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Abstract: This study delves into the EA-SAS platform, a digital twin environment developed by
our team, with a particular focus on the EA-SAS Cloud Scheduler, our bespoke program designed
to optimize ETL (extract, transform, and load) scheduling and thereby enhance automation within
industrial systems. We elucidate the architectural intricacies of the EA-SAS Cloud Scheduler, demon-
strating its adeptness in efficiently managing computationally heavy tasks, a capability underpinned
by our empirical benchmarks. The architecture of the scheduler incorporates Docker to create isolated
task environments and leverages RabbitMQ for effective task distribution. Our analysis reveals
the EA-SAS Cloud Scheduler’s prowess in maintaining minimal overhead times, even in scenarios
characterized by high operational loads, underscoring its potential to markedly bolster operational
efficiency in industrial settings. While acknowledging the limitations inherent in our current assess-
ment, particularly in simulating real-world industrial complexities, the study also charts potential
future research pathways. These include a thorough exploration of the EA-SAS Cloud Scheduler’s
adaptability across diverse industrial scenarios and an examination of the integration challenges
associated with its reliance on specific technological frameworks.

Keywords: digital twin; scheduler; data processing; micro-batch processing; stream processing; ETL
queue; task scheduling

1. Introduction

Digital twin technology has emerged as a significant contributor to energy-efficient
production and optimization of technological processes in industrial innovation. This
technology encompasses a virtual model, which is built using extensive mathematical
expressions to simulate processes and equipment for optimal operational control [1]. Given
the global emphasis on reducing energy consumption in manufacturing, digital twin
technology is increasingly recognized as a vital tool for energy-efficient production lines [2].

With the advent of Industry 4.0, digital twin technology has become integral to enhanc-
ing both energy efficiency and process optimization. It necessitates comprehensive data
analysis, including mathematical modeling of physical systems and processes, forecasting,
and applying statistical algorithms. Digital twin uses fresh monitoring data to represent
the real-time state of the system and to estimate the future state. The architecture of digital
twin systems is inherently complex due to the need for processing dynamic status changes
and providing realistic graphical representations of objects [3].

The components of high-level digital twin architecture include information models,
communication mechanisms, and data processing. This architecture integrates various
technologies, including internet and interaction technologies, network security, interfaces,
and communication protocols [4,5]. The handling of digital twin data, from collection
to fusion, requires managing complex datasets, while digital twin services encompass
applications, resources, knowledge, and platform services [6].
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The International Standardization Organization issued a series of standards (ISO 23247) that
suggest a generic framework for digital twins for manufacturing. These standards describe
general principles and requirements [7], reference architecture with functional views [8],
basic information attributes for the observable manufacturing elements (OMEs) [9], and
technical requirements for information exchange between entities within the reference
architecture [10]. Shao et al. [11] provide a meticulous review of the ISO 23247 digital
twin framework for manufacturing, outlining its structured composition of entities and
sub-entities. The framework consists of the user entity for hosting software systems and
interfaces, the digital twin entity for the digital representation and synchronization of
OMEs, and the device communication entity for data interaction and device control. Each
entity is further divided into sub-entities and functional entities, such as the data collection
sub-entity for data acquisition and pre-processing and the device control sub-entity for
actuation and operational control.

The accuracy and reliability of digital twin systems are crucial, as any discrepancies
could lead to increased operational costs. The frequency of data acquisition and processing
should be carefully selected based on the specific application of the digital twin. For
example, a digital twin of a biomass boiler may effectively operate with minute-by-minute
data, as more frequent data might not provide substantial additional insights but will
increase resource utilization. Despite collecting data at minute intervals, digital twins
can accumulate extensive datasets, necessitating advanced methodologies for efficient
processing in real or near-real-time [12].

