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Abstract: This paper presents the possibility of using additional ballistic shields based on composite
materials, which are applied to the body of a passenger car. A ballistic laminate made of Twaron T
750 aramid fabric with 5 mm thick and 2 mm thick magnetic foil was used. In the first stage, the
mechanical parameters of the tested ballistic laminate system were determined in tensile tests. In
field tests, the considered system was analyzed in terms of impact with a 9 × 19 mm FMJ Parabellum
projectile, and then the results were numerically verified. The work was focused on the validation of
numerical models. The appropriate correlation level of the numerical results was obtained with the
fit, which was estimated at approximately 7%; furthermore, the results prove the correctness of this
study’s research methodology.
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1. Introduction

For years, safety has been a crucial consideration for designers during the vehicle
design stage, especially when transporting objects that are sensitive to external factors,
particularly people. Phenomena observed in recent years, such as the rise in the number of
mass shootings worldwide [1] and the escalation of subsequent armed conflicts, like the
Iraq War or Russia’s aggression against Ukraine, increasingly emphasize the necessity to
equip not only military vehicles, but also civilian passenger vehicles [2,3].

In the event of exposure to firearms, a standard car is insufficient to protect the
passengers. For this purpose, specialized vehicles are constructed, using materials with
suitable strength properties. The materials commonly used for this purpose are composites
reinforced with aramid fibers of the Kevlar® or Twaron® type, composites with ultra-
high molecular weight polyethylene (UHMWPE) of the Spectra® or Dyneema® type, and
composites combined with ceramics. In addition to their high energy-intensive properties,
another benefit is the high availability of these materials on the European market, and the
possibility of obtaining them artificially [4–6].

Most often, the entire structure of the car is subordinated to the adaptation to bullet
resistance (Figure 1). However, gunfire is often directed only at specific areas of the car
body, particularly those behind which a person is in the closest proximity, such as a car door.
This implies that only part of the vehicle can be retrofitted, not the entire vehicle, with direct
implications on saving weight and costs. This type of solution is used by DEW in police
cars, wherein the ballistic package is mounted inside the vehicle door [7]. Another solution
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proposed by Scanfiber is to install bulletproof linings using multifunctional strips [8].
However, these are methods that entail the need for mechanical intervention in the door
structure (e.g., drilling additional holes). The methodology described in this article refers to
the power of a magnetic foil on the vehicle body. Based on the analysis carried out in this
work [9], it was assumed that the most optimal solution for quick and efficient application
in civilian vehicles would be the use of a composite reinforced with aramid fibers.

Machines 2024, 12, x FOR PEER REVIEW 2 of 16 
 

 

in police cars, wherein the ballistic package is mounted inside the vehicle door [7]. 
Another solution proposed by Scanfiber is to install bulletproof linings using 
multifunctional strips [8]. However, these are methods that entail the need for mechanical 
intervention in the door structure (e.g., drilling additional holes). The methodology 
described in this article refers to the power of a magnetic foil on the vehicle body. Based 
on the analysis carried out in this work [9], it was assumed that the most optimal solution 
for quick and efficient application in civilian vehicles would be the use of a composite 
reinforced with aramid fibers. 

 
Figure 1. General view of the armor of a civilian vehicle. 

To ensure an adequate level of protection of the life and health of vehicle users, 
ballistic shields are subject to specific requirements, which are included in relevant 
international or national standards. Constructed facilities [10] must respect strict criteria 
to ensure the safety of people in these vehicles. The armor technology used is an 
individual development line, guarded by individual companies [11]. The published 
literature in this area refers to the general principles included in the range of FB2 to FB7 
of the CEN 1522 standard [12]. 

Ballistic protection inside the car, located between the body and upholstery, is 
commonly used. However, many manufacturers also offer unconventional 
reinforcements in the form of spall liner for crew compartments. Reinforcements are used 
for a multifunctional protection system, designed to be placed above the driver/crew to 
provide protection against fragments of various types of explosive devices or small arms 
ammunitions. Such solutions may include, for example, flexible ballistic blankets that are 
adapted to a specific vehicle and can be installed within a few hours. Other protection 
types can be implemented by considering the form of appropriate material geometries for 
seat protection, as part of personal protection, covering the back and lower body from 
fragments of small, anti-personnel mines, hand grenades and guns. An example of various 
solutions is shown in Figure 2. 

