the sensitivity values for the maximum stresses in the crank
and the rod shown in Figure 15.

To check the correctness of the results, the sensitivity values with the introduced
method are compared to numerical sensitivity analysis with forward differencing. The
results are in good agreement, with only small numerical differences. In fact, there are
no visible differences in Figures 12–15 with the finite differencing values lying under the
respective analytical values.

Table 4 shows a comparison of the computational effort with different methods. The
computational effort with generalized-α is about 30 % lower compared to the computational
effort with Newmark-β. The main reason for that is the continuing vibrating behavior with
Newmark-β requires more iteration steps of the nonlinear solver. The comparison of the
sensitivity methods with numerical finite differencing and analytical direct differentiation
shows the high efficiency of the analytical method. With the four shown design variables,
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as shown in (63), an acceleration of about S ≈ 4 of the analytical method compared to the
numerical method is obtained. The additional computational effort of analytical sensitivity
analysis is just a fraction of the computational effort of the primal analysis. This is because
of the simplification shown in (59), which also allows one to reuse the Jacobian matrix of
the residual built in the primal analysis for the sensitivity analysis.
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Figure 12. Position sensitivities ∇q of the slider–crank mechanism with respect to hC, wC, hR and wR

(values in MPa system of units, i.e., s, mm, mm
s , mm

s2 for translations and rad, rad
s , rad

s2 for rotations)
calculated with — Newmark-β and — generalized-α compared with those numerically calculated
via finite differencing with — Newmark-β and — generalized-α (undermost lines). Note: there is no
visible difference between finite differencing and analytical sensitivities.
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∇ẋS

0 0.01 0.02

−4 000

−2 000

0

0 0.01 0.02
−4 000
−2 000

0
2 000
4 000

0 0.01 0.02

0

500

0 0.01 0.02

−2 000

0

2 000
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Figure 13. Velocity sensitivities ∇q̇ of the slider–crank mechanism with respect to hC, wC, hR and wR

(values in MPa system of units, i.e., s, mm, mm
s , mm

s2 for translations and rad, rad
s , rad

s2 for rotations)
calculated with — Newmark-β and — generalized-α compared with those calculated numerically
via finite differencing with — Newmark-β and — generalized-α (undermost lines). Note: no visible
difference between finite differencing and analytical sensitivities.

Table 4. Computational effort for the slider–crank mechanism.

Time Integration Sensitivity Analysis Calculation Time [mm:ss] 1 Speedup 2

Newmark-β None 03:44 –
Newmark-β Finite differencing 18:12 –
Newmark-β Analytical 04:29 4.0595
Generalized-α None 02:42 –
Generalized-α Finite differencing 13:22 –
Generalized-α Analytical 03:30 3.8190

1 Intel Core i7-8700 CPU 3.20 GHz, 2 speedup of analytical sensitivity analysis with respect to finite differencing.
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Figure 14. Acceleration sensitivities∇q̈ of the slider–crank mechanism with respect to hC, wC, hR and
wR (values in MPa system of units, i.e., s, mm, mm

s , mm
s2 for translations and rad, rad

s , rad
s2 for rotations)

calculated with — Newmark-β and — generalized-α compared with those calculated numerically
via finite differencing with — Newmark-β and — generalized-α (undermost lines). Note: there is no
visible difference between finite differencing and analytical sensitivities.
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Figure 15. Maximum stress sensitivities on the upper and lower fibers of the crank and the rod
(values in MPa system of units, i.e., s, mm, mm

s , mm
s2 for translations and rad, rad

s , rad
s2 for rotations)

calculated with — Newmark-β and — generalized-α compared with those calculated numerically
via finite differencing with — Newmark-β and — generalized-α (undermost lines). Note: there is no
visible difference between finite differencing and analytical sensitivities.