This article introduces EA-SAS, a newly developed digital twin platform, and presents
a systematic exploration of its unique ETL scheduling framework, underscoring our ap-
proach to optimizing data management within this context. It begins with a literature
analysis, situating our research within the broader academic context. Subsequent sections
discuss data processing modalities in digital twin systems, introduce a Docker-integrated
architectural framework, and evaluate task scheduling system performance. The architec-
ture we present addresses the complex demands of data processing within digital twins, a
cornerstone for achieving operational efficiency and adaptability in contemporary indus-
trial settings. By optimizing these processes, our study contributes to the advancement of
automated control mechanisms, laying the groundwork for more intelligent, responsive,
and efficient industrial operations.

2. Related Work
2.1. Big Data in Digital Twin

In general literature and industry practice, digital twins are frequently recognized as a
significant instance of big data applications due to their characteristics:

1. Data Volume: Digital twins generate large volumes of data as they continuously
collect information from various sensors and devices to create a real-time, dynamic
representation of a physical object or system.

2. Data Variety: The data associated with digital twins comes from a diverse range
of sources, including IoT sensors, operational systems, and environmental data,
encompassing a wide variety of formats.

3. Real-Time Processing: Digital twins often require real-time or near-real-time data
processing to accurately reflect the current state of the physical entity they represent.
This demands efficient and robust big data processing capabilities.

4. Complex Analytics: The use of digital twins involves complex analytics, including
predictive modeling and simulation, to gain insights and make decisions based on the
data collected. This requires sophisticated data processing and analysis techniques,
which are hallmarks of big data applications.

5. Integration Challenges: Like other big data applications, digital twins face challenges
in integrating and harmonizing data from disparate sources, ensuring data quality,
and managing the scale of data.
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Building on the work of Tao [13,14], the concept of big data and its integration with
digital twin technology in the manufacturing industry is comprehensively summarized.
This integration is evident in various applications, including product design, production
planning, manufacturing, and predictive maintenance. Tao’s analysis not only outlines
the similarities and differences between big data and digital twin technologies from both
a holistic and data-centric perspective but also delves into the structure and operational
mechanisms of digital twin systems (DTS). This thorough examination underscores the
classification of digital twins as a significant instance of big data application, particularly in
the context of advanced manufacturing processes ([15] citing Tao [13,14]).

Despite the established nature of traditional ETL approaches in big data, there is
an emerging consensus on the necessity to adopt more innovative technologies. These
technologies are essential to navigate the growing complexities and requirements of big
data environments, exemplified by digital twins.

2.2. Current Approaches to ETL

The [16] study identified nine popular approaches to implement ETL solutions:

• Service-oriented architecture (SOA);
• Web-based technologies (e.g., semantic web);
• Fault-tolerant algorithms;
• Structured Query Languages (SQL);
• Parallelization (e.g., MapReduce);
• Domain ontology;
• Multi-agent systems (MAS);
• Conceptual modeling (e.g., Unified Modeling Language (UML) and Business Process

Modeling Notation (BPMN));
• Metadata repository [16].

UML-based models standardize the design process but also have limitations in han-
dling unstructured data and user-defined functions (UDFs). BPMN-based models offer
semi-autonomous behavior and are geared toward translating business requirements into
conceptual models. However, they require specific knowledge of BPMN and Business
Process Execution Language (BPEL) for implementation [17].

In manufacturing, data are categorized into real-time perception data, production
process data, and production activity plan data. This data must be collected, fused, and
transmitted effectively for constructing a digital twin (DT) [18]. For small- and medium-
sized enterprises, sensor-based tracking and machine vision are crucial for data acquisition.
The collected data are then fused, integrated, and uploaded to a database, often via net-
works like 5G, for a higher bandwidth and lower latency. Technologies like the Hierarchical
Data Format Version 5 (HDF5) are used for flexible data storage. Data from various sources,
including manufacturing execution systems and networked machine tools, are merged into
the database.

Optimizing algorithms for speed and accuracy and integrating different communica-
tion protocols and interfaces for a unified DT platform is highlighted as a necessity [16].

