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Abstract: Abrasive disc grinding is currently a key manufacturing process to achieve better accuracy
and high-quality surfaces of TC17 components. Grinding force, which results from the friction and
elastic–plastic deformation during the contact and interaction between the abrasive grains and the
workpiece, is a critical parameter that represents the grinding accuracy and efficiency. In order to
understand the influence factors of grinding force, the characteristics of the flexible abrasive disc
grinding process were studied. Considering the contact state between the abrasive tool and the
workpiece, the theoretical model of normal grinding force was established in detail, from macro-
and micro-perspectives. By conducting single-factor and orthogonal grinding experiments of TC17
components, the influence of different process parameters on the normal grinding force was revealed.
The normal grinding force prediction models of the abrasive disc grinding process were developed
based on the Box–Behnken design (BBD) and particle swarm optimization–back propagation (PSO-
BP) neural networks, respectively. The results showed that the normal grinding force was negatively
correlated with the disc rotational speed, and positively correlated with the contact angle, grinding
depth, and feed rate, and the interaction of the factor feed rate and grinding depth was the more
influential factor. Both the BBD and PSO-BP force models had good reliability and accuracy, and the
mean absolute error (MAE) and mean relative error (MRE) of the above two prediction models were
0.22 N and 0.16 N, and 13.3% and 10.9%, respectively.

Keywords: abrasive disc grinding; normal grinding force; response surface method; PSO-BP
neural network

1. Introduction

Titanium alloys are widely used in various fields, such as aviation, aerospace, energy,
navigation, biology, medicine, vehicles, and chemistry, due to their excellent physical and
mechanical properties [1–3]. In particular, TC17 titanium alloy, whose main composition
is Ti-5Al-2Sn-2Zr-4Mn-4Cr, has several advantages, such as high strength, hardenability,
good fracture toughness, and a wide forging temperature range. Therefore, it is considered
an advantageous material to meet the requirements of high structural efficiency, high
reliability, and low-cost manufacturing in the field of aero-engine components.

Abrasive disc grinding is currently a key manufacturing process used to grind TC17
aero-engine blades with free-form surfaces to achieve better accuracy and high-quality
surfaces [4,5]. However, due to chip deformation, cold hardening, active chemistry, and
poor thermal conductivity, TC17 is recognized as a typical difficult-to-cut material. There-
fore, elucidating the mechanism of the flexible grinding process of TC17 parts remains a
challenge [6].

It is widely acknowledged that the grinding force is a result of the friction and elastic–
plastic deformation that occurs during the contact and interaction between the abrasive and
the workpiece. It is a critical parameter that represents the grinding accuracy and efficiency.
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Monitoring and controlling the grinding force plays a crucial role in preventing tool wear,
improving the grinding efficiency, ensuring workpiece quality, and optimizing the grinding
process. Excessive grinding force can lead to workpiece damage, tool life decrease, and
surface quality reduction. Conversely, too little grinding force can result in an insufficient
material removal rate and a low grinding efficiency. To ensure the machining quality and
efficiency, it is essential to study the variation of grinding force and its influencing factors
during flexible grinding contact [7].

In recent years, several studies have been carried out on force prediction techniques
for various grinding processes, such as ultrasonic vibration-assisted grinding, belt grinding,
and CBN grinding. These studies have taken into account various factors, such as grinding
parameters, material, grinding wear, tribology, and more, to establish grinding force models
at both micro- and macro-scales. Considering the motion characteristics of the micro-single-
grain, the grinding force model of the ploughing and cutting stages during the ultrasonic
vibration-assisted grinding process was established by Bie et al. [8,9]. The proposed
model was verified to reflect the comprehensive mechanism of ultrasonic vibration-assisted
grinding under certain conditions. Li et al. [10] proposed a discrete numerical model to
describe the dynamic cutting behavior in two-dimensional ultrasonic-assisted grinding
(2D-UAG) of silicon carbide (SiC). They also established a grinding force model considering
the material removal mechanism and proposed a new method to decompose and synthesize
the grinding force.

In the field of abrasive belt grinding, Song et al. [11,12] analyzed the relationship
between the grinding force and depth in the robotic grinding process. The deformation
of the contact wheel was considered to propose a new force–depth model. The grinding
force of rubbing, ploughing, and cutting effects at each stage of grinding was analyzed
by Li et al. [13], and the robotic belt grinding force model based on the single grain was
investigated according to the penetration depth. To overcome the difficulty of contact
wheel deformation, a micro-scale robotic abrasive belt grinding force model was proposed
based on the observed phenomenon of over-cutting and under-cutting on the cut-in and
cut-off paths by Yan et al. [14].