 

Figure 1. General view of the armor of a civilian vehicle.

To ensure an adequate level of protection of the life and health of vehicle users, ballistic
shields are subject to specific requirements, which are included in relevant international
or national standards. Constructed facilities [10] must respect strict criteria to ensure the
safety of people in these vehicles. The armor technology used is an individual development
line, guarded by individual companies [11]. The published literature in this area refers to
the general principles included in the range of FB2 to FB7 of the CEN 1522 standard [12].

Ballistic protection inside the car, located between the body and upholstery, is com-
monly used. However, many manufacturers also offer unconventional reinforcements in
the form of spall liner for crew compartments. Reinforcements are used for a multifunc-
tional protection system, designed to be placed above the driver/crew to provide protection
against fragments of various types of explosive devices or small arms ammunitions. Such
solutions may include, for example, flexible ballistic blankets that are adapted to a specific
vehicle and can be installed within a few hours. Other protection types can be implemented
by considering the form of appropriate material geometries for seat protection, as part
of personal protection, covering the back and lower body from fragments of small, anti-
personnel mines, hand grenades and guns. An example of various solutions is shown in
Figure 2.

The main objective of this article is related to the use of composite aramid fibers
and a magnetic foil on the door of a passenger vehicle. The authors’ idea was to apply
a mag-netic foil between the ballistic laminate and the car body. By using this foil, the
conditions for attaching additional spall liner types were improved. Moreover, this foil
is intended to fulfill two basic tasks: firstly, it is intended to be a flexible magnet and
thermoplastic binding material; secondly, its properties, which partly correspond to the
mechanical properties of rubber, will increase the energy consumption of the protected car
body elements. The structure was evaluated from the gunfire resistant perspective, and in
accordance with the FB2 criteria of the CEN-EN 1522 standard [13].
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Figure 2. Examples of ad hoc applications of ballistic protection reinforcement: (a) protection of the
interior of the vehicle cabin; (b) use of spall liner; (c) explosion-proof reinforcement of the vehicle
floor; (d) possibility of protecting the seats with a flexible ballistic shield. Source: Developed based
on advertising materials from Scanfiber Composites A/S.

2. Materials and Methods
2.1. Shield Material and Its Characteristics
2.1.1. Aramid Laminate

The material responsible for the ballistic properties of the shield was a composite
laminate reinforced with aramid fibers with a thickness of 5 mm. The raw material is a
long polyamide chain with a minimum of 85% amide groups (NHCO). This laminate was
produced by the Polish company MIKANIT, with the trade name LIM 1, and was created
from eight layers of Twaron T750 aramid fabric, combined with a polymer warp Neoprene
WRT [14] (Figure 3) under appropriate pressing pressure.
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Studies of traditional strength properties of shields consist of determining material
constants, usually obtained from the static tensile test, and stretching a properly prepared
sample in the axial direction until the sample breaks. The test allows us to observe how the
material behaves in the entire range of deformations, i.e., from elastic and elastic-plastic to
breakage. Based on the test results, both strength and plastic parameters of the stretched
material were determined.

In the study, we used the ballistic laminate LIM 1, produced by the domestic manu-
facturer. Tests of the strength characteristics for the laminate were performed on the MTS
Bionix testing machine (MTS Systems, Berlin, Germany) with a constant displacement
increase of 0.05 mm/s.

Laminate samples were cut into the shape of oars with a water jet to obtain the most
accurate shape (other cutting techniques caused the fibers to be pulled out), according to
ASTM D638-99 pr. Type 1. [15].

The tensile strength test results for LIM 1 are presented in Figure 4. These are averaged
results from several trials. From the structure of the curve σ − ε, it can be observed that the
laminate stress slowly increases as a function of deformation occurs in the initial tensile
phase. Due to the nature of the weave, the load is mainly taken over by the polymer matrix.
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In the further part of the graph, a rapid increase in the deformation curve is noticeable,
which results in an increase in the role of fabric fibers up to plastic deformation and, as a
result, to the breaking.
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In addition, tests related to the influence of damping force on the results during
stretching of the analyzed samples were carried out. The tests were carried out for two
tensile velocity, i.e., a minimum 0.05 mm/s and maximum 90 mm/s. The results are
illustrated in the Figure 5.
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Based on data from the static tensile test, the mean Young’s modulus and other
parameters for the tested composite were determined. The results are summarized in
Table 1.
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Table 1. Characteristics of the LIM 1 laminate and its components.