4. Conclusions

This work develops the analytical sensitivity analysis for the α-family of time inte-
gration, which has a single implementation for several common time integration schemes.
This therefore has consequences for gradient-based optimization frameworks for dynamic
systems. Analytical sensitivity analysis is crucial for efficient design optimization, pa-
rameter fitting and uncertainty analysis. In this work, the direct differentiation of the
generalized-α time integration is derived and implemented for linear structural dynamics
and flexible multibody dynamics, the latter of which requires a nonlinear solution routine.
All equations needed for implementation are provided and extendable to further governing
equations. The beneficial effects of the step-size-dependent numerical damping provided
by the generalized-α method can clearly be seen in the comparison of the results with
Newmark-β. The numerical noise of the responses and sensitivities can lead to convergence
problems when using gradient-based optimization algorithms. This can be avoided when
using the generalized-α time integration and its sensitivities as developed herein.

If the functions of interest are nonsmooth, discontinuous and bifurcated, non-gradient-
based methods can be successfully used, e.g., design cases with crash analysis. Such cases
can be solved with gradient-free optimization algorithms (e.g., [75–77]) and approximation
methods (e.g., [78–80]).
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The system responses with respect to the design variables are indeed often smooth,
continuous and unbifurcated and thus enabling gradient-based methods where efficient and
accurate sensitivity analysis is critical for both effectiveness and efficiency. This is shown
above with linear structural dynamics and flexible multibody dynamics. The method and
equations developed herein are of general nature and are extendable to further formulations
and applicable to larger problems, both of larger number of degrees of freedom and number
of design variables. Future investigations are needed on these large-scale problems to assess
the acceleration and include a comparison with the adjoint variable method.

With the above study and introduction of the direct differentiation of the α-family of
time integrators, the authors hope to provide the readers as design engineers a tool in the
pursuit of optimal structures and mechanisms under dynamic loading.
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Appendix A. Derivation of Effective Equations of Motion for Structural Dynamics

Appendix A.1. Primal Analysis

The base for the α-family of integration methods is the equation of motion which for
linear structural dynamics which is given by

m q̈
n+1−αm

+ d q̇
n+1−α f

+ k q
n+1−α f

= Fn+1−α f
, (A1)

and the intermediate values shown in Equations (3)–(5). Inserting the intermediate values
into the equation of motion leads to

m
(
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+ d
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With Newmark’s equation, (1) and (2), this becomes
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This can be rearranged in the following form(
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. (A4)

Therefore, the effective equation of motion is defined by

meff q̈n+1 = Feff, (A5)
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where

meff = (1− αm)m +
(

1− α f

)
γ∆td +

(
1− α f

)
β∆t2k, (A6)
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Appendix A.2. Sensitivity Analysis

The governing equation for sensitivities is the first derivative of the equation of motion,

∇m q̈n+1−αm + m∇q̈n+1−αm + ∇d q̇
n+1−α f

+ d∇q̇n+1−α f + ∇k qn+1−α f + k∇qn+1−α f = ∇Fn+1−α f , (A8)

where we introduce the intermediate sensitivity values (10)–(12),
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and which we update with Newmark’s sensitivity Equations (16) and (17)
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This equation can be rearranged to the following form,(
(1− αm)m +

(
1− α f

)
γ∆td +

(
1− α f

)
β∆t2k

)
∇q̈n+1 =(

1− α f

)
∇Fn+1 + α f∇Fn −∇m

(
(1− αm)q̈n+1

+ αm q̈
n

)
− αmm∇q̈n+

−∇d
((

1− α f

)
q̇

n+1
+ α f q̇

n

)
− d
((

1− α f

)
∇q̇pred + α f∇q̇n

)
+

−∇k
((

1− α f

)
q

n+1
+ α f q

n

)
− k
((

1− α f

)
∇qpred + α f∇qn

)
. (A11)

Therefore, the effective equation of motion for sensitivities is defined by

meff∇q̈n+1 = Fpseudo, (A12)

where meff is given by Equation (A6) and the pseudo load is defined by
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Appendix B. Derivation of Effective Equations of Motion for Flexible
Multibody Dynamics