Besides, researchers focused on elucidating the grinding mechanism by studying
the abrasive grain(s). Liu et al. [15] established an improved grinding force model based
on the distribution states and various geometric characteristics of the random abrasive
grains, and verified its reliability through numerical simulation and machining experiments.
Tao et al. [16] studied the movement trajectory and grinding contact conditions of abrasive
grains, and proposed a grinding force prediction model combining the effects of abrasive
grain wear, abrasive grain randomness, brittle–ductile transition, elastic rebound, strain
rate, and other factors. Yi et al. [17] combined with the grinding force model of a single
abrasive grain in the ploughing and cutting stages to establish a grinding force calculation
model for the straight groove structure grinding wheel during the grinding process, which
was consistent with the experimental results. Additionally, Jamshidi et al. [18–20] studied
the grit–workpiece micro-interaction and geometry of the grinding wheel. An analytical
kinematic–geometrical force model consisting of three parts, including ploughing, cutting,
and formation forces, was carried out to find the optimum grinding conditions. Consider-
ing the disordered arrangement characteristics of the grinding grains, the transient grinding
force model was established by Cai et al. to obtain the grinding contact deformation [21,22].
Meanwhile, a dynamic grinding force model for face gears was developed based on the
wheel–face gear contact geometry. Ment et al. [23] established a grinding wheel topography
model considering the non-simplified position–posture–shape–size morphological charac-
teristics of multiple random grains, and a novel dynamic force modeling and mechanical
analysis of precision grinding with micro-structured wheels was proposed. However, the
interaction between single or multiple abrasive grains and the workpiece used to calculate
the grinding force is relatively difficult to experimentally validate.

In addition, Ma et al. [24] developed a prediction model for laser-assisted grinding
(LAG) force by considering the mechanical properties of the material, the microcosmic
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action state of the abrasive grain material, and the distribution of the abrasive grains.
Zhang et al. [25,26] proposed a theoretical grinding force model by considering the three
grinding stages in laser macro–micro-structured grinding (LMMSG). The model was veri-
fied by experiments and was available to predict the grinding force of zirconia ceramics.

Grinding forces have also been investigated in terms of prediction models. Zhou et al. [27]
used BP and GABP models to predict the grinding force of titanium matrix composites
during deep grinding, and the results showed that GABP had a better prediction accu-
racy than the traditional regression model and the BP model. Gu et al. [28] established a
multi-abrasive grinding force prediction model using the support vector machine (SVM)
prediction method based on particle swarm optimization (PSO). The result showed that the
error between the predicted grinding force and the experimental grinding force was less
than 12%.

Based on the above analysis, a wide variety of grinding models have been proposed.
However, there is still a need to establish a comprehensive force model considering various
grinding conditions and the new type of contact in the abrasive disc grinding process to
reveal the relationship between the grinding force and the grinding parameters. Therefore,
this manuscript aims to reveal the influence of the flexible contact state between the abrasive
disc and the TC17 titanium alloy workpiece on the grinding force. Based on the theory of
the flexible abrasive disc grinding process and experiments under different conditions, the
grinding force prediction model is carried out here to provide support for the optimization
of the precision grinding process of the TC17 components.

2. Characteristics of the Abrasive Disc Grinding Process

The basic principle of the flexible abrasive disc grinding process is illustrated in
Figure 1. The mandrel connected to the spindle drives the high-speed rotation of the
abrasive disc. The abrasive paper is bonded to the underside of the hyper-elastic rubber
disc. The contact between the abrasive grains and workpiece surface is created by the
function of the grinding force. Acting as micro cutting edges, the material removal process
is achieved by the relative movement of the abrasive grains against the workpiece. In
combination with the servo movement of the machine tool, the task of precision machining
of the workpiece is completed.
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Figure 1. The abrasive disc grinding process and its components.

Unlike traditional grinding, abrasive disc grinding is a form of elastic contact grinding.
The flexible abrasive disc grinding tool consists of an elastic rubber disc and sandpaper,
on which abrasive grains are regularly distributed. The abrasive tool produces an elastic
deformation when in contact with the workpiece, which can be adapted to different shapes
and different positions of the grinding area.

