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Abstract: Milling parts with low rigidity (thin-walled parts) are increasingly attracting the interest of
the academic and industrial environment, due to the applicability of these components in industrial
sectors of strategic interest at the international level in the aerospace industry, nuclear industry,
defense industry, automotive industry, etc. Their low rigidity and constantly changing strength
during machining lead on the one hand to instability of the cutting process and on the other hand
to part deformation. Solving both types of problems (dynamic and static) must be preceded by
prediction of cutting forces as accurately as possible, as they have a significant meaning for machining
condition identification and process performance evaluation. Since there are plenty of papers dealing
with this topic in the literature, the current research attempts to summarize the models used for
prediction of force in milling of thin-walled parts and to identify which are the trends in addressing
this issue from the perspective of intelligent production systems.
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1. Introduction

Parts with low rigidity (flexible parts) obtained by milling are components with a
compact structure and low weight due to the removal by the machining process of a
significant amount of the workpiece’s material (up to 95%) [1], obtaining a “buy-to-fly”
ratio (i.e., the ratio between the weight of the workpiece and the weight of the finished
part) up to 30:1 (Figure 1) [2,3]. A more common expression used to define them is the
ratio between the height (H) of the workpiece’s wall and the wall thickness (t), according
to which the optimal machining strategy is chosen. This ratio can be small (H:t < 15:1),
medium (15:1 < H:t < 30:1), and high (H:t > 30:1) [4,5]. Generally, parts whose thickness
varies between 1 and 2.5 mm are considered parts with low rigidity [6].

In recent years, the growing interest in machining flexible parts, both in academic
and industrial environments (Figure 2), has been linked to their large applicability in
various industrial sectors, especially in the aerospace and automotive industries [7,8],
being generally made from advanced materials specifically developed for these industries,
such as aluminum and titanium alloys (both separately and in combination, e.g., titanium
aluminides TiAl) [9,10], nickel-based alloys (e.g., Inconel 718 [11,12], Inconel 625 [13]),
various stainless steels (e.g., austenitic stainless steel [14,15], martensitic stainless steel [16])
etc. The special properties of these materials (i.e., high specific strength, low weight,
corrosion resistance, etc.) make it possible to reduce the amount of material needed to
obtain the desired components, offering a good weight-to-strength ratio [17].

However, milling of flexible parts is quite problematic because they have low rigidity
(the thickness of the parts is at least six times smaller than the other two dimensions)
and consequently are very easily deformed during the machining process. This leads to
increased geometric errors, making it quite difficult to ensure the machining quality of
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these components [18,19]. Induced residual stresses can also change their final geometry
such that different strategies need to be implemented to control [20,21] or compensate
their effect on part deformation [22,23]. In addition, due to the low rigidity, forced and
self-induced vibrations (“chatter” phenomenon) occur during machining [24,25], leading
to changes at the tool–workpiece interface. This causes modifications to chip width, which
in turn affects the cutting forces. Such instability leads on the one hand to the appearance
of unevenness on the workpiece’s surface and implicitly to an increase in the roughness of
the machined surface, adversely affecting the quality of the finished part, and on the other
hand to significant wear of tools and even of machine-tool components [26,27]. Moreover,
a continuous change in material properties may occur during machining [28,29], which is
very difficult to predict or anticipate and therefore to control.
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cover and (f) fuselage panel [2]. 
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Thus, when milling flexible parts, their low rigidity and constantly changing strength
lead on the one hand to the instability of the machining process, and on the other hand
to part deformation, which inherently limits production quality and efficiency. Accurate
prediction of cutting force is necessary before solving both dynamic and static problems [30]
(Figure 3).
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Since there are plenty of papers dealing with this topic in the specialty literature, the
current research attempts to summarize the models used for force prediction in milling of
thin-walled parts and identify the trends in addressing this issue from the perspective of
intelligent production systems. The findings of this research can serve as a background
for new theoretical and experimental studies that bring advanced knowledge and solve
specific industrial challenges in the field of machining thin-walled components.
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2. Models for Cutting Force Prediction When Milling Parts with Low Rigidity

Cutting force directly affects parts’ deformation and integrity of the machined surfaces,
as it is influenced by various parameters such as tool geometry and material, workpiece
material, milling method, and machining regime (e.g., cutting depth, cutting speed, feed
rate, lubrication mode) [31,32]. Therefore, cutting force prediction plays an important role
in choosing process parameters and tool geometry to obtain an appropriate quality of the
finished part and high productivity, which in turn results in lower production costs.

However, machining prediction is like weather forecasting, as a scientist once said [33]:
there is always a certain degree of uncertainty because the models are only abstractions
of reality, and they will never be able to fully imitate reality. From this perspective, two
ways of addressing the issue of force prediction when milling parts with low rigidity can
be identified in the specialty literature: the “traditional” approach, where the basic idea is
that known inputs plus an accurate model lead to the desired outputs, and the “modern”
approach, where the “uncertain/ignored” reality (the gap between model prediction and
the real behavior of the system) is treated from data (known inputs) and manipulated by
artificial intelligence in real time, improving the model capability for making faster and
more accurate predictions (e.g., digital and hybrid twin systems).

2.1. The Traditional Approach of Force Prediction

Different models have been proposed by researchers for the estimation of cutting force
in milling parts with low rigidity, with varying degrees of finesse concerning their accuracy
and applicability, as a result of an industrial necessity but also as a scientific challenge [34].
They can be broadly divided into three generic categories: empirical models, mechanistic
models, and numerical models.