Appendix B.1. Primal Analysis

The base of the generalized-αmethod for index-1 differential algebraic equations of a
flexible multibody system is given by(
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(
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, (A14)(
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. (A15)

The intermediate point approximations of the force terms acting on the flexible multi-
body system are given by(
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Applying these linear approximations of the generalized-αmethod to the equations of
motion leads to
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Inserting Newmark’s Equations (1) and (2) gives
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which can be rewritten to(
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The equations of motion of the effective system are given by[
meff JT

Φ,eff
JΦ,eff 0

][
q̈

n+1
λn+1

]
=

[
Fa,eff
Fc,eff

]
, (A30)

where

meff = (1− αm)mn+1 +
(

1− α f

)
γ∆tdn+1 +

(
1− α f

)
β∆t2kn+1, (A31)

JΦ,eff = (1− αm)JΦ,n+1, (A32)

Fa,eff =
(

1− α f

)
Fext,n+1 + α f Fext,n +

(
1− α f

)
Fv,n+1 + α f Fv,n − αm mn q̈

n
+

−
(

1− α f

)
dn+1q̇

pred
− α f dn q̇

n
−
(

1− α f

)
kn+1q

pred
− α f knq

n
− αmJT

Φ,nλn, (A33)

Fc,eff =
(

1− α f

)
Fc,n+1 + α f Fc,n − αmJΦ,n q̈

n
. (A34)

Appendix B.2. Nonlinear Solver

The base for the nonlinear solver are the residual equations of the flexible multibody
system, given by

R1,n+1−α f
= (1− αm)mn+1q̈

n+1
+ αmmn q̈

n
+
(

1− α f

)
dn+1q̇

n+1
+ α f dn q̇

n
+

+
(

1− α f

)
kn+1q

n+1
+ α f knq

n
+ (1− αm)JT

Φ,n+1λn+1 + αmJT
Φ,nλn+

−
(

1− α f

)
Fext,n+1 − α f Fext,n −

(
1− α f

)
Fv,n+1 − α f Fv,n, (A35)

R2,n+1−α f
= (1− αm)JΦ,n+1q̈

n+1
+ αmJΦ,n q̈

n
−
(

1− α f

)
Fc,n+1 − α f Fc,n. (A36)

The Newton–Raphson method is used here
∂R1,n+1−α f

∂q̈
n+1

∂R1,n+1−α f
∂λn+1

∂R2,n+1−α f
∂q̈

n+1

∂R2,n+1−α f
∂λn+1

[∆q̈
n+1

∆λn+1

]
+

[
R1,n+1−α f

R2,n+1−α f

]
= 0, (A37)

where the terms of the Jacobian matrix are given by
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∂R1,n+1−α f

∂q̈
n+1

= (1− αm)
∂mn+1
∂q̈

n+1

q̈
n+1

+ αm
∂mn

∂q̈
n+1

q̈
n
+ (1− αm)mn+1

∂q̈
n+1

∂q̈
n+1

+ αmmn

∂q̈
n

∂q̈
n+1

+

+
(

1− α f

)∂dn+1
∂q̈

n+1

q̇
n+1

+ α f
∂dn

∂q̈
n+1

q̇
n
+
(

1− α f

)
dn+1

∂q̇
n+1

∂q̈
n+1

+ α f dn

∂q̇
n

∂q̈
n+1

+

+
(

1− α f

) ∂kn+1
∂q̈

n+1

q
n+1

+ α f
∂kn

∂q̈
n+1

q
n
+
(

1− α f

)
kn+1

∂q
n+1

∂q̈
n+1

+ α f kn

∂q
n

∂q̈
n+1

+

+ (1− αm)
∂JT

Φ,n+1

∂q̈
n+1

λn+1 + αm
∂JT

Φ,n

∂q̈
n+1

λn + (1− αm)JT
Φ,n+1

∂λn+1
∂q̈

n+1

+ αmJT
Φ,n

∂λn
∂q̈

n+1

+

−
(

1− α f

)∂Fext,n+1

∂q̈
n+1

− α f
∂Fext,n

∂q̈
n+1

−
(

1− α f

)∂Fv,n+1

∂q̈
n+1

− α f
∂Fv,n

∂q̈
n+1

, (A38)