However, the hardness of the rubber disc has a direct effect on the grinding condition.
The contact area during grinding increases and the roughness decreases as the hardness of
the rubber disc decreases. Conversely, as the hardness of the rubber backing increases, the
contact area during grinding decreases and the roughness increases [29].
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Simultaneously, affected by the contact angle, γ, during the grinding process, the
effective grinding contact area significantly increases, resulting in a significant improvement
in the grinding material removal efficiency. In addition to the effects of sliding, ploughing,
and cutting, the abrasive disc grinding grains through the extrusion effect can also make
the surface of the workpiece produce plastic deformation, cold and hard layer changes,
surface cracks, thermoplastic flow, and other comprehensive effects.

Moreover, the abrasive grains are usually attached to the abrasive substrate through
advanced processes, such as electrostatic sand planting. The geometry of the abrasive grains
is generally long and triangular, with a uniform size, distribution, and grain protrusion
height [30]. The elastic contact will increase the number of abrasive grains involved in
grinding per unit of time, reduce the grinding force borne by a single abrasive grain, and
improve the grinding quality, while reducing the abrasive wear ratio of the abrasive disc.
Therefore, abrasive disc grinding is a precision machining process with multiple functions,
such as grinding, lapping, and polishing.

3. Characteristics of the Abrasive Disc Grinding Process

In the elastic contact grinding process, the material removal depth depends on the
pressure applied to the flexible abrasive grinding tool. Its true value is less than the pro-
grammed grinding depth, ap, and this significant difference means that the conventional
rigid grinding force model is not applicable to flexible abrasive disc grinding. In order to re-
veal the material removal mechanism of the abrasive disc grinding process, this manuscript
analyzes the macroscopic contact force between the abrasive tool and the workpiece, as
well as the microscopic contact force between the abrasive grains and the workpiece.

3.1. Macroscopic Grinding Force

Assuming the workpiece as a rigid body, the abrasive tool will cause elastic deforma-
tion while the abrasive tool is in contact with the surface of the workpiece, as shown in
Figure 2. The three-dimensional profile is transformed into a one-dimensional profile using
the method of dimensionality reduction (Figure 2a, view A). The deformation displacement
under the contact pressure is denoted by δ, and the shape of the contact region is similar to
that of the crescent (Figure 2b, view B). The normal contact force, Fn, can be regarded as the
deformation force of the disc grinding tool. According to Hertz’s contact theory [31], it can
be illustrated as:

Fn =
4
3
· E∗ · R1/2

t · δ
3/2 (1)

where E* denotes the equivalent Young’s modulus of the disc grinding tool, Rt denotes the
radius of curvature of the contact section between the rubber disc and the workpiece, and δ
denotes the displacement of the rubber disc perpendicular to the surface of the workpiece
after deformation.

The equivalent Young’s modulus, E*, can be calculated by Equation (2) [31]:

E∗ =
1 − v2

1
E1

+
1 − v2

2
E2

(2)

where E1 and v1 are the Young’s modulus and Poisson ratios of the rubber disc, respectively,
and E2 and v2 are the Young’s modulus and Poisson ratios of the sandpaper substrate.

The radius of curvature, Rt, can be expressed as:

Rt =

((
1 +

dz
dy

)2
)3/2/∣∣∣∣ d2z

d2y

∣∣∣∣ (3)

where dz/dy represents the slope of the curve at this point, and d2z/d2y represents the
second derivative of the curve at this point.
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(b) after deformation.

3.2. Microscopic Grinding Force

The mathematical model of grinding force established by scholars has taken into
account the stochastic characteristics of the distribution of the grinding edge around the
grinding wheel and the dynamic situation of the grinding process [32]. However, with
the gradual increase of the top dulling plane of the abrasive grain, the grinding force is
also gradually increased, so the above mathematical model of the grinding force cannot be
illustrated intuitively. Therefore, the microscopic grinding force of a single abrasive grain
is divided into two parts: chip deformation force and friction force. Assuming that the
abrasive grains are conical, the force process between the abrasive grain and the workpiece
is shown in Figure 3. Both normal and tangential grinding forces have two components, as
shown in Equation (4) [33]: {

Fng = Fnc + Fns
Ftg = Ftc + Fts

(4)

where Fng and Ftg represent the normal contact force and tangential contact force of single
grain, respectively, Fnc and Ftc represent the normal grinding force and tangential grinding
force due to chip deformation, respectively, and Fns and Fts represent the normal grinding
force and tangential grinding force due to friction, respectively.
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This manuscript focuses on the study of normal grinding force, Fn, as it is the basis
of the material removal effects according to the Preston Equation. For a single abrasive
grain, the normal grinding force due to chip deformation and friction can be illustrated by
Equation (5) [33]: {