2.3. Challenges and Limitations in Existing Systems

For proactive decision-making, digital twins must acquire context information in
real-time or near-real-time, tailored to their specific use cases [12]. These applications
necessitate a range of data analysis techniques, from machine learning to statistical models,
involving sophisticated data mining methods like clustering, classification, association
rules, regression, prediction, and deviation analysis [19,20].

A digital twin’s function transcends mere real-time mirroring of a physical system;
it also sends optimized commands to the control system. Systems that only reflect the
state of a physical asset in real-time are labeled ‘digital shadows’, whereas digital twins, by
definition, interact with and impact the physical system [2,21,22].
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To facilitate this bidirectional communication, an effective architectural framework
is vital. This involves extracting data from the client’s infrastructure and processing it
through dedicated algorithms, typically under the extract–transform–load (ETL) processes.

Traditional ETL processes, often executed as background tasks, can be resource-
intensive and potentially challenging to support over time, especially when older tasks fail
due to library updates. Digital twin applications utilize various libraries for tasks ranging
from mathematical and statistical algorithms to data manipulation and communication
facilitation. Updates to these libraries, if not managed properly, can result in lost system
traceability and increased time expenditures. Isolating each task in a separate environment
by the task scheduling system is a potential solution.

Digital twins in manufacturing require specific considerations for data processing
and circulation, such as latency, bandwidth, data security, and quality [23]. Researchers
assert that low latency and scalable capacity are crucial for the successful implementation
of digital twins [24].

The majority of the current systems face challenges in real-time big data processing
due to scalability issues, offline data cleansing needs, or complexities in integrating varied
data types and sources in real time. Most analyses currently occur on offline datasets [12].
While some digital twin models focus on offline batch analysis, there is a significant demand
for real-time analysis and prediction [25]. Wallner et al. emphasize the significance of
considering life cycle changes in digital twins, advocating for a holistic view of digital twin
applications to reduce the implementation effort and to ensure that applications remain
valid through changes [26].

The time required for data exchange and processing in digital twin systems is typically
minimal when considered against the intended purpose and application of the digital
twin [3]. The application scenario dictates the necessary communication latency between
a physical device and its digital twin. As the need for immediate data processing and
communication increases, so do the complexities and costs of system development [27].
For certain entities and applications, immediate processing, communication, and storage
capabilities might be essential to meticulously monitor events and status transitions. For
others, infrequent updates, perhaps daily or even less frequent, might suffice [3].

Despite the popularity of conceptual modeling like UML and BPMN in ETL im-
plementation, concerns about an overemphasis on this approach are raised, particularly
regarding its effectiveness in addressing future challenges in data complexity, volume, and
heterogeneity [16].

2.4. Overview of Existing Solutions: Apache Airflow and AWS Batch

The realm of distributed ETL task-processing features notable solutions, among which
Apache Airflow and AWS Batch stand out. This section examines these two platforms.

Apache Airflow, a platform extensively used for orchestrating complex computa-
tional workflows, manages tasks using directed acyclic graphs (DAGs) [28]. However, its
complexity poses certain operational challenges. For instance, the lack of inherent synchro-
nization of DAG configurations across multiple servers requires manual updates for any
task modification, often necessitating additional systems for distribution. Additionally,
Airflow’s scheduling model, despite being robust, can lead to increased consumption of
scheduler resources.

AWS Batch, on the other hand, is part of the Amazon Web Services ecosystem, offering
a managed environment with the ease of a software-as-a-service (SaaS) model [29]. It
allows task execution in isolated environments, like containers, facilitating the separation
of concerns. However, it is not optimized for tasks requiring rapid execution, with rec-
ommended task durations spanning several minutes to avoid resource wastage [30]. The
use of AWS EC2 servers, though not directly priced for AWS Batch, can make the overall
solution costlier than regional alternatives by a significant margin [31,32].