Specification Unit LIM 1 Laminate Single Fabric of Aramid Matrix

Laminate thickness [mm] 4.8 0.6 0.2
Areal density [g/cm2] 520 46 2.0

Density ρ [g/cm3] 1.14 0.766 (66 thread on 10 cm) 1.25
Binder type - - - Neoprene WRT

Percentage of fibers [%] 70.8 - -
Young’s modulus E [GPa] 7.46 7.5 -
Tensile strength Rm [MPa] 319 466.7 1 -

Yield strength Re [MPa] 318.5 500
Elongation to break [%] 17 11

1 sample was 50 mm wide.

2.1.2. Magnetic Foil

One of the components of the energy-absorbing composite shield was a magnetic
foil from Media Mag. Its main purpose was to quickly attach the shield to the bodywork.
This foil has an appropriate magnetic attraction force and, according to the manufacturer’s
information, is called a flexible magnet. Additionally, the fact that its geometry adapts
to the shape of the car body may also have a positive impact on increasing the ballistic
protection of the protected space. An example is PVB interlayer foil (polyvinyl butyral),
which is used in bulletproof glass technology. In this case, the foil is expected to have a
positive effect, as if a rubber layer had been applied.

The strength tests conducted were aimed at checking the strength parameters and
developing material constants for the constitutive model describing the behavior of this
type of material. Strength tests were performed on a testing machine (see Figure 4a) with
different strain rates. Example results are presented in Figure 6.
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The tensile curves show that the material exhibits hyperelastic properties. These types
of materials are characterized by the ability to undergo large elastic deformations under the
influence of tensile forces while retaining their original properties. Hyperelastic materials
exhibit various properties; therefore, models of hyperelastic materials are used to classify
them. These are constitutive models, ideally for elastic materials, which are used, among
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others, in numerical modeling. In this case, the Ogden model was used to describe the
tested material. The Ogden model is described by the following mathematical equation:

W =
N

∑
i=1

µi
αi

(
λ

αi
1 + λ

αi
2 + λ

αi
3 − 3

)
(1)

where µi and αi are material constants and λi is principal stretches.
To determine the material constants of the Ogden model, ABAQUS software was used

using the “Evaluate” function. On the basis of the curve from the test with the highest
tensile velocity (30 mm/s), due to the closest approximation to the working conditions of
the material related to the impact on ballistic impact characterized by very high velocity, it
was compared with the obtained curve of the Ogden model (see Figure 7). In this way, the
material constants of the model were determined, and the data are summarized in Table 2.
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Table 2. Ogden model parameters.

Constants µi µi

1 −355.9176616 1.81890242
2 151.800249 2.21739197
3 210941268 1.37908823

The scaling of the constitutive characteristics of the material model used for the
magnetic foil was used for further FEM analyses.

2.2. Gun Fire and Car Body Material Characteristics

The 9 × 19 mm FMJ Parabellum pistol cartridge, which meets NATO standards, was
used in the tests. Its basic parameters are listed in Table 3, and the construction is illustrated
in Figure 8.

Table 3. Characteristic 9 × 19 mm FMJ Parabellum round.

Round
Mass

Bullet
Weight

Muzzle
Velocity Jacket Type Core Type

12 g 8.0 g 360 ± 10 m/s FMJ (brass M 90) Lead (lead alloy
Pb1 antimony)

An element of the examined structure of the body plating of a passenger vehicle was
the front doors from any selected car (Figure 9). The strength parameters of the car body
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plate have been adapted from the literature. For the exterior of cars, soft steels with a yield
strength of less than 300 MPa and a carbon content not exceeding 0.3% [16] are used.
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2.3. Laboratory Tests

Laboratory tests included shooting at the shield mounted on the door, considering the
guidelines of the standard [13]. The moment of impact of the projectile was recorded using
a high-speed camera. The test was carried out by attaching the composite to the door, first
with magnetic foil and then with adhesive tape. The door with the shield was placed on a
wooden platform with the front part facing towards the shooting position. Each attempt
was repeated three times. The test methodology is shown in Figure 10.
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using a high-speed camera. The test was carried out by attaching the composite to the 
door, first with magnetic foil and then with adhesive tape. The door with the shield was 
placed on a wooden platform with the front part facing towards the shooting position. 
Each attempt was repeated three times. The test methodology is shown in Figure 10. 