Fnc = K · Q
Fns = s · p

(5)

where K denotes the grinding force per unit grinding area, N/mm2, Q denotes the grinding
cross-sectional area, mm2, s denotes the average dull surface area of a single grain, i.e., the
actual contact area between the working grain and the workpiece, mm2, and p denotes
the average contact pressure between the abrasive grain and the workpiece, which is
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proportional to the hardness of the material, N/mm2. Combining Equations (4)–(6), the
normal grinding force of a single grain, Fng, can be expressed as:

Fng = K · Q + s · p (6)

The normal grinding force per unit grinding width, Fn
′, acting between the abrasive

tool and the workpiece, is equal to the sum of the normal forces of all the working abrasive
grains in the contact area. It can be expressed as [34]:

F′
n = ∑ Fng = ∑ Fnc + ∑ Fns = K∑ Q + Ndsp (7)

where Nd denotes the number of working grains per unit grinding width, and ∑Q denotes
the sum of the cutting cross-sectional area of the abrasive grains per unit grinding width,
respectively. Nd and ∑Q can be calculated as follows [34]:{

∑ Q = vw
vs

· ap

Nd =
∫ ls

0 Nd(l)dl = An
1+α Cβ

e (vw/vs)
αa(1+α)/2

p d(1−α)/2
se

(8)

where vw denotes the linear velocity of the abrasive grains in the contact length, l, vs denotes
the workpiece velocity, ls denotes the actual contact length, An denotes the coefficient related
to the number of dynamic cutting edges, α, β, and Ce denote the coefficients related to the
cutting edge shape and its distribution, and dse denotes the diameter of the grinding edge.
The normal grinding force, Fn

′, can, therefore, be expressed as [34]:

Fn
′ = K

vw

vs
ap +

An

1 + α
Cβ

e (vw/vs)
αa(1+α)/2

p d(1−α)/2
se sp (9)

In the abrasive disc grinding process, the real contact region is as shown in Figure 2b,
view B. Since the grinding material removal is concentrated in the center of the crescent
region, the contact region can be simplified, as shown in Figure 4. The linear velocity,
vs(r), of the abrasive grain on any contact arc in the grinding region and the diameter of
the grinding edge, dse, can be expressed as a function of the curve radius, as shown in
Equation (10): {

vs = 2πnr
dse = 2r

(10)
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Combining the above equations, the normal grinding force per unit contact width is
calculated by:  F′

n = A1r−1 + A2r1 − 3α/2

A1 =
Kvwap

2πn , A2 =
21 − α/2 AnCβ

e vα
wa(1+α)/2

p sp
(1+α)(2πn)α

(11)

Therefore, the total normal grinding force, Fn, in the contact region can be viewed as
the sum of Fn

′ from r0 to rs, as shown in Equation (12):
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Fn =
∫ rs

r0

(
A1r−1 + A2r1 − 3α/2

)
dr

= A1(ln rs − ln r0) +
2A2

3(1−α)
(r

3(1−α)
2

s − r
3(1−α)

2
0 )

(12)

4. TC17 Abrasive Disc Grinding Experiment

In order to investigate the influencing factors of the grinding force of TC17 thin-walled
components and their significance, a series of grinding experiments were carried out.
A JDGR200 5-axis machining center from Beijing Jingdiao Group and LH-SZ-05 3-axis
precision force sensor with a sensitivity of 1.0 ± 0.2 mV/V from Shanghai Liheng Sensor
Technology Co. were selected. The grinding tool consisted of a 70 mm-diameter rubber disc
and a 150# grain size silicon carbide abrasive paper. Thin-walled TC17 components with
dimensions of 100 mm × 50 mm × 5 mm were selected as the workpiece to be machined.
The experimental setup was constructed as shown in Figure 5.
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Figure 5. The abrasive disc grinding experimental setup.

4.1. Influence of Grinding Parameters on Normal Force

The abrasive disc rotational speed, n (r/min), the contact angle, γ (◦), the grinding
depth, ap (mm), and the workpiece feed rate, vw (mm/min), were the main process parame-
ters of the abrasive disc grinding. In order to investigate the influence of individual factors
on the normal grinding force of the TC17 thin-walled workpiece, 16 sets of single-factor
experiments were designed, and the experimental conditions are shown in Table 1.