2.1.1. Empirical Models

Empirical models constitute the traditional experimental approach for estimating and
relating the machining performance to different influencing process variables for each
individual machining operation [35,36]. In the particular case of milling force prediction,
empirical models are expressed as polynomial regression equations, where the cutting force
is calculated as a function of the main process parameters (e.g., Equation (1), Table 1), such
as cutting speed, feed rate, and cutting depth [37], as well as tool geometry (tool diameter,
number of flutes on the milling cutter, etc.) [38,39]:

F = f
(

C, k f , vx1
c , f x2

z , ax3
p , ax4

e , dx5 , zx6 , . . .
)

(1)

where νc is the milling speed, fz represents the feed rate, ap is the axial cutting depth,
ae is the radial cutting depth, d stands for tool diameter, z denotes the number of flutes
on the milling cutter, C, kf, x1 − xn represent coefficients or exponents that are specific
to each tool–workpiece material combination, and consequently, a significant number of
experimental tests are necessary to determine them and enhance the accuracy of the fitting
model [6,37,40].

As can be seen, the empirical models ignore the real cutting mechanism and the
material removal process. Besides, as already mentioned in the previous section, when
machining parts with low rigidity, deformation of the part occurs, which influences the
cutting force. Empirical force prediction models do not take this interaction into account.
They do not consider vibration (chatter) that occurs during machining either, which is
why more complex models have been necessary with higher accuracy in estimating the
cutting force. However, despite these drawbacks and the fact that they have a low degree
of predictability, empirical models are very well suited for creating optimization strategies
for low-rigidity part milling parameters to make the milling process more efficient.
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Table 1. Empirical models for cutting force prediction in milling parts with low rigidity.

Reference Workpiece
Material

Tool
Type

Input Parameters

Cutting Force Prediction ModelFeed Rate,
fz (mm/tooth)

Axial Depth
of Cut,

ap (mm)

Radial Depth
of Cut,

ae (mm)

Cutting
Speed,

νc (m/min)

Tool
Diameter,

d (mm)

[6]
2024-T351

aluminum alloy

Custom made
solid carbide
flat end-mills

0.02 8 0.3125
N/S

4 F = 535.25 − 88.42d − 1314.48 fz − 14.40ap − 172.49ae + 1.20dap + 10.00dae +

168.22 fz ap + 1736.93 fz ae + 9.89ap ae + 3.87d20.04 12 0.625 8
0.06 24 1.25 12

[40] Al2014-T6
aluminum alloy

TiAlN coated
(monolayer)
solid carbide
ball-end mill

0.02 0.2 0.1 75

10

Fx = 106.39 + 23.27 fz + 29.13ap + 12.62ae − 11.92vc + 3.05a2
p − 2.43a2

e + 3.85vc
2 +

4.77 fz ap + 3.53 fz ae − 3.18 fzvc − 4.79aevc ;
Fy = 75.16 + 33.47 fz + 24.4ap + 23.47ae − 8vc − 2.296 f 2

z − 3.23a2
e + 2.33 fz ap +

5.36 fz ae − 2.62 fzvc + 4.22ap ae − 0.73apvc − 4.02aevc ;
Fz = 98.43 + 15.48 fz + 19.87ap + 15.85ae − 7.74vc − 1.88a2

p − 3.17a2
e + 1.80vc

2 +

1.79 fz ap + 1.88 fz ae − 5.58 fzvc − 2.59aevc

0.07 0.6 0.3 100
0.12 1.0 0.5 125
0.17 1.4 0.7 150
0.22 1.8 0.9 175

[41] Ti-6Al-4V alloy YG8 carbide tool 0.08 3 1.6 140 10 Fymax = 368.2a0.4308
p ·a1.2163

e · f 0.7801
z ·vc

0.0088

[42]
7050-T7451

aluminum alloy

K10
cemented

carbide

0.10 1 8 1005

32

Fx = 1.83·vc
0.52· f 0.65

z ·a0.80
p ·a0.14

e

Fy = 1207·vc
−0.33· f 0.61

z ·a0.91
p ·a0.66

e

Fz = 42·vc
0.32· f 0.82

z ·a0.93
p ·a0.13

e

0.12 2 12 1206
0.14 3 16 1407
0.16 4 20 1608

[43] 55NiCrMoV6 steel
tungsten
carbide

ball-end mill
0.05 0.3 N/S 200 10

Fx = 0.02l2 + 0.0361α2 − 0.0156lα − 1.9497l − 2.788α + 169.6
Fy = −0.0024l2 + 0.1442α2 + 0.0199lα − 0.6855l − 14.7382α + 399.7
Fz = 0.0128l2 + 0.1157α2 − 0.0692lα + 1.0813l − 4.6502α + 76.9

Fz—axial force, Fy—radial force, Fx—tangential force; F—resultant force; l—tool’s overhang; α—surface inclination angle; N/S—not specified.
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2.1.2. Mechanistic Models

Unlike the empirical models, the mechanistic approach for cutting force prediction is
based on real cutting mechanics, so it takes into account not only machining parameters
but also chip formation [44], tool–workpiece contact [45,46], cutting tool geometry (e.g., dif-
ferent helix angles [47], different serrated shapes of the cutting edge [48], helical inserted
cutters [49,50]), tool and workpiece materials [4,51], system deflection [23,24,52,53] and vi-
bration [54,55], tool runout [56–58], tool wear [59] and so on. The mechanistic force models
are the most widely used in the analysis of the milling process of parts with low rigidity.