 

Figure 10. General view of the tests: (1) fired from the position, (2) samples position, (3) light lamp,
(4) place for data camera recorded, (5) computer system.
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The samples mounted on the body doors were fired from the position (1) from an UZI
submachine gun 5 m away from the place of attachment of samples (2). Each shot was
recorded using a Phantom VEO 710 (4) high-speed camera (Vision Research, New Jersey,
USA) at 42,000 frames per second. In addition to this, the firing site was illuminated with
special LED lamps (3). The registration process took place directly on a PC, using special
software to operate the camera on the computer (5). Examples of results from field tests are
presented below (Figure 11).
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Figure 11. Sample results recorded with a high-speed camera.

The research showed the influence of the way the shield is fixed on its ballistic prop-
erties. The shield mounted on the door with adhesive tape fulfilled its function by stop-
ping the projectile, while the shield attached with magnetic foil let the projectile through
(Figure 12). Images from the high-speed camera show that greater deflection occurred with
the shield mounted with adhesive tape than with the magnetic foil solution. Hence, it
can be concluded that the introduction of additional stiffening of the composite by gluing
the magnetic foil on the entire surface of the shield reduced the deflection range of the
composite, which in turn had a negative impact on the ballistic properties of the shield
(total penetration).
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Figure 12. Door after shooting: bullet hole marked with red circles, deflection zones marked with
green circles and the yellow marked zone represents the area not covered by the shields.

In Figure 12, the bullet hole is represented with red marks (magnetic fastening), while
green marks show the deflection zones (tape fastening) and yellow represents the area not
covered by the shields.

2.4. Numerical Analysis

The last stage of this work was the numerical analysis of the phenomenon of the
projectile hitting the designed shield. Due to the very short duration, very high velocities
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and nonlinear characteristics of the processes occurring during a ballistic impact, this
phenomenon should undoubtedly be classified as dynamic. The most used method to
describe the phenomenon is the finite element method, which is also used to solve this
type of problem by computer simulation [17,18]. FEA analysis was conducted in the
ABAQUS/Explicit environment. Given that the composite consists of eight layers of fabrics,
holistic modelling was used. Based on this work [19–22], a model was adopted in which
the structure of the shield was simplified, its dimensions were reduced and the conditions
of the modeled phenomenon were simplified, for which factors such as temperature, air
resistance or rotation of the projectile were not considered.

Based on the assumed values, as material data for numerical analysis, the parameters
of the Johnson-Cook (J-C) model were determined according to the Equation (2) [21]. The
adopted parameters of the constitutive model (1) are summarized in Table 4.

σ = (A + Bεn)

[
1 + C ln

( .
ε
.
ε0

)]
(2)

where ε is the plastic strain,
.
ε is the plastic strain rate,

.
ε0 is the reference strain rate, A is the

yield stress of the material under reference conditions, B is the strain hardening constant, n
is the strain hardening coefficient and C is the strengthening coefficient of strain rate.

Table 4. Material data assumed in the J-C model [23].

Parameter Unit Brass M90 Lead Alloy
Pb1antimony Steel LIM 1

ρ kg/m3 8730 11,300 7800 1440
E MPa 100,000 115,000 210,000 7500
v [-] 0.34 0.42 0.34 0.30

Model J-C

A MPa 90 24 275 270
B MPa 292 40 350 319
n [-] 0.31 0.50 0.10 0.10
C s−1 0.025 0.1 0.003 0.001

Where: ρ—density, v—Poisson’s ratio, E—Young’s modulus.

It should be noted that the dynamic characteristics of LIM 1 laminate were estimated
as follows, namely that the quasi-static velocities adopted in the tests were in the range
from 0.05 mm/s to 90 mm/s in order to illustrate the strain rate-induced strengthening.
Then the J-C model was used, especially its second element

[
1 + C ln

( .
ε.
ε0

)]
, taking into

account the strain rate. In the preliminary numerical simulations, the parameters A, B and
n were changed depending on the parameter ε.