Table 1. Experimental conditions.

No.

Parameter
n (r/min) γ (◦) ap (mm) vw (mm/min)

1 2000, 3000, 4000, 5000, 6000 15 0.3 100

2 3000 10, 15, 20, 25, 30 0.3 100

3 3000 15 0.3, 0.4, 0.5, 0.6, 0.7 100

4 3000 15 0.3 50, 100, 150, 200, 250

During the grinding experiments of the TC17 thin-walled workpiece, the LH-SZ-05
force sensor was used to monitor and collect the grinding force signal in real time, as
shown in Figure 6, and the collected force signal was converted into a voltage signal and
transferred to the USB3104A data acquisition card. Then, the sampled data were processed
by MATLAB R2018b software, and the average value was obtained to represent the grinding
force. The normal grinding forces obtained under different grinding conditions are shown
in Figure 7.
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As shown in Figure 7a, the experimental results showed that the normal grinding
force decreased from 1.48 to 0.98 N, as the abrasive disc rotational speed increased from
2000 r/min to 6000 r/min. The main reason for this is that as the disc rotational speed
increased, the time that the abrasive grains were involved in grinding the workpiece
significantly decreased. As a result, the grinding effect of a single abrasive grain was
weakened, and the actual material removal depth was reduced, which ultimately resulted
in a reduction of the normal grinding force in the grinding area.

From the experimental results shown in Figure 7b, it can be seen that the normal
grinding force increased from 1.02 N to 2.44 N, as the contact angle, γ, increased from 10◦

to 30◦. As the contact angle increased, the grinding force gradually increased. The overall
trend showed an initial slow increase, followed by an accelerated increase. The main reason
for this is that the blunting effect of the abrasive grain on the cutting edge was enhanced
as the contact angle increased. The negative front angle of the abrasive grains involved in
the process increased, causing the friction between the abrasive tool and the workpiece to
significantly increase. The final result was a reduction in the grinding contact area and an
increase in the normal grinding force.

The grinding results showed that the effect of the grinding depth on the normal
grinding force was very significant, as shown in Figure 7c. As the grinding depth increased
from 0.3 mm to 0.7 mm, the normal grinding force increased from 1.35 N to 6.78 N, which
was more than four times greater. This is because as the grinding depth increased, the
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actual depth of the abrasive grain cutting into the surface of the workpiece increased, while
the number of abrasive grains involved in the grinding process increased. As a result,
the volume of material removed by grinding significantly increased and the maximum
undeformed chip thickness increased. Ultimately, the rate of change of the normal grinding
force dramatically increased.

The normal grinding force results in Figure 7d show that as the feed rate, vw, increased
from 50 mm/min to 250 mm/min, the normal grinding force increased from 1.14 N to
1.67 N. It can be seen that the grinding force increased slightly with the increase of the feed
rate. As the feed rate increased, the cutting thickness of each abrasive grain increased, and
the contact length between the grinding tool and the workpiece increased. Simultaneously,
the number of abrasive grains participating in the grinding increased, and the amount
of material removed by grinding per unit time increased. This ultimately increased the
normal grinding force. However, as the feed rate increased, the contact time between the
abrasive grains and the workpiece decreased, resulting in a relatively minor impact.

4.2. Multi-Factor Orthogonal Experiment

In order to investigate the interactive effect of multiple factors on the normal grinding
force, a four-factor, three-level orthogonal experimental scheme was designed in this
manuscript using the Box–Behnken design (BBD) module. Feed rate, vw, contact angle, γ,
rotational speed, n, and grinding depth, ap, were identified as A, B, C, and D, respectively,
and used to investigate their effects on the normal grinding force. Three levels were set
for each factor, −1, 0, and 1. According to the experimental results of the influence of each
single factor on the grinding force, the values of the process parameters corresponding to
different levels of each factor are shown in Table 2.

Table 2. Levels of grinding process factors.

Level of Factor
A B C D

Feed Rate, vw/mm/min Contact Angle, γ/◦ Rotational Speed, n/r·min−1 Grinding Depth, ap/mm

−1 50 10 2000 0.3
0 100 20 3000 0.4
1 150 30 4000 0.5

The experimental design was carried out according to the response surface method,
and a total of 29 sets of grinding process parameters were carried out to measure the
normal grinding force at different factor levels. The obtained results were averaged as the
responses, which are shown in Table 3.