In the modeling process, the cutting edge of a tool is treated as both integral and
discretized. As the ball-end milling cutters are usually used for machining parts with
low rigidity [60–62], many models address the cutting behavior of a ball-end mill whose
cutting edge is discretized into a finite number of elements along the axial direction. The
differential cutting forces acting on each elemental cutting edge are then calculated based
on the oblique cutting mechanism according to the methodology developed in [50,63]
(Figure 4). The approach assumes that the instantaneous cutting forces are proportional
to the uncut chip area through different empirical coefficients that capture, separately, the
effect of the two fundamental mechanisms of cutting process: rubbing or ploughing at the
cutting edge (the interference of the tool flank with the machined workpiece surface) and
cutting due to shearing at the shear zone and friction at the rake face (Equation (2)):

dFtj(θ, z) = KtedS + Ktctj(θ, z)dz
dFrj(θ, z) = KredS + Krctj(θ, z)dz
dFaj(θ, z) = KaedS + Kactj(θ, z)dz

(2)

where dFtj , dFrj and dFaj are the elemental tangential, radial, and axial cutting forces acting
on flute j of an ideal system (i.e., with a rigid cutter and zero eccentricity in the cutter axis
of rotation), Kte, Kre, and Kae are the edge force coefficients, Ktc, Krc, and Kac represent the
cutting force coefficients, tj(θ, z) = fzsin θj(z) is the instantaneous uncut chip thickness
( fz is the feed rate per tooth and θj is the instantaneous immersion or orientation angle of
the reference flute j), dz denotes the thickness of each discrete element, and dS is the length
of each discrete element along the cutting edge.
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By integrating the above relations along the in-cut portion of a flute j, the instantaneous
cutting forces acting on the flute in feed (x), normal (y), and axial (z) directions can be
calculated [64] (Equation (3)):

Fq
(
θj(z)

)
=
∫ zj,2

zj,1

dFq
(
θj(z)

)
dz, q = x, y, z (3)

where zj,1(θ) and zj,2(θ) are the lower and upper axial engagement limits of the in-cut
portion of the flute.

As more than one flute is simultaneously engaged in cutting during milling, the
contribution of all flutes is considered to calculate the total instantaneous forces on the
cutter at immersion θ [50,63–65] (Equation (4)):

Fx =
z

∑
j=1

Fxj
(
θj
)
, Fy =

z

∑
j=1

Fyj
(
θj
)
, Fz =

z

∑
j=1

Fzj
(
θj
)

(4)

where z is the number of flutes on the milling cutter. Obviously, if a flute j is out of the
immersion zone, its contribution to the total forces is null.

Finally, the instantaneous resultant cutting force acting on the milling cutter can be
calculated as [64] (Equation (5)):

F =
√

F2
x + F2

y + F2
z (5)

The prediction accuracy of cutting forces depends largely on the reliability of cutting
force coefficients (CFCs) determination. The specialty literature depicts two approaches
to addressing this issue. One of them is the unified mechanism approach, which relies on
experimentally established orthogonal cutting databases, and the process-dependent CFCs
are analytically obtained by applying the classical oblique transformation model [50,63,66,67]
(Equation (6)):

Ktc, Krc, Kac = f (τ, αn, i, Φn or rl , βn or β) or
Ktc, Krc, Kac = f (τ, αn, i, Φn or rl , ηc) or

Ktc, Krc, Kac = f (τ, αn, i, ηc, βn or β)
(6)

where τ is the workpiece’s material shear stress, αn, β, and i are the tool’s normal rake
angle, friction angle at the rake face and helix angle, respectively, Φn and βn are the normal
shear and friction angles in oblique cutting, respectively, and rl and ηc are the chip length
ratio and chip flow angle in the rake face, respectively.

Similarly, the edge force coefficients Kte, Kre, and Kae can be determined from the
orthogonal cutting database values for the appropriate tool–workpiece pair and cutting
conditions. In view of this, a comprehensive set of orthogonal cutting tests at different
cutting depths, rake angles, and cutting speeds needs to be performed and measuring the
force components along and perpendicular to the cutting speed direction as well as the
chip length ratio or chip thickness ratio [63].

The other option for CFC calculation is the direct calibration approach, which uses
measured milling forces and determines average or instantaneous cutting force coefficients
as a function of the uncut average chip thickness [68,69] or instantaneous uncut chip thick-
ness at the tool–workpiece interface, respectively [51,67,70–72]. The former models, known
as “lumped-mechanism force models,” combine the effects of the shearing mechanism on
the tool’s rake face and the ploughing mechanism on the tool’s flank face into one specific
force coefficient for each cutting force component along the tangential, radial, and axial
directions [73,74]. These coefficients are treated as constants [75–77] or function of the
average uncut chip thickness [78]. However, even if the average uncut chip thickness is
unchanged, the instantaneous uncut chip thickness varies frequently and significantly dur-
ing the milling process due to part and tool geometry, runout parameters, cutter deflection,
etc. [79,80], so some prediction accuracy is lost. Consequently, later models, known as
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“dual mechanism force models,” consider CFCs as varying parameters depending upon
the instantaneous uncut chip thickness and use two coefficients to characterize indepen-
dently the effect of shearing and ploughing mechanisms (i.e., specific cutting and edge
force coefficients). These coefficients can either be predicted from the mechanics theory
of general oblique cutting, based on an orthogonal database for given tool–work material
pairs, or experimentally determined from cutting tests, when the orthogonal database is
not available or the tool has complex geometry [61,75,81,82]. The cutting force coefficients
defined by the instantaneous uncut chip thickness allow for a significantly more accurate
prediction of cutting forces than those based on the average chip thickness [83,84].