EA-SAS is the name of our comprehensive digital twin platform, within which this
paper specifically delves into the EA-SAS Cloud Scheduler, the subsystem designed to
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manage data processing and ETL processes efficiently, showcasing the innovative architec-
ture that forms the backbone of the platform’s data handling capabilities Differing from
existing solutions, the EA-SAS Cloud Scheduler is tailored with a novel architecture to
meet the specific requirements of digital twin functionalities, especially focusing on the ETL
scheduling framework. A comparative analysis of these ETL scheduling tools is presented
in Table 1, highlighting their distinctive features and limitations.

Table 1. Comparative analysis of ETL scheduling tools.

Criteria Apache Airflow AWS Batch EA-SAS Cloud
Scheduler

Open ID connect compatibility Yes No Yes
Ability to launch tasks within 3 seconds
(short task launch delay) No No Yes

Task execution in
isolated environments With extension Yes Yes

Configuration of tasks via user interface No Yes Yes
Real-time task status and reporting via
user interface Yes Yes Yes

Automatic retry of failed tasks Yes Yes Conditional

The tabular analysis underscores the distinct features and limitations inherent to each
tool, guiding users in selecting the most appropriate ETL scheduling solution for their
specific needs.

2.5. Relevance to the Present Study

Ali and Wrembel [17] point out a key limitation in current ETL tools: the lack of
efficient workflow development support due to missing automated optimization and fine-
tuning capabilities. This gap often leads to the creation of bespoke ETL tools tailored to
specific business needs [15,33,34]. The increasing data volume adds complexity to the ETL
workflow design, elevating execution costs and risking operational delays or failures.

To address these challenges, the EA-SAS Cloud Scheduler has been developed, fea-
turing horizontal scaling and directed acyclic graph (DAG) task structures within Docker
containers for efficient task scheduling. This is crucial to minimize execution times and
optimize resource utilization [33].

Data in digital twin applications can be processed either through batch processing or
stream processing. These methods are further elaborated on in the following chapter.

3. Data Processing Modalities in Digital Twin Systems
3.1. Micro-Batch Data Processing

In batch processing, data are accumulated into groups or “batches” and processed
collectively once a certain threshold or time limit is reached [34]. This approach, while
an efficient and simplifying system design, can introduce latency due to the gap between
data collection and processing. For applications requiring minimal latency, micro-batch
processing is often utilized.

Micro-batch processing breaks down ETL operations into smaller chunks, usually
encompassing data for about a minute. This aligns well with digital twin models of complex
systems, facilitating near-real-time data access. Although this method does not allow
for real-time adaptation, it supports the integration of new data during model updates,
enhancing subsequent analysis accuracy [35]. Studies indicate that micro-batch processing
often outperforms stream processing in accuracy when analyzing stored data, owing to its
repetitive nature. The structure of micro-batch processing is depicted in Figure 1.
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For digital twin applications, the latency in micro-batch processing can range from a
few minutes to seconds, making it a suitable option for real-time scenarios.

3.2. Stream Data Processing

Stream processing is a real-time computational method that processes data as it
arrives [35]. It enables rapid computations with typical latencies ranging from milliseconds
to seconds and is incrementally adaptive to new data streams. This approach is especially
effective when data relevance is more immediate and less dependent on historical records.

In stream processing, systems continuously operate on incoming data with minimal
delay, maintaining an event-driven architecture. The fluctuating rate of incoming data can
sometimes lead to increased computational demands, particularly during high data inflow
periods [34]. While stream processing is adept at handling real-time data, integrating
historical data analysis, crucial in digital twin models, may necessitate an additional system
design. The structure of stream processing is depicted in Figure 2.
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In the context of industrial digital twin architectures, the immediacy provided by
stream processing may not always be crucial. Real-time data fidelity is important, but
slight latencies, ranging from seconds to minutes, are typically acceptable. For instance,
in industrial operations like biomass boiler functioning or thermal regulation, decisions
do not usually require millisecond precision. Understanding the stream processing’s
role is enhanced when compared with micro-batch processing, which offers a middle
ground between real-time and traditional batch methods, suitable for scenarios where
infrastructure may not fully support continuous stream processing but requires near-real-
time data analysis.