Table 3. Experimental scheme and results of BBD.

No.
Factors Response Factors Response

vw (mm/min) γ (◦) n (r/min) ap (mm) Fn (N) No. vw (mm/min) γ (◦) n (r/min) ap (mm) Fn (N)

1 100 20 3000 0.4 3.329 16 100 20 4000 0.3 1.306
2 100 30 3000 0.3 2.440 17 150 30 3000 0.4 4.420
3 50 10 3000 0.4 2.143 18 50 20 3000 0.3 1.596
4 100 20 2000 0.3 1.691 19 50 30 3000 0.4 4.299
5 50 20 4000 0.4 3.498 20 100 20 3000 0.4 3.153
6 50 20 3000 0.5 3.701 21 100 10 3000 0.5 3.697
7 100 20 2000 0.5 4.320 22 150 20 3000 0.5 5.086
8 100 20 3000 0.4 3.214 23 150 20 4000 0.4 3.657
9 150 20 3000 0.3 1.741 24 100 20 4000 0.5 4.325
10 150 20 2000 0.4 3.560 25 100 10 3000 0.3 1.020
11 100 30 4000 0.4 3.791 26 100 20 3000 0.4 3.505
12 50 20 2000 0.4 3.699 27 100 10 4000 0.4 2.214
13 150 10 3000 0.4 2.249 28 100 30 2000 0.4 4.063
14 100 20 3000 0.4 3.034 29 100 10 2000 0.4 2.708
15 100 30 3000 0.5 5.204
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5. Prediction Model of Normal Grinding Force
5.1. Analysis of the Experimental Results Using Response Surface Optimization

The polynomial regression model equation of normal grinding force, Fn, versus feed
rate A, contact angle B, rotational speed C, and grinding depth D, was obtained in Design-
Expert software (version numaber v13.0.1.0) as:

Fn = 3.25 + 0.1481A + 0.8488B − 0.1042C + 1.38D
+0.0038AB + 0.0745AC + 0.3100AD + 0.0555BC + 0.0217BD
+0.0975CD + 0.1481A2 − 0.0270B2 + 0.0460C2 − 0.2921D2

(13)

In order to assess the degree of fit of the regression equation to the model, an ANOVA
was carried out, and the results are presented in Table 4. The F value reflects the extent to
which the model component contributes to the effect of the response value, with a larger
F value indicating a greater effect of the factor. The regression model was statistically sig-
nificant at p < 0.01 for highly significant differences and p < 0.05 for significant differences,
indicating that the test model was statistically significant. Table 4 shows that the F value of
the model was 28.37, with p < 0.0001, indicating that the regression equation was highly
significant and reliable. The F value of the lack-of-fit term was 3.24, with p = 0.1345 > 0.05,
indicating a small error and a better fit for the regression equation. Therefore, the es-
tablished model can be used to analyze and predict the test results. B, D, AD, and D2
were the more influential factors, with B and D having a highly significant effect on the
normal grinding force. Depending on the magnitude of F, the factors affecting the normal
grinding force were, in order of magnitude, the grinding depth, contact angle, feed rate,
and rotational speed.

Table 4. Variance analysis of the normal grinding force.

Source Sum of Squares df Mean Square F Value p-Value

Model 33.16 14 2.37 28.37 <0.0001
A 0.2631 1 0.2631 3.15 0.0976
B 8.65 1 8.65 103.55 <0.0001
C 0.1302 1 0.1302 1.59 0.2322
D 22.79 1 22.79 272.99 <0.0001

AB 0.0001 1 0.0001 0.0007 0.9797
AC 0.0222 1 0.0222 0.2659 0.6142
AD 0.3844 1 0.3844 4.60 0.0499
BC 0.0123 1 0.0123 0.1476 0.7067
BD 0.0019 1 0.0019 0.0227 0.8825
CD 0.0380 1 0.0380 0.4554 0.5108
A2 0.1423 1 0.1423 1.70 0.2128
B2 0.0047 1 0.0047 0.0566 0.8154
C2 0.0137 1 0.0137 0.1644 0.6913
D2 0.5535 1 0.5535 6.63 0.0220

Residual 1.17 14 0.0835
Lack of fit 1.04 10 0.1040 3.24 0.1345
Pure error 0.1286 4 0.0321
Cor total 34.33 28

The model fit statistics are shown in Table 5. As can be seen from the table, the
model had a decision coefficient, R2, of 0.9659, which is close to 1, indicating that the
model explained 96.59% of the experimental data. The adjusted R2 = 0.9319 and predicted
R2 = 0.8196, and their difference was 0.1123, which is less than 0.2. This indicates that the
fit of the model is reliable, and it can be effectively used to the predict the normal grinding
force. The depth accuracy (signal-to-noise ratio) of the model was 21.4325, which is greater
than 4 [35], further indicating that the model has high accuracy.
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Table 5. Fitting statistical information.