To sum up, the determination of cutting forces using mechanistic models involves the
steps presented in Figure 5.
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In the thin-walled milling process, due to parts’ low rigidity, deformation is an un-
avoidable phenomenon under the action of cutting force [85,86] that leads to low machining
accuracy (i.e., serious surface-dimensional errors [87]), repeated machining, and even scrap
parts that negatively impact the production efficiency [88]. Therefore, to establish a cutting
force model that fits the actual machining, the deformation–cutting force relationship has
to be taken into consideration [89,90]. This implies including in the force model the instan-
taneous immersion boundaries of the tool–workpiece contact zone [28,90,91]. However,
this is quite a complicated issue because the cutting forces in machining thin-walled parts
depend on the instantaneous uncut chip thickness, which is a function of the tool immersion
angle [92]. The immersion angle of the tool is in turn a function of part deflection [93],
which itself depends on the cutting forces. Therefore, to solve this complex dependency,
an interactive approach needs to be applied that links force prediction with part deflec-
tion modeling [73,94]. The algorithm’s accuracy and efficiency can be further improved
by considering not only mechanically induced workpiece deformation but even thermal
deformation, especially in the case of milling difficult-to-cut materials characterized by
high strength and low thermal conductivity [59].

When milling thin-walled parts, not only the parts deform under the machining load
but also the cutting tool. As such, a cantilever beam theory is usually used to calculate tool
deflection, which is then incorporated into force predictive models separately [79,86,87,95–97]
or simultaneously with workpiece deflection and immersion angle variation for calculating
the instantaneous uncut chip thickness and cutting force coefficients [89,91–93]. In such
approaches, some authors have treated the tool–workpiece deformation as static [98,99],
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while others proposed dynamic models, which also considered the relative tool–workpiece
displacement when computing the instantaneous chip thickness [52,55,100] (Equation (7)):

h = hst + hd, (7)

where hst is the quasi-static deformation related to the rigid body motions between tool
and workpiece and hd is the dynamic component associated with the relative vibrations
between tool and workpiece.

Besides tool and workpiece deflections, tool runout (mainly caused by the misalign-
ment of tool-holder assembly and spindle axes) also affects cutting force [57,101]. Since in
ball-end milling, the tool’s diameter is usually small, only the radial runout has a signif-
icant influence on cutting force in that it results in a periodic changing of instantaneous
uncut chip thickness [102,103]. The presence of tool runout redistributes the instantaneous
uncut chip thickness as well as the cutting forces [104,105]. Therefore, consideration of
tool runout should be a must when developing force prediction models, since it exists in
practice and the assumption of no runout may not provide an accurate model [106,107].
In fact, it was shown that tool radial runout has a significant influence on cutting forces,
both in quantitative and qualitative terms [108,109], and good agreement of the predicted
cutting forces with the values from the validation experiments is obtained when it is part
of the model [72,86,93,110,111].

To get even closer to real machining conditions and increase the practical applica-
tion value of force prediction models, tool wear is another critical issue that needs to be
considered [112,113]. In industrial practice, exploring the relationship between tool wear
propagation and cutting force variation is an indirect method for tool wear monitoring
in real-time applications [114,115]. Knowing this dependency in the case of milling thin-
walled parts is very important, as tool wear has severe effects on the quality and efficiency
of the machining process, especially for hard-to-cut materials [116,117]. According to
published literature, under the condition of tool wear, additional cutting loads have a
significant influence on the tool–workpiece interaction [118]. Also, it has been shown
that cutting forces are very sensitive with increased flank wear [119,120], and there is a
direct correlation between the increase in cutting force components and the flank wear
width [58,121,122]. Low deviations between the measured and calculated cutting forces
(e.g., within the range of 5% to 14% for a worn tool and 2% to 7% for a sharp tool [59])
demonstrate the reliability and robustness of the prediction models that include tool wear
as a parameter.

For complex parts such as turbine blades, integral impellers, blisks, etc., five-axis
end milling has become widely used owing to its capacity to avoid interference between
tools and workpieces and to achieve higher precision and efficiency [123,124]. Providing
two additional degrees of freedom compared with traditional three-axis milling, five-axis
milling machines offer many advantages, including better tool accessibility, a faster material
removal rate, and an improved surface finish [19,39,125,126].

However, the prediction of cutting force in five-axis milling of thin-walled parts has
become complicated and is still a challenge because of difficulties in determining the un-
deformed chip thickness and the geometric complexity [127–129]. To solve these issues,
the influence of curvatures of the in-process workpiece surface and the real tool’s motion
analysis (i.e., continuous variations of tool axis orientation [130], tool path curvature and
torsion [131,132], varying feed rate [133], and cutting speed [134]) on chip formation needs
to be incorporated into the cutting force prediction models [130,135]. The undeformed
chip thickness must be calculated according to the real kinematic trajectory of the tool
under a continuous change in tool axis orientation [136,137]. Variation in part geometry
and tool orientation along the tool path leads to changes in the tool–workpiece engagement
boundaries [138,139] that in turn change the chip distribution. Cutting forces are greatly
affected by the distribution of chip thickness along the cutting edge, which is in contact with
the workpiece [140,141]. It was shown that neglecting the effect of the geometrical shape of
the workpiece surface (WS) around the cutting region on the tool–workpiece engagement
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(CWE) can lead to an error of up to 50% in the prediction of resultant cutting force acting
on the tool [142]. Therefore, recent studies in the literature proposed different approaches
for predicting cutting forces in five-axis milling of thin-walled components accurately
and efficiently, which essentially consist of the following stages: first, describe the tool
spatial motion considering all geometrical features of the WS, then calculate the instanta-
neous uncut chip thickness and determine CWE boundaries, and finally, based on CFCs
experimentally determined, predict the cutting forces and validate the model [143–145].