3.3. Rationale behind Adopting Batch Processing

The choice between processing paradigms, such as stream and batch models, is driven
by their unique advantages and suitability for specific applications [35]. In anomaly de-
tection, for instance, batch processing often enhances the accuracy of identifying new
anomalies offline at regular intervals, such as daily, weekly, or monthly. Conversely, stream
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processing is favored for immediate online anomaly detection in certain industrial scenar-
ios [35]. However, a holistic assessment indicates that a purely stream-based approach may
introduce complexities that do not necessarily yield proportional benefits.

In many industrial applications, the necessity for data processing at second-level inter-
vals is rare. Within this context, micro-batch processing emerges as a more fitting approach
for real-time digital twin applications. It offers a detailed data analysis while meeting
the latency requirements of real-time digital twins, effectively merging the strengths of
both stream and batch processing. This makes micro-batch processing a balanced solution,
especially considering the challenges associated with stream processing in certain digital
twin scenarios.

Table 2 provides a comparative overview of micro-batch and stream processing from
the perspective of digital twin technology.

Table 2. Comparative overview of data processing methodologies in the context of digital twin technology.

Criteria Micro-Batch Processing Stream Processing

Data Collection Data aggregated over defined short intervals. Continuous data streaming.
Data Processing Processing occurs subsequent to collection. Data are processed incrementally.

Advantages Enables comprehensive data analysis, simpler
implementation, and increased applicability. Offers swift processing and real-time analytics.

Disadvantages It may introduce variable latency. Presents implementation complexity and specific
applicability challenges.

Suitability Ideal for large datasets needing in-depth analysis. Less preferred for projects requiring extensive data
analysis or large data volumes.

4. Architectural Framework of Docker-Integrated Task Management in the EA-SAS
Cloud Scheduler
4.1. System Components and Topology

The EA-SAS Cloud Scheduler, part of our distinctively developed digital twin platform,
EA-SAS, encompasses a set of interconnected structural units, each playing a pivotal role
in the platform’s innovative ETL scheduling framework. The EA-SAS Cloud Scheduler
system comprises five interconnected structural units (as shown in Figure 3) as follows:

• Reverse Proxy Server: Functions as an intermediary for all external system access.
It enhances traffic monitoring and keeps task executor servers secure from external
access, forming a crucial part of the company’s infrastructure.

• Keycloak Server: Hosts the Keycloak authentication service, centralizing all system
authentication processes. This server is a critical component of the infrastructure.

• Scheduler Server: Contains the scheduler, user interface components, and a PostgreSQL
database. It is primarily responsible for task scheduling and storing execution histories.

• RabbitMQ Server: Hosts the RabbitMQ message-queuing service, facilitating a signifi-
cant portion of the communication between the scheduler and task executor servers.

• Worker Server: Represents the task executor subsystem. The number of these servers
is theoretically unlimited, though the centralized architecture might impose some
constraints. Each server performs tasks within separate containers and maintains
task logs.

The architectural schematic (Figure 3) illustrates the EA-SAS Cloud Scheduler’s design.
At the core of this structure is the scheduler server, which manages task allocation and
interfaces with the RabbitMQ message-queuing system. RabbitMQ acts as an intermediary,
channeling tasks to a series of workers (Worker 1 through Worker N). The diagram’s ar-
rowed lines show the unidirectional flow of tasks and data from the scheduler to RabbitMQ
and then to the workers. This setup ensures systematic task distribution and execution
within the cloud-based framework.
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Communication between the executor and the scheduler is maintained through a
‘heartbeat signal’, providing real-time updates on the executor’s status. The system uses
Advanced Message Queuing Protocol (AMQP) messages for this communication, with
RabbitMQ overseeing the interactions. A notable feature of RabbitMQ is its failover
mechanism, which redirects tasks to an alternate executor in case of disruptions, ensuring
consistent and reliable task execution.