∂R2,n+1−α f

∂q̈
n+1

= (1− αm)
∂JΦ,n+1

∂q̈
n+1

q̈
n+1

+ αm
∂JΦ,n

∂q̈
n+1

q̈
n
+ (1− αm)JΦ,n+1

∂q̈
n+1

∂q̈
n+1

+ αmJΦ,n
∂q̈

n
∂q̈

n+1

+

−
(

1− α f

)∂Fc,n+1

∂q̈
n+1

− α f
∂Fc,n

∂q̈
n+1

, (A39)

∂R1,n+1−α f

∂λn+1
= (1− αm)

∂mn+1
∂λn+1

q̈
n+1

+ αm
∂mn

∂λn+1
q̈

n
+ (1− αm)mn+1

∂q̈
n+1

∂λn+1
+ αmmn

∂q̈
n

∂λn+1
+

+
(

1− α f

) ∂dn+1
∂λn+1

q̇
n+1

+ α f
∂dn

∂λn+1
q̇

n
+
(

1− α f

)
dn+1

∂q̇
n+1

∂λn+1
+ α f dn

∂q̇
n

∂λn+1
+

+
(

1− α f

) ∂kn+1
∂λn+1

q
n+1

+ α f
∂kn

∂λn+1
q

n
+
(

1− α f

)
kn+1

∂q
n+1

∂λn+1
+ α f kn

∂q
n

∂λn+1
+

+ (1− αm)
∂JT

Φ,n+1

∂λn+1
λn+1 + αm

∂JT
Φ,n

∂λn+1
λn + (1− αm)JT

Φ,n+1
∂λn+1
∂λn+1

+ αmJT
Φ,n

∂λn
∂λn+1

+

−
(

1− α f

)∂Fext,n+1

∂λn+1
− α f

∂Fext,n

∂λn+1
−
(

1− α f

)∂Fv,n+1

∂λn+1
− α f

∂Fv,n

∂λn+1
, (A40)

∂R2,n+1−α f

∂λn+1
= (1− αm)

∂JΦ,n+1

∂λn+1
q̈

n+1
+ αm

∂JΦ,n

∂λn+1
q̈

n
+ (1− αm)JΦ,n+1

∂q̈
n+1

∂λn+1
+ αmJΦ,n

∂q̈
n

∂λn+1
+

−
(

1− α f

)∂Fc,n+1

∂λn+1
− α f

∂Fc,n

∂λn+1
. (A41)

The derivatives of the system parameters of the previous time step with respect to the
state variables of the next time step disappear,

∂#n

∂ n+1
= 0,

∂#n

∂ n+1
= 0. (A42)
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The dependencies of the system parameters are shown in (33) and (34), and applying
the chain rule of differentiation leads to

∂m
∂q̈

=
∂m
∂q

∂q
∂q̈

, (A43)

∂d
∂q̈

=
∂d
∂q

∂q
∂q̈

, (A44)

∂k
∂q̈

=
∂k
∂q

∂q
∂q̈

, (A45)

∂JΦ

∂q̈
=

∂JΦ

∂q
∂q
∂q̈

, (A46)

∂Fext
∂q̈

=
∂Fext

∂q
∂q
∂q̈

+
∂Fext

∂q̇
∂q̇
∂q̈

, (A47)

∂Fv
∂q̈

=
∂Fv
∂q

∂q
∂q̈

+
∂Fv
∂q̇

∂q̇
∂q̈

, (A48)

∂#

∂λ
= 0. (A49)

∂#
∂λ

= 0. (A50)