2.1.3. Numerical Models

Numerical models are an alternative to the costly, tedious, and time-consuming exper-
imental approach of the thin-walled part-machining process. Reviewed literature revealed
that among simulation techniques, the finite element method (FEM) is mostly used to solve
process-specific issues such as prediction of force and force-induced deformations [146,147],
study of residual stresses and their effect on part accuracy [148–150], optimization of the
workpiece clamping system [21,151,152], and study of cutting temperature and its effect on
part integrity [153], etc.

In terms of cutting force prediction, few research articles dedicated explicitly to this
topic have been reported in the literature, and they are mainly focused on studying the
effects of machining parameters, tool geometry, tool deflection and workpiece material on
cutting forces, but also on stress distribution, cutting temperature, part deflection, and chip
morphology [154,155]. In addition, a numerical model was developed in [156] to obtain the
specific force coefficients for a mechanistic model as an alternative to the experimental tests
(Table 2).

Some other works studied cutting force as a source of in-process deflection and
deformation [157–159], residual stress state [160,161], and vibrations of parts with low
rigidity [162,163].

To be effective, numerical models need to be accurate and fast—the two main en-
gineering objectives of all time. However, these two words are not very compatible in
reality: accuracy achievement is extensively time-consuming because of the huge com-
putation burden, and on the other hand, when a very fast process is needed, the model
should be simplified, which in principle means lower accuracy. Consequently, depending
on the targeted objective, some of the proposed models are simpler, based on idealized
part geometries (e.g., cantilever beam), a simple representation of the cutting tool (e.g., a
cylinder), and many simplifying assumptions (e.g., simulating the milling of a single tool
tooth, rigid cutting tool, workpiece stable elastic deformation, etc.), while others try to
be more realistic representations of the thin-wall milling physical process, considering
real tool shape, tool–workpiece deflection, tool–workpiece dynamic interaction, etc. In
the case of the latter models, in order to reduce the simulation time, different solutions
have been implemented, such as adapted meshing technology (i.e., refined mesh at the
tool–workpiece interface and a larger mesh for the rest of the model) [164,165], stiffness
matrix reduction [166], or the use of alternative simulation methods (e.g., finite cell method,
FCM), which can preserve accurate physical domain information without requiring a dense
mesh and a huge accompanying global stiffness matrix (reduced the computing time by
nearly 19 times [167]). Even so, numerical models are limited in reproducing the actual
cutting conditions while ensuring accurate real-time results.
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Table 2. Numerical models for cutting force prediction in milling parts with low rigidity.

Reference Method Software Main Work Material/Constitutive Model Element Types

The effects of process parameters on cutting forces

[39] FEM ABAQUS Effects of n, fz, ap, ae, d, γ, λ, z on cutting forces and deformations TC4 (DIN3.7164/5)/
Johnson–Cook

T: solid carbide rigid body
WP: linear explicit elements

[156] FEM AdvantEdge Determination of specific cutting force coefficients AISI 4340 steel/
N/S

T and WP: N/S

[164] FEM ABAQUS
Study of stress field, temperature field, cutting force, and
workpiece deformation by considering coupling effect of strain
hardening rate and temperature

Ti-6Al-4V alloy/
modified Johnson–Cook + VUMAT

subroutine

T and WP: C3D4T four node thermal coupling
tetrahedral elements

[168] FEM ABAQUS Effects of tool’s helix angle on cutting forces and deformations 2024-T351 alloy/
Johnson–Cook

T: solid carbide rigid body
WP: C3D8R brick elements

[169] FEM N/S Effect of clamping system on cutting forces and part deformation Al6061 alloy/
Johnson–Cook

T: cemented carbide rigid body;
WP: N/S

[170] FEM DEFORM-3D Effects of tool’s inclination angle on cutting forces and chip
formation morphologies

Ti-6Al-4V alloy/
Johnson–Cook

T: cemented carbide rigid body;
WP: tetrahedral elements, adaptive mesh

[171] FEM AdvantEdge Effects of tool’s inclination angle on cutting forces Al7075 alloy/
Johnson–Cook

T: cemented carbide YG8 rigid body;
WP: N/S

[172] FEM ABAQUS Effects of process parameters on cutting forces, stress
distribution, cutting temperature, part deflection and chip
morphology

2024-T351 alloy/
Johnson–Cook

T: solid carbide rigid body
WP: C3D8R brick elements

[173] FEM DEFORM-3D Study of cutting forces, cutting temperature, thermal stress field Cr12MoV multi-hardened steel/
Johnson–Cook

T: solid carbide ball-end mill rigid body;
WP: plastic body, adaptive mesh

The effect of cutting forces on deformation/residual stress/vibration of parts

[23] FEM ABAQUS/3D model Effect of milling strategy on part distortion Identification of
precontrol compensation techniques by considering MIRS
and IBRS

7050-T74 alloy
7050-T7451 alloy/

N/S

T: N/S
WP: C3D8R brick elements, adaptive mesh

[148] FEM AdvantEdge Influence of cutting force on residual stresses Al 7050-T451 alloy/
N/S

T: horniness alloy;
WP: N/S

[160] FEM ABAQUS Influence of cutting force and heat on
residual stress generation

Al2024 alloy/
Johnson–Cook

N/S

[161] FEM ABAQUS Prediction of surface residual stress Ti-6Al-4V alloy/
Johnson–Cook

T: solid carbide ball-end mill rigid body
WP: C3D4T 4-node thermal coupling tetrahedral
elements, adaptive mesh
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Table 2. Cont.

Reference Method Software Main Work Material/Constitutive Model Element Types

[165] FEM SolidWorks Plug-ins Influence of cutting force on stress distribution and stress
variation trends

Ti-6Al-4V alloy/
N/S

T: N/S;
WP: 4-node 3D solid mesh, adaptive mesh

[166] FEM N/S Cutting force-induced error prediction
using stiffness matrix reduction

6061 alloy/
N/S

T: cantilevered elastic beam
WP: 3 mesh densities.