The EA-SAS Cloud Scheduler’s architecture aligns with contemporary standards in
digital twin technology, echoing the guidelines of ISO/IEC AWI Standard 30172 [36] and
ISO/IEC AWI Standard 30173 [37]. These standards, as discussed in [38], underscore the
necessity for robust and flexible digital twin frameworks. They advocate for a design
that can adapt to diverse-use cases while maintaining clear terminology and operational
transparency, principles that are fundamentally embedded within the EA-SAS Cloud
Scheduler’s design and operational ethos.

4.2. Integration and Communication

The core of the EA-SAS Cloud Scheduler is its ‘task flows’, organized in a directed
acyclic graph (DAG) format. Each task is linked to a specific execution code and a Docker
environment, ensuring streamlined execution.
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4.2.1. Docker Execution Environment

This environment exhibits a hierarchical structure with Docker images acting as
metadata repositories, mainly for library versions. Tasks access their respective container’s
metadata upon queueing, with the system autonomously sourcing images from a Docker
registry if absent. This design isolates each task, mitigating disruptions from library
update incompatibilities.

4.2.2. Temporal Composition of a Task

Task execution within the digital twin platform involves distinct time intervals, repre-
senting various stages of the task’s life cycle, shown in Figure 4:

1. Scheduler Delay (t1): This interval commences with the scheduled time of task exe-
cution and culminates when the task is triggered. It encapsulates the delay between
when a task is scheduled and its initiation.

2. Queuing/Task Distribution Delay (t2): Post triggering, the task enters a queuing
system. The duration represented by t2 captures the time taken from the task en-
try into this queue until the system identifies and designates a suitable worker for
its execution.

3. Config Fetching (t3): During this phase, the system retrieves the task metadata essen-
tial for determining the conditions under which the task will be executed.

4. Data Fetching (Extract, t4): Here, specific datasets, as outlined in the previously
fetched configuration, are acquired to facilitate task execution.

5. Calculations (Transform, t5): This interval is central to the task’s purpose, wherein the
actual computational operations are executed.

6. Uploading/Saving Data (Load, t6): Upon computation completion, the results are
transmitted and stored within the digital twin platform.

7. Confirm Delay (t7): This final interval signifies the time lapse between task execution
completion and its acknowledgment on the user interface.
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The execution phases (config fetching and ETL processes) are represented as:

t execution = t3 + t4 + t5 + t6 (1)

This equation represents the sum of the time intervals for config fetching (t3), data
fetching (t4), calculations (t5), and uploading/saving data (t6).

The overhead time is represented as:

t overhead = t1 + t2 + t7 (2)

This equation aggregates the time intervals for scheduler delay (t1), queuing/task
distribution delay (t2), and confirm delay (t7).

In sum, the EA-SAS Cloud Scheduler’s integration with Docker ensures enhanced
reliability and efficiency in task management. By utilizing Docker for individual task
environments and integrating RabbitMQ for efficient task distribution, the system achieves
both streamlined execution and robust failover capabilities. Figure 4 elucidates the task’s
life cycle and associated intervals, highlighting the system’s operational strengths and
potential areas for optimization. As we transition into the next chapter, “Evaluation of Task
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Scheduling System Performance,” we will further examine the practical implications and
performance metrics of this architectural framework.

5. Results
5.1. Objective Derivation and Hypothesis Formation

The primary objective of our study was to measure and compare the duration of
the task execution overhead (t overhead), as described by Equation (2). Our methodology
provided a uniform platform for appraising the efficiency of task scheduling and execu-
tion, deliberately excluding the variable of task complexity. Our hypothesis was that the
overhead time would increase with a rising number of tasks per minute, and differences
between the schedulers would become evident.

5.2. Experimental Setup and Methodology

1. Task Design: We utilized a basic Python task to maintain consistency in our mea-
surements, thereby removing any discrepancies that could result from intricate task
executions or data retrieval processes.

2. Test Configuration: Our testing procedure involved establishing a directed acyclic
graph (DAG)/task flow with the aforementioned task. We meticulously recorded the
interval from the task’s scheduling point to the confirmation of the DAG/task flow.