The derivatives of the state variables with respect to q̈
n+1

and λn+1 are given by

∂q
n+1

∂q̈
n+1

= β∆t2e,
∂q

n+1
∂λn+1

= 0,

∂q̇
n+1

∂q̈
n+1

= γ∆te,
∂q̇

n+1
∂λn+1

= 0,

∂q̈
n+1

∂q̈
n+1

= e,
∂q̈

n+1
∂λn+1

= 0,

∂λn+1
∂q̈

n+1

= 0,
∂λn+1
∂λn+1

= e. (A51)

Applying Equation (A42), Equations (A43)–(A51) lead to the terms of the Jacobian
matrix given by

∂R1,n+1−α f

∂q̈
n+1

= (1− αm)

(
β∆t2

∂mn+1
∂q

n+1

q̈
n+1

+ mn+1

)
+

+
(

1− α f

)(
β∆t2

∂dn+1
∂q

n+1

q̇
n+1

+ γ∆tdn+1

)
+

+
(

1− α f

)(
β∆t2

∂kn+1
∂q

n+1

q
n+1

+ β∆t2kn+1

)
+

+ (1− αm)β∆t2
∂JT

Φ,n+1

∂q
n+1

λn+1+

−
(

1− α f

)(
β∆t2 ∂Fext,n+1

∂q
n+1

+ γ∆t
∂Fext,n+1

∂q̇
n+1

)
+

−
(

1− α f

)(
β∆t2 ∂Fv,n+1

∂q
n+1

+ γ∆t
∂Fv,n+1

∂q̇
n+1

)
, (A52)
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∂R2,n+1−α f

∂q̈
n+1

= (1− αm)

(
β∆t2

∂JΦ,n+1

∂q
n+1

q̈
n+1

+ JΦ,n+1

)
+

−
(

1− α f

)(
β∆t2 ∂Fc,n+1

∂q
n+1

+ γ∆t
∂Fc,n+1

∂q̇
n+1

)
, (A53)

∂R1,n+1−α f

∂λn+1
= (1− αm)JT

Φ,n+1, (A54)

∂R2,n+1−α f

∂λn+1
= 0. (A55)

Appendix B.3. Sensitivity Analysis

The derivative of the equations of motion leads to the governing equation of the
sensitivities given by

(1− αm)∇m
n+1

q̈
n+1

+ αm∇m
n
q̈

n
+

+(1− αm)mn+1∇q̈
n+1

+ αmmn∇q̈
n
+

+
(

1− α f

)
∇d

n+1
q̇

n+1
+ α f∇d

n
q̇

n
+

+
(

1− α f

)
dn+1∇q̇

n+1
+ α f dn∇q̇

n
+

+
(

1− α f

)
∇k

n+1
q

n+1
+ α f∇k

n
q

n
+

+
(

1− α f

)
kn+1∇q

n+1
+ α f kn∇q

n
+

+(1− αm)∇JT
Φ,n+1λn+1 + αm∇JT

Φ,nλn+

+(1− αm)JT
Φ,n+1∇λn+1 + αmJT

Φ,n∇λn =
(

1− α f

)
∇Fext,n+1 + α f∇Fext,n+

+
(

1− α f

)
∇Fv,n+1 + α f∇Fv,n, (A56)

and

(1− αm)∇JΦ,n+1q̈
n+1

+ αm∇JΦ,n q̈
n
+

+(1− αm)JΦ,n+1∇q̈
n+1

+ αmJΦ,n∇q̈
n
=
(

1− α f

)
∇Fc,n+1 + α f∇Fc,n. (A57)