[167] FCM MATLAB/
FCMLab

Prediction of deformation errors 6061 alloy/
Voxel model

T: solid carbide ball-end mill, rigid body
WP: cells mesh

[174] FEM LS-DYNA Cutting force-induced error prediction 2A12 aluminum alloy
N/S

T: cantilevered elastic beam, tetrahedral elements
WP: hexahedral elements.

[175] FEM ABAQUS Effect of geometry constraints on parts’
deformation and deflection

2024-T351 alloy/
Johnson–Cook

T: R3D4 elements, rigid body;
WP: C3D8R solid elements, adaptive mesh

[176] FEM N/S Prediction of parts’ deflection Ti-6Al-4V alloy/
N/S

T: tetrahedron solid element rigid body;
WP: tetrahedron solid element, adaptive mesh

[177] FEM ANSYS Prediction of parts’ deflection and
elastic–plastic deformations

Al-7075 alloy/
N/S

T: rigid body;
WP: 8-nodes thermal SOLID-70 and structural
SOLID-45 brick elements, adaptive mesh.

T—tool; WP—workpiece; γ—tool’s rake angle; λ—tilt angle, respectively; MIRS/IBRS—machining-induced/initial bulk residual stresses, respectively; N/S—not specified.
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2.2. The Modern Approach of Force Prediction

To sum up, the traditional approach to force prediction when milling parts with low
rigidity operated first with mathematical models that are representations of the process re-
ality by using equations, from simpler (e.g., empirical models) to complex, with many more
parameters considered (e.g., mechanistic models). When these nominal physics-based mod-
els, with their associated nominal loads and calibration data, became too complex, to solve
them accurately and quickly, the switch was made to the use of simulation (i.e., numerical
models) and based on the computer-identified solutions, the prediction of performance
was evaluated.

However, the extensive physical testing that provided the confidence needed to assure
the models’ reliability has become increasingly expensive to perform (in terms of time,
labor, and material consumption). On the other hand, numerical models have limited pre-
dictive capability because they only produce responses that have previously been observed
experimentally and then programmed for future assessments. Meanwhile, the milling
process is inherently nonlinear and time-varying, even under normal operating conditions.
Especially in low-rigidity part machining, the workpiece geometry and stiffness continue
to change throughout the process, and as was shown in the previous sections, variations
in cutting force are often unavoidable. Therefore, considering this changeable operating
environment and finding ways to counteract its consequences on process performance in
real time has become an imperative and a focus of many research studies.

2.2.1. Adaptive Control Techniques

Various control strategies have been proposed to maintain constant cutting force
during low-rigidity part machining. Adaptive control technology has been widely used for
online machining monitoring and instantaneous intervention in the process. An important
part of most adaptive control schemes is the online parameter identifier, or adaptive
law, which generates estimates of the unknown parameters to be used for calculating or
updating the controller parameter in real time [178]. Thus, adaptive control can estimate
the process model online and adjust the control parameters accordingly to meet the desired
system performance. In terms of the milling process, this means that it can adapt to time-
varying machining conditions and adjust the machining parameters (e.g., feed rate, spindle
speed) to maintain a constant level of the cutting force.

Early studies implemented different schemes of identifier-based adaptive control,
such as indirect [179,180] and direct adaptive control [123,181,182] and model reference
adaptive control (MRAC) [183–185], but due to their dependence on a certain machine
setup, they found limited applicability in real industrial environments characterized by
changeable machining conditions (i.e., different tools, different workpieces, different lubri-
cants, etc.). Therefore, some robust adaptive control solutions, which involve using tiny
feedback around the adaptive law’s pure integrator, were proposed to maintain a constant
cutting force in the presence of parametric uncertainty for a time-varying process [184,186].
However, the applicability of these controllers has also been limited because they assume
that the process uncertainties and parameter variations are a priori known, which is not
always the case in the actual milling process.

2.2.2. Artificial Intelligence-Based Techniques

Artificial intelligence (AI) has come into serious consideration to develop more ad-
equate control schemes that can identify the variations in the cutting process and adapt
themselves in a more reliable and stable manner [187,188]. Techniques such as neural
networks (Table 3), neuro-fuzzy [189,190], fuzzy [191–193], or multilevel fuzzy controllers
(MLFC) [194] and genetic algorithms [195–197] were applied to capture the process dynam-
ics qualitatively by mimicking the human way of thinking rather than using analytical
models. Despite their benefits (e.g., reduced computational burden, improved machining
quality and efficiency), all these techniques need historical data (experimentally obtained
or generated from a mechanistic force model) and their prediction performance depends
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on the accuracy and reliability of these inputs. Besides, the thin-wall machining process is
accompanied by very complex physical state changes with the removal of workpiece mate-
rial, which lead to different, often unexpected, cutting conditions that cannot be anticipated
by the AI-based models. This lack of data causes inaccuracies in model predictions.

Table 3. Neural networks for cutting force prediction in milling parts with low rigidity.