3. Test Scope: The experiment spanned a wide range of task counts, from 1 to 1000
per minute, to thoroughly assess the performance of the schedulers under varying
operational loads.

4. Infrastructure: Both scheduling tools were assessed using the identical virtual private
server (VPS) setup, ensuring a controlled environment. Executors were isolated on a
separate server to preclude any potential disturbances to the scheduling assessment.
The VPS’s specifications are detailed in Table 3.

Table 3. Characteristics of the testing Virtual Private Server.

Parameter Characteristic

Processor Intel Xeon (Skylake), 4 cores @ 2.6 GHz
RAM 16 GB
Storage Media SSD

5.3. Quantitative Metrics and Analytical Outcomes

The synthesis of our findings is encapsulated in Table 4 and Figure 5, which collectively
demonstrate a direct relationship between task count increments and execution time.
Apache Airflow consistently manifested more substantial lags in comparison to the EA-SAS
Cloud Scheduler. For example, when handling 1000 tasks per minute, the EA-SAS Cloud
Scheduler maintained a lean overhead of just 1.5 s, whereas Apache Airflow lagged with
an overhead of 23.4 s.

Table 4. Task Execution overhead comparison.

Task Count per Minute
Task Execution Overhead, Seconds

Apache Airflow EA-SAS Cloud Scheduler

1 7.1 0.6
5 7.8 0.6
10 8.8 0.7
20 10.6 0.7
50 12.1 0.7
100 13.2 0.7
200 16.2 0.8
500 18.9 1.1
1000 23.4 1.5
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Apache Airflow’s extended overhead time can be attributed to its intricate architecture,
optimized for diverse data processing needs. This system is particularly adept at managing
workflows that evolve over longer periods, such as days or weeks. However, in scenarios
like digital twin applications, where real-time analysis is crucial, Airflow’s comprehensive
feature set may inadvertently increase the task execution overhead.

EA-SAS Cloud currently operates through Apache Airflow and has seven workers.
Metering the data of task distribution between workers is depicted in Figure 6. The total
executed task count between various digital twins is depicted in Figure 7. Each of the
colors represents a different digital twin. Names of the companies are not shown due to
confidentiality reasons.

Machines 2024, 12, 130 FOR PEER REVIEW 11 of 14 
 

 

Table 4. Task Execution overhead comparison. 

Task Count per Minute 
Task Execution Overhead, Seconds 
Apache Airflow EA-SAS Cloud Scheduler 

1 7.1 0.6 
5 7.8 0.6 
10 8.8 0.7 
20 10.6 0.7 
50 12.1 0.7 
100 13.2 0.7 
200 16.2 0.8 
500 18.9 1.1 
1000 23.4 1.5 

 
Figure 5. Task execution’s overhead comparison results. 

Apache Airflow’s extended overhead time can be attributed to its intricate architec-
ture, optimized for diverse data processing needs. This system is particularly adept at 
managing workflows that evolve over longer periods, such as days or weeks. However, 
in scenarios like digital twin applications, where real-time analysis is crucial, Airflow’s 
comprehensive feature set may inadvertently increase the task execution overhead. 

EA-SAS Cloud currently operates through Apache Airflow and has seven workers. 
Metering the data of task distribution between workers is depicted in Figure 6. The total 
executed task count between various digital twins is depicted in Figure 7. Each of the 
colors represents a different digital twin. Names of the companies are not shown due to 
confidentiality reasons. 

 
Figure 6. Metering data of task distribution between workers at EA-SAS. Figure 6. Metering data of task distribution between workers at EA-SAS.

Machines 2024, 12, 130 FOR PEER REVIEW 12 of 14 
 

 

 
Figure 7. Total executed task count by different digital twins. 