The analysis assumed an initial velocity of 400 m/s for the Parebellum projectile as
input parameters related to the FB2 level of the standard.

At the first step, the hole of the bullet through the car door sheet was analyzed to
verify the correctness of the adopted parameters and numerical model. The second analysis
involved the collision of the projectile with the ballistic shield, and the third analysis
modeled the collision of the projectile with the shield mounted on the door.

As the object of numerical analysis, a model of sheet metal, magnetic foil and a shield
with dimensions of 100 × 100 mm was adopted where the model was scaled in Section 2.1.2.
The adopted thicknesses that corresponded to the actual data were 1 mm for the car body
sheet, 2 mm for the magnetic foil and 5 mm for the composite. Discrete models were made
separately for the jacket and separately for the core. Due to the better fit to the geometry,
10-node Tetra elements with a size of 0.5 mm were adopted for the discretization of each
of them. A two-stage homogenization of the ballistic laminate was used. The first stage
consisted of fiber layer–matrix homogenization. In the second stage homogenization was
performed using the representative volume element (RVE) [24]. For discretization of steel
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plate and composite models, Hex elements with an element size of 0.5 mm were assumed.
Contact and friction between individual elements were modeled based on [25]. The discrete
models obtained in this way are shown in Figure 13.
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The restraint of the shield was blocked at translations and rotations in three axes X, Y
and Z. When the elongation exceeded 2%, the shield was destroyed. The destruction in the
J-C model is associated with the accumulation of plastic deformation. It is assumed that
it starts when the state variable Wd reaches the value 1. The parameter Wd is defined by
the equation:

Wd = ∑
∆εp

ε f
(3)

where ∆εp is the incremental strain and ε f is the equivalent failure strain.
The ε f parameter is described by the following equation:

ε f =
(

d1 + d1ed3σ∗)(
1 + d4ln

.
ε
.
ε0

)
(1 + d5T∗) (4)

where d1, d2, d3, d4 and d5 are material parameters, σ* is a dimensionless ratio expressed as
the pressure P and σ is the effective stress (von Mises equivalent stress),

.
ε is the strain rate

corresponding to a car body sheet metal,
.
ε0 is the reference strain and T* is the homologous

temperature (dimensionless temperature value). Between the homologous temperature
(T*) and melt temperature (Tm), the following relationship exists:

T∗ =


0

T−298
Tm−298

1

for
for

for

T < 298
298 ≤ T ≤ Tm

T > Tm

(5)

The εp parameter is determined by the components of the plastic deformation rate
expressed by the relationship:

εp = εp0 +

(
2
3

)0.5
·
∫ t

0

(
.
ε

p
ij

.
ε

p
ij

)0.5
dt (6)

where εp0 is the initial equivalent plastic strain, t is time and
.
ε

p
ij are components of the

plastic strain speed.
In the analyzed case, the damage in the J-C model was described by a progressive

model according to the material, which was car body sheet metal. It should be emphasized
that the parameters used to identify damage initiation are the result of the authors’ previous
work and taken from the literature [19,22,23,25]. The data are summarized in Table 5.
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Table 5. Material data assumed in damage to the J-C model.

Parameter Brass M90 Lead Metal Sheet

d1 0.54 - 1.40
d2 4.89 - 0.08
d3 −3.03 - −0.04
d4 0.014 - 0.00
d5 1.12 - 0.00

Tm [K] 1189 760 1800
.
ε0 [s−1] 0.0005 0.0005 0.0005

3. Results and Discussion

The object of the first analysis was the impact of projectile on the bare plate of car
doors. The simulation results illustrating the deflection in millimeters, in combination with
the effect of the bullet penetrating the front sheet of the door, are presented in Figure 14.
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Using a caliper, the actual deflection of the sheet was measured to be 7.42 mm. Based
on the adopted fitting scale, it was considered that the obtained simulation result reflects
the penetration obtained by the experimental method (δ = 17.3%) to an acceptable extent.
Therefore, it was assumed that the applied methodology of scaling the models is correct,
and one can proceed to scaling the deformation of the projectile.

In the next cork, the collision of the projectile with a composite ballistic laminate was
examined. In this way, a specific verification of the mushrooming of the projectile on the
LIM 1 laminate was carried out. The results of these studies (Figure 15) confirm the proper
correlation between experimental and numerical simulation.