Reference NN Type Input Layer Neurons Hidden Layer
Neurons

Output Layer
Neurons

Training
Data Set

Training
Algorithm

[198] FFNN ap, ae, fz, n, d, z, γ, α 1–6 maxF, meanF,
minF Experimental BP

[199] FFNN
cutting fluid (yes/no), machined
material type and HB, d, type of

insert, vc, fz, ap, ae, flank wear
3, 6 Fx, Fy, Fz Experimental BP

[200] FFNN fz, vc, ap, ae, d, tool geometry,
machined material type and HB 3, 5, 7

Fx, Fy, Fz
(peak and
average)

Experimental BP

[201] FFNN ap, ae, fz, θi 10, 20, 50, 100 Fx, Fy
(instantaneous)

Mechanistic force
model BP

[202] CNN CFI, fz, n, z, i,
Kte, Kre, Kae, Ktc, Krc, Kac

- Fx, Fy, Fz
(instantaneous)

Mechanistic force
model BP

FFNN/CNN—feed-forward/convolutional neural network, respectively; CFI—cutter frame image; BP—
backpropagation.

2.2.3. Digital Twin Systems

To overcome the previous techniques’ drawbacks, a novel optimal control method for
the thin-wall milling process was proposed by incorporating digital twin (DT) technology.
As it was defined at its “incubation” stage [203] by the National Aeronautics and Space
Administration (NASA), referring to their future vehicles’ generation, a digital twin is a
“multiphysics, multiscale, probabilistic, ultra-realistic simulation of an as-built vehicle or
system that uses the best available physical models, sensor updates, fleet history, etc., to
mirror the life of its corresponding flying twin” [204]. In terms of the manufacturing area, a
digital twin is a “virtual representation of a production system that can run on different
simulation disciplines that are characterized by the synchronization between the virtual
and real system, based on the sensed data and connected smart devices, mathematical
models, and real-time data elaboration” [205]. Thus, the key function of a DT model is
to reproduce the state of its physical entity, display and analyze it, and make decisions
through real-time interaction between virtual and real space [206]. In the meaning of this
new paradigm, things are a little bit different: instead of treating a nominal model (as is
the case with the traditional approach), a real system at time t of the present, for which
there are data, is considered. Assuming nominal loads is not necessary because the entire
load history before time t is already known. With this information about the real system
and its real history, it is possible to predict the future of the system. Hence, the goal is to
learn from the system during its life and to monitor it (i.e., diagnosis) in order to anticipate
its evolution (i.e., prognosis), and these must be done accurately and fast. Since we are
in the era of data and artificial intelligence, there is the possibility to proceed in a fully
data-driven fashion. The problem is that both physics- and data-based models need to
work in real time, which is not very easy to achieve, because on the one hand, physics in
general needs time to solve very complex models, and on the other hand, DT must provide
instant replay of machining sequences for analysis. Therefore, to integrate a digital twin
system into a real industrial environment, it is necessary to speed up simulations based on
the models of physics and to speed up the construction and application of models based on
data and manipulated by AI. Suggestions and decisions on manufacturing must be made
in a timely manner based on the evaluated data from the digital twin system [207,208].

Transposing these aspects to the manufacturing process of thin-walled parts, digital
twin technology emerges as a feasible solution to reduce the trial machining time, improve
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the machining and implicitly the parts’ quality, and make better decisions throughout
the process by equipping it with powerful real-time perception, optimization, and control
capabilities [205,209].

The cutting force model is the most important model in the virtual milling space for
the identification of milling parameters. The real-time milling force data can be collected
directly, via different force sensors [210,211], or can be inferred from previously generated
data (e.g., feed rate, spindle speed, spindle power, depth of cut, real-time torque of the
motor, motor current, tool frame image, etc.) [186,202,207,212,213]. Then, by applying
different adaptive control strategies and predictive simulations driven by a digital twin,
cutting force can be maintained at a desired level through cyber–physical fusion, which
results in higher productivity, improved part quality, and increased tool protection.

However, in the case of complex part geometries and toolpaths, the simulation of
cutting force models in real time is still challenging, as the calculation of tool–workpiece
engagements requires a significant computational load. Besides, since process data have
dynamic changes during machining and their state evolution affects the cutting force, the
system needs to fuse and analyze all the real-time machining process data collected. This
means that DT must pass this information back to the cutting force models so that the
cutting force can be accurately determined. In addition, possible synergistic effects of
different variables should be captured [202,214,215]. At the same time, DT can enrich the
information through iterative analysis in the machining process [216]. An efficient comput-
ing approach can contribute to the synchronization between cyberspace and physical space.
The prediction time cost needs to be cheap to satisfy the requirements of reflecting the real
machining process promptly in a virtual environment.

Therefore, to improve the self-diagnosis and self-adaptation abilities of a thin-wall
milling system in a more effective and efficient way, its digital twin should provide real-
time perception, high-fidelity and low-latency simulations, and online optimal control
capacities [209,214,217].

3. Discussion and Conclusions

From the analysis of the published scientific literature on force prediction models
in milling parts with low rigidity, two approaches can be highlighted (Figure 6). The
first is the traditional approach, which is based on mathematical modeling, and—with
the advent of computerized computing techniques—on numerical modeling (simulation),
which has been experimentally validated. The second approach is specific to intelligent
manufacturing systems, which ensures the convergence of techniques used in modern data
science and artificial intelligence to create processes that can overcome the weaknesses of
the traditional approach and increase the production efficiency.

Traditional approaches resort to statistical processing based on rich prior experience,
which requires extensive trial-and-error experiments or long-term production expertise.
These methods form the basis of modern methods, which allow real-time feedback of the
system or simulations on virtual models without associated risks to actual part machining.
The modern approach involves higher research and implementation costs, but they are
going to decrease as new programmable automatic controllers and numerical controls have
incorporated tools for the use of adaptive control, artificial intelligence techniques (genetic
algorithms, fuzzy control, neural networks, etc. and various combinations of them), and
simulation of the manufacturing process (digital twin). However, AI leads to good results if
there are big data on the machining process. Simple adaptive methods adapt to the existing
situation and make instant decisions in relation to the required optimization function.