Name Value Name Value

Std.Dev. 0.2890 R2 0.9659
Mean 3.20 Adjusted R2 0.9319
C.V.% 9.04 Predicted R2 0.8196

Adeq Precision 21.4325

The normal distribution of the normal grinding force residuals is shown in Figure 8.
The residuals of each response target in the figure were approximately linearly distributed
with no serious deviation from the trajectory, indicating that the residual distribution was
random. Therefore, the model fit the random error well, extracted all the predictable parts,
and was well adapted to the needs of response target prediction. The comparison between
the tested and the predicted values of the normal grinding force is shown in Figure 9. It can
be seen that the distribution of points on the graph was close to a straight line, indicating
that the results obtained by the model are in good agreement with the experimental results
and are consistent.
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5.2. Interaction Effect of Process Parameters on Normal Grinding Forces

The residual normal distribution plot proves the reliability of the model, while the
perturbation plot (Figure 10) can visualize the influence of each process parameter on the
normal grinding force. With the gradual increase of B (contact angle) and D (grinding
depth), the normal grinding force also increased. With the increase of C (abrasive disc
rotational speed), the normal grinding force slightly decreased. With the increase of A (feed
rate), the normal grinding force did not change significantly. From the figure, it can be seen
that B (contact angle) and D (grinding depth) had a greater effect on the normal grinding
force, while A (feed rate) and C (abrasive disc rotational speed) had a smaller effect on it.
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Figure 10. Perturbation plot of process parameters affecting the normal grinding force.

Contours and response surfaces provide a direct and accurate representation of the
interaction between two factors, showing the effects of different factors on an indicator.
Figure 11a–f show the effects of the interaction of the other two factors on the response
value when each factor was at the center value. The figures illustrate that the interaction
of A and D had the largest effect, while the interaction of B and D had the smallest effect.
When A was fixed, Fn significantly decreased as D decreased, and when D was fixed, Fn
tended to increase as A increased.

5.3. Prediction of Normal Grinding Force Based on PSO-BP
5.3.1. Principle of PSO-BP Neural Network

The BP (backpropagation) algorithm is a commonly used neural network training
algorithm that adjusts the weights and biases of the neural network by backpropagating
errors. The BP algorithm updates the weights and biases of the network based on the error
by calculating the error between the actual output and the desired output and propagating
the error back through the different levels of the network.

The PSO (particle swarm optimization) algorithm is an optimization algorithm based
on group intelligence, which simulates the behavior of biological groups, such as birds or
fish. In the PSO algorithm, each individual is known as a particle, and each particle has a
position and velocity that is updated based on its own experience and the experience of the
group to find the optimal solution.
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The PSO-BP algorithm is an optimization algorithm that combines the PSO algorithm
and the BP algorithm. The PSO-BP algorithm is mainly used to train neural networks. By
optimizing the weights and biases of the neural network, it enables the neural network
to better fit the training data. Its advantage is that it can avoid the problem that the BP
algorithm easily falls into the local optimal solution, and it can better search the parameter
space of the neural network by introducing the global search capability of the PSO algorithm.
At the same time, the PSO-BP algorithm can also accelerate the training speed of the neural
network and improve the training efficiency. Its operation principle is shown in Figure 12.