6. Conclusions 
This study has meticulously explored the EA-SAS Cloud Scheduler, a core compo-

nent of the EA-SAS digital twin platform, emphasizing its pivotal role in optimizing ETL 
scheduling to enhance automation and control in industrial systems. The experimental 
results demonstrate the scheduler’s exceptional efficiency in managing a high volume of 
tasks, indicating a profound improvement in operational performance. Specifically, the 
EA-SAS Cloud Scheduler excels in scenarios demanding frequent and rapid task pro-
cessing, significantly reducing overhead times when compared to other systems. This un-
derlines the scheduler’s capability to align with the temporal requirements of diverse ap-
plications, ensuring optimal performance, particularly in environments that necessitate 
swift task execution and meticulous monitoring. 

However, it is crucial to acknowledge certain limitations. While the EA-SAS Cloud 
Scheduler is engineered for high efficiency, its performance in varying industrial scenar-
ios needs extensive real-world validation. The experimental setup, though comprehen-
sive, represents a controlled environment that may not capture the full complexity of real-
world operations. Moreover, the system’s reliance on specific technologies like Docker 
and RabbitMQ, while beneficial for the tasks demonstrated, might pose challenges in 
terms of the broader applicability and integration into diverse IT ecosystems. 

In conclusion, the EA-SAS Cloud Scheduler emerges as a significant advancement in 
digital twin technology, offering substantial improvements in ETL scheduling and task 
management. Future studies should aim to validate these findings in a broader array of 
industrial settings and explore the integration of the scheduler with different technologies, 
further enhancing its versatility and applicability in the evolving landscape of industrial 
digitalization. 

Author Contributions:  Conceptualization, V.S. and M.S.; methodology, V.S., M.K. and M.J.; soft-
ware, M.J.; validation, V.S., M.J. and A.D.; formal analysis, V.S., M.K. and M.J.; investigation, A.D. 
and M.J.; resources, M.J.; data curation, M.J.; writing—original draft preparation, A.D.; writing—
review and editing, A.D.; visualization, A.D.; supervision, V.S.; project administration, A.D.; fund-
ing acquisition, V.S. All authors have read and agreed to the published version of the manuscript. 

Funding: The authors disclosed receipt of the following financial support for the research, author-
ship, and/or publication of this article: This work was supported by the Norwegian financial mech-
anism and the state budget of the Republic of Lithuania funds (grant number LT-07-1-EIM-K01-
006). 

Data Availability Statement: The data that support the findings of this study are not publicly avail-
able due to confidentiality agreements with our clients. These agreements prohibit the sharing of 
the data outside of the specific permissions granted for the research and publication of this manu-
script. 

Figure 7. Total executed task count by different digital twins.



Machines 2024, 12, 130 12 of 14

6. Conclusions

This study has meticulously explored the EA-SAS Cloud Scheduler, a core component
of the EA-SAS digital twin platform, emphasizing its pivotal role in optimizing ETL
scheduling to enhance automation and control in industrial systems. The experimental
results demonstrate the scheduler’s exceptional efficiency in managing a high volume of
tasks, indicating a profound improvement in operational performance. Specifically, the
EA-SAS Cloud Scheduler excels in scenarios demanding frequent and rapid task processing,
significantly reducing overhead times when compared to other systems. This underlines
the scheduler’s capability to align with the temporal requirements of diverse applications,
ensuring optimal performance, particularly in environments that necessitate swift task
execution and meticulous monitoring.

However, it is crucial to acknowledge certain limitations. While the EA-SAS Cloud
Scheduler is engineered for high efficiency, its performance in varying industrial scenarios
needs extensive real-world validation. The experimental setup, though comprehensive,
represents a controlled environment that may not capture the full complexity of real-world
operations. Moreover, the system’s reliance on specific technologies like Docker and
RabbitMQ, while beneficial for the tasks demonstrated, might pose challenges in terms of
the broader applicability and integration into diverse IT ecosystems.

In conclusion, the EA-SAS Cloud Scheduler emerges as a significant advancement
in digital twin technology, offering substantial improvements in ETL scheduling and
task management. Future studies should aim to validate these findings in a broader
array of industrial settings and explore the integration of the scheduler with different
technologies, further enhancing its versatility and applicability in the evolving landscape
of industrial digitalization.
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