Due to the adopted method of modeling, that being the composite in the form of a
rectangular plate instead of the form of alternating layers of fibers and laminate, the results
are approximate. As a result of comparing the deformation of the numerical composite
with the real one, a difference of δ = 7.2% was obtained, which is a result that coincides very
well with the experiment. On this basis, it was confirmed that the adopted methodology
of numerical calculations and the adopted parameters are appropriate, and the deflection
course of the ballistic laminate can be considered as the basis for further analysis.

The last part of the numerical analysis is the simulation of the impact of the projectile
on the full ballistic package mounted on the door. The geometrical model of the considered
system is shown in Figure 16.
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Figure 16. Scheme adopted for numerical analyses of the protective system of the vehicle door surface.

Numerical analyses were performed using FEM of the above material system. The
simulation illustrates the overall deformation of the ballistic shield with support, which is
intended to be mounted externally on the vehicle, based on individual time steps. As can
be seen in Figure 17, the course of this deformation reaches a maximum dynamic deflection
of about 30 mm.

The results obtained from numerical simulations correlate with the results of other
researchers [26,27]. Here it can be clearly seen that in the first phase, the projectile digs
into the elements of the shield and the first layers of laminate fabrics are cut. However, the
resistance force of the material causes the projectile to slow down, and the frontal surface
of the projectile takes the shape of a mushroom because of the primary fibers. Additionally,
the primary fibers are stretched until the strength limit is exceeded, which then breaks off.
The continuous build-up of the projectile frontal surface causes the local impact energy
dissipation zone to increase, triggering the activity of the secondary fibers [28–30]. From
the opposite side, the deformation of the shield increases, and due to the support of the
car body sheet, the individual layers of the fabric are compressed and stretched at the
same time, due to the formation of a post-impact cone. This process continues until the
projectile loses velocity. The permanent deformation was 12 mm for attaching the shield
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to the adhesive tape. The shield attached to the magnetic tape is perforated, as shown in
Figure 12. The secondary fibbers during shock load are associated with the delamination of
the warp and fabric layers.
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Figure 17. The simulation of a projectile’s impact on a ballistic package.

The process of impact load of the ballistic shield mounted on the selected element
of the car body proceeded as intended on the FB2 deck only for fixing on adhesive tape,
while the installation on magnetic tape did not meet the expectations of the researchers.
As shown, the dynamic deformation in the numerical simulation for attaching the shield
to the adhesive tape eventually reached the range of approximately 35 mm (Figure 18a),
which is an acceptable result.

The presented results (Figure 18) with the use of FEM allow us to assess the behavior
of individual elements of the ballistic package. The deformation (Figure 18a,b) for the
selected system correlates with the results of other researchers [31,32], which also translates
into the assessment of damage to the surface layers of the material system (Figure 18c).
As shown, the projectile perforated through seven layers, while the last layer stopped the
projectile, where its mushroomed surface was braked on the primary fibers. To sum up, the
obtained results from FEM were optimally validated by means of a ballistic experiment, as
evidenced by the obtained traces on the car body doors (Figure 12) marked in green circles.
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4. Conclusions

The proposed technique of the development of the crack impact of the steel sheet of
the car door mirrors determine an acceptable experimental result (δ ≤ 10%). Numerical
analysis of the case of collision of the bullet with the laminate itself showed a greater
deflection of the composite than in the case of a system with support on the elements of the
car body. The results reveal that the mounting of the ballistic system significantly affects the
results, which has been repeatedly emphasized in earlier works [33]. The obtained results
of permanent deformation of the analyzed ballistic system in FEM showed only an error in
the range of 7.2%, compared to the actual results. The small error proves the correctness
of the adopted research methodology and the appropriate iteration of numerical models
to assess their sensitivity to perforation of the car body sheet, deformation of the LIM1
laminate and scaling of the projectile deformation. Furthermore, the results highlight that
the magnetic tape used intensified the perforation of the ballistic system. This phenomenon
requires further research, with particular emphasis on fastening. The proposed solution
seems promising and can be used as an alternative to quickly strengthen the steering
compartment of the vehicle, which can be used in humanitarian operations.
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