The use of one or the other of the approaches to keep cutting forces under control
and consequently increase the performance of the thin-wall milling process is directly
dependent on the type of existing production (Table 4).
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Table 4. Analysis of approaches from a production perspective.

Analyzed Feature Small Series Production Large Series Production

Parts’ diversity Wide variety of parts, with varied geometries Reduced diversity of parts

Cutting force prediction method Statistical methods, since they allow the lowest
costs; average cutting forces

Adaptive control, because its costs are
amortized over time; instantaneous cutting
forces

Quality and productivity issues

The cutting forces are not constant; very large
fluctuations occur when tool wear increases
and built-up edges appear. Therefore, an
average cutting force value lower than the one
calculated will be used, leading to
productivity losses.

Adaptive control models track the
instantaneous values of cutting force, which
makes the system response prompt and
productivity maximum.

Pursued objectives in the optimization process Quality of parts is the main objective, while
the production cost is the second.

The objective function is productivity within
the required quality limits.

However, current trends are converging towards combining the two approaches so
that production planning and parts’ manufacturing under the required quality conditions
can be achieved with minimum financial and timing costs.

The challenges in this respect are moving towards the large-scale digitization of
production, equipping machines with plenty of sensors to obtain as many data as possible,
which can then be used by artificial intelligence to make very fast and accurate predictions
of the machining conditions. This data collection involves additional expenditure on data
storage, which implies building a storage system for big data, which in turn—unlike
traditional data storage methods—involves very high transfer speeds, massive storage
volumes, and a huge variety of data. The modern approach also requires additional costs
for purchasing modern machines or upgrading the existing ones.

As already mentioned above, the cutting force model is the most important “com-
ponent” in the virtual milling space for the identification of milling parameters. The
mechanistic models of force prediction are the most widely used models, both in traditional
production systems and in digital twin-driven intelligent systems, due to their ability to
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take into account the large number of interrelated process parameters that influence the
cutting forces (e.g., physical and chemical characteristics of the machined part, tool geome-
try, tool material, static and dynamic deflections of the workpiece and tool, tool wear, tool
runout, etc.). These models have been researched for more than half a century and have
been validated as sufficiently mature by the scientific world. The challenge is to integrate
them with artificial intelligence and numerical simulation techniques within digital twin
systems to provide real-time data to run the physical process efficiently and qualitatively.

The literature survey revealed that the solutions already implemented, i.e., digital
twin-driven cutting force adaptive control systems, use the average force as the controlled
object, which can be satisfactory when the cutting conditions are steady, but for dynamic
tool–workpiece interaction, which is the case in the actual thin-wall milling process, it is
not appropriate. Therefore, instantaneous cutting force should be considered to improve
the outputs’ accuracy. However, this would take considerable computational time and
effort and would not meet the real-time solution constraints so necessary in dynamic
data-driven control systems. In view of this, implementation of advanced model order re-
duction techniques [218–220] as an ingredient of the so-called “hybrid twin” paradigm [206]
could be a possible way to reduce the computational burden without affecting the model
solution accuracy.

Another observation from the specialty literature survey is that in most cases, the
considered lubrication conditions were either dry milling or classic lubrication (with cutting
fluid). In this context, as a future research direction, cutting force prediction models, espe-
cially those whose CFCs are determined from measured milling forces, should capture the
effect of other lubrication methods, such as minimum/nanofluid/electrostatic minimum
quantity lubrication (MQL/NMQL/EMQL) [221] and cryogenic milling (a method still
in its early stages of application [222]), depending on the tool and workpiece material,
ensuring in the meantime production sustainability.

We also found out that few studies have included the influence of residual stresses in
the force prediction models, and those models were either empirical [32] or analytical [223].
A recent model [224] related the maximum residual stress and undeformed chip volume in
the case of milling curved, thin-walled parts. Therefore, since cutting force is an important
factor that affects the magnitude and distribution of residual stresses, which in turn signifi-
cantly influence the accuracy of thin-walled parts, it would be opportune to introduce this
factor in the force prediction models to replicate as accurately as possible the phenomena
associated with the real machining process. In a recent study [160], it was shown that the
influence of milling force accounts for 53% to 78% of the surface residual stress generation.

To broadly sum up the points presented in this paper on the models used for force
prediction in milling parts with low rigidity (thin-walled parts), we can conclude:

• Empirical models, despite their low prediction ability, represent a viable solution for
optimizing process parameters in order to keep cutting forces under control.

• Dual mechanism force models and numerical models have been intensively used in
the traditional approach for cutting force prediction and continue to be a ubiquitous
“ingredient” of the digital/hybrid twin-driven cutting force control systems. The
challenge to be addressed is finding appropriate methodologies to simplify model
complexity without compromising prediction accuracy to ensure the computational
efficiency of cyber-systems.

• Intelligent production technologies (i.e., digital or hybrid capabilities) evolve as an
emergent solution to increase efficiency and eliminate the weaknesses of the tradi-
tional approach. Their full integration in the industrial environment requires finding
solutions for ensuring the operational synchronization of the two twins—physical
and cybernetic. Although important steps have been taken at the international level
in the direction of production digitization, things are still in their infancy, and the
development and implementation of intelligent production systems require significant
changes both in terms of technological and economic capabilities of companies and
especially in terms of human resources, i.e., the identification or training of specialists
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possessing digital skills and know-how required by technological progress. This will
be one of the biggest challenges of the near future.

• From this perspective, research is particularly important for the modern approach
to thin-walled part machining, first by digitizing the process with the help of the
machining system digital twin and then by using this facility to increase the pro-
cess performance.
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