Including Newmark’s sensitivity, Equations (16) and (17) lead to
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(1− αm)∇m
n+1

q̈
n+1

+ αm∇m
n
q̈

n
+

+(1− αm)mn+1∇q̈
n+1

+ αmmn∇q̈
n
+

+
(

1− α f

)
∇d

n+1
q̇

n+1
+ α f∇d

n
q̇

n
+

+
(

1− α f

)
dn+1

(
∇q̇

pred
+ γ∆t∇q̈

n+1

)
+ α f dn∇q̇

n
+

+
(

1− α f

)
∇k

n+1
q

n+1
+ α f∇k

n
q

n
+

+
(

1− α f

)
kn+1

(
∇q

pred
+ β∆t2∇q̈

n+1

)
+ α f kn∇q

n
+

+(1− αm)∇JT
Φ,n+1λn+1 + αm∇JT

Φ,nλn+

+(1− αm)JT
Φ,n+1∇λn+1 + αmJT

Φ,n∇λn =
(

1− α f

)
∇Fext,n+1 + α f∇Fext,n+

+
(

1− α f

)
∇Fv,n+1 + α f∇Fv,n, (A58)

and

(1− αm)∇JΦ,n+1q̈
n+1

+ αm∇JΦ,n q̈
n
+

+(1− αm)JΦ,n+1∇q̈
n+1

+ αmJΦ,n∇q̈
n
=
(

1− α f

)
∇Fc,n+1 + α f∇Fc,n. (A59)

which can be rewritten to(
(1− αm)m +

(
1− α f

)
γ∆td +

(
1− α f

)
β∆t2k

)
∇q̈n+1+

+(1− αm)JT
Φ,n+1∇λn+1 =

(
1− α f

)
∇Fext,n+1 + α f∇Fext,n+

+
(

1− α f

)
∇Fv,n+1 + α f∇Fv,n+

− (1− αm)∇m
n+1

q̈
n+1

+

− αm∇m
n
q̈

n
− αmmn∇q̈

n
+

−
(

1− α f

)
∇d

n+1
q̇

n+1
− α f∇d

n
q̇

n
+

−
(

1− α f

)
dn+1∇q̇

pred
− α f dn∇q̇

n
+

−
(

1− α f

)
∇k

n+1
q

n+1
− α f∇k

n
q

n
+

−
(

1− α f

)
kn+1∇q

pred
− α f kn∇q

n
+

− (1− αm)∇JT
Φ,n+1λn+1+

− αm∇JT
Φ,nλn − αmJT

Φ,n∇λn, (A60)

and

(1− αm)JΦ,n+1∇q̈
n+1

=
(

1− α f

)
∇Fc,n+1 + α f∇Fc,n+

− (1− αm)∇JΦ,n+1q̈
n+1
− αm∇JΦ,n q̈

n
− αmJΦ,n∇q̈

n
. (A61)
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The governing equation of the sensitivity analysis of the effective system is given by[
meff JT

Φ,eff
JΦ,eff 0

][
∇q̈

n+1
∇λn+1

]
=

[
Fa,pseudo
Fc,pseudo

]
, (A62)

where

Fa,pseudo =
(

1− α f

)
∇Fext,n+1 + α f∇Fext,n +

(
1− α f

)
∇Fv,n+1 + α f∇Fv,n+

− (1− αm)∇m
n+1

q̈
n+1
− αm∇m

n
q̈

n
− αmmn∇q̈

n
+

−
(

1− α f

)
∇d

n+1
q̇

n+1
− α f∇d

n
q̇

n
−
(

1− α f

)
dn+1∇q̇

pred
− α f dn∇q̇

n
+

−
(

1− α f

)
∇k

n+1
q

n+1
− α f∇k

n
q

n
−
(

1− α f

)
kn+1∇q

pred
− α f kn∇q

n
+

− (1− αm)∇JT
Φ,n+1λn+1 − αm∇JT

Φ,nλn − αmJT
Φ,n∇λn, (A63)

Fc,pseudo =
(

1− α f

)
∇Fc,n+1 + α f∇Fc,n+

− (1− αm)∇JΦ,n+1q̈
n+1
− αm∇JΦ,n q̈

n
− αmJΦ,n∇q̈

n
. (A64)
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