5.3.2. Analysis of PSO-BP Neural Network Prediction Results

The data in Table 3 were imported into the MATLAB Neural Network Toolbox, and
29 sets of orthogonal experiments were divided into 2 classes, where the training set
(training data) accounted for about 70% (20 sets) of the total data and the testing set
(testing data) accounted for about 30% (9 sets) of the total data. The Levenberg–Marquardt
algorithm was selected to train the neural network, and the training results are shown in
Figure 13. The training results of the neural network converged at six steps, and the error
was less than 1 × 10−6, which meets the requirements of prediction accuracy.
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To verify the accuracy and reliability of the prediction model, a comparison between
the predicted value and the actual value of the PSO-BP neural network is shown in Figure 14.
The results showed that the predicted values were quite close to the actual values, with
errors mostly within 0.5. Using formulas to calculate the relevant index parameters of
the prediction model, it can be obtained that the determination coefficients, R2, of the
training and test set data were 0.93135 and 0.93678, respectively. The MAE (mean absolute
error) of the training and the test set data was 0.14442 and 0.22938, respectively, and
the MRE (mean relative error) of the training and the test set data was 4.2% and 0.7%,
respectively. Compared with the prediction model of the response surface method, the
coefficient of determination, R2, of the BBD model was 0.9686, which is larger than the
absolute coefficient of the PSO-BP neural network. This indicates that the BBD model is
more accurate. Therefore, the selection of the response surface prediction model has more
guiding significance for controlling the normal grinding force and adjusting the surface
accuracy of TC17.
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5.4. Comparison of the Results of Two Prediction Models

The generalization ability of a learning method refers to the predictive ability of the
model learned by the method on unknown data. It is an essential property of learning
methods and, in practice, the generalization ability of learning methods is usually evaluated
by testing errors. Eight groups of data from the single-factor experiments (as shown in
Table 6) were selected as prediction samples to verify the generalization ability of the two
prediction models. The BBD and PSO-BP prediction models were fitted, and the comparison
between the predicted values and the experimental values is shown in Figure 15.

Table 6. Comparison of the prediction results of the two models with new datasets.

Sample vw (mm/min) α (◦) n (r/min) ap (mm) Experiment
Value (N)

BBD Predicted
Value (N)

PSO-BP Predicted
Value (N)

1 100 15 3000 0.4 2.82 2.814 2.755
2 100 15 3000 0.5 3.76 3.889 3.948
3 100 15 2000 0.3 1.48 1.430 1.315
4 100 15 4000 0.3 1.24 0.971 1.061
5 50 15 3000 0.3 1.14 1.468 1.041
6 250 15 3000 0.3 1.67 1.983 1.104
7 100 20 3000 0.3 1.45 1.575 1.752
8 100 30 3000 0.3 2.44 2.375 2.695
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The analysis showed that the maximum absolute error, the minimum absolute er-
ror, and the MAE between the BBD prediction results and the experimental values were
about 0.328 N, 0.006 N, and 0.161 N, respectively. In the prediction results of the PSO-BP
model, these three errors were 0.566 N, 0.065 N, and 0.227 N, respectively. In addition,
the maximum relative error, the minimum relative error, and the mean relative error of
the BBD prediction results were about 28.772%, 0.213%, and 10.939%, respectively, and
these were about 33.982%, 2.305%, and 13.343%, respectively, in the prediction results of
the PSO-BP model. The comparison results showed that the BBD model had a slightly
smaller MAE and MRE than the PSO-BP model, and the range of variation was also smaller.
Therefore, the BBD response surface method is more accurate as a normal contact force
prediction algorithm.

Consequently, in the abrasive disc grinding process for TC17, the prediction model
of the normal grinding force with high reliability based on the BBD response surface
method was developed from the experimental data in this study. Additionally, the effects
of workpiece curvature and random distribution of abrasive grains on the grinding force
and material removal mechanism will be considered in future work through both finite
element simulation and experimental methods.

6. Conclusions

(1) The abrasive disc grinding process was analyzed and considered as a flexible process
to adapt to different curved surfaces. The normal grinding force model was estab-
lished from macroscopic and microscopic perspectives, which showed that the contact
angle, grinding depth, rotational speed, and feed rate were the main factors.

(2) The normal grinding force significantly increased with the increase of the grinding
depth and contact angle, slightly increased with the increase of the feed rate, and
slightly decreased with the increase of the rotational speed. The regression model
of normal grinding force was developed, and the ANOVA results showed that the
interaction of the feed rate and grinding depth was the more influential factor.

(3) The normal grinding force prediction model based on the PSO-BP neural network
was carried out. The coefficient of determination, R2, of the training and test set data
verified the accuracy and reliability of the model. The maximum absolute and relative
errors of the training and test data in the model were 0.22 N and 4.2%, respectively.

(4) Comparing the PSO-BP and BBD prediction models and their generalization ability,
the added prediction experimental results showed that the MAE and MRE of the above
two prediction models were 0.22 N and 0.16 N, and 13.3% and 10.9%, respectively.
The results showed that the BBD model was more effective and accurate in predicting
the normal grinding force.
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