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Abstract: In this article, the model of a family of underwater vehicle multi-manipulator systems
(UVMMS) is obtained by considering all its elements as parts of a unique system, the model includes
the forces produced on the manipulators by the movement of the vehicle, as well as the reaction forces
on the vehicle produced by the movement of the manipulators. The modeling process is completed
using the Newton–Euler approach through the mobile arborescent kinematic chain. This work also
presents different approaches to the use of numerical implementations of the proposed model, and
simulation results are included to demonstrate that the model is capable to represent the interaction
between the vehicle and the manipulators. The proposed model and simulations are important
because they allow the design of control strategies that consider all the elements of the system instead
of neglecting the interaction forces or considering the vehicle and the arms as uncoupled elements.

Keywords: external forces; mathematical modeling of underwater robots; mathematical modeling of
coupled systems; underwater vehicle multi-manipulator system (UVMMS)

1. Introduction

The incursion of drones has increased due to the need for spatial and temporal data
coverage of specific areas where human intervention is risky, such as disaster areas, high-
risk environments due to viral or radioactive contamination, and difficult-to-access areas
due to great depths or heights. Drones are small mobile robots (3–20 kg) that can be
terrestrial, aerial, and submarine.

In the last five years, Unmanned Underwater Drones (UUD) have become a standard
tool for researching marine life, some examples of which include the monitoring, tracking,
and imaging of a randomly moving shark [1] and the study of a school of fish in an
altered environment, as carried out in the tropical reservoir (oligo-mesotrophic and warm
monomictic) located in southeastern Brazil [2]. However, although underwater drones are a
valuable tool for data collection and are becoming less expensive, they still have limitations
due to possible equipment effects, such as different light intensities and the artificial noise,
speed, size, and depth of the vehicle, resulting in the alteration of the behavior of the
species to be studied.

In addition to marine life, shipwreck hulls and vestiges of war can also be found in
the sea. Among these inorganic wastes, some that are considered marine litter include
historical pieces or hazardous material. Every year, it is estimated that 5.1 million tons
of mismanaged plastic enter the oceans worldwide. 75% of marine litter (ML) goes to
beaches while the rest remains in seawater [3]. This problem is an area of opportunity for
collaboration between an aerial drone and an underwater drone, as presented in [4], to
acquire information on the progress and dimension of marine litter using the aerial drone
while with the underwater drone, it is possible to obtain specifications of this garbage, such

Machines 2024, 12, 94. https://doi.org/10.3390/machines12020094 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines12020094
https://doi.org/10.3390/machines12020094
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-5752-4372
https://orcid.org/0000-0003-4539-6232
https://orcid.org/0000-0002-4379-5582
https://orcid.org/0009-0007-6676-4029
https://orcid.org/0000-0001-8504-0092
https://orcid.org/0000-0003-0792-7944
https://doi.org/10.3390/machines12020094
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines12020094?type=check_update&version=1


Machines 2024, 12, 94 2 of 25

as the type of material and level of contamination in the water, reducing the costs of hiring
planes, boats or divers.

Marine archaeology is an area of research that aims to rescue historical finds from the
depths. For example, in [5], a study with an underwater drone of a shipwreck from the
fourth-century B.C. near the island of Chios, Greece, was carried out, obtaining qualitative
and quantitative data documenting the condition of the ancient shipwreck. In the case of
war material found on the seabed, a proposal is presented in [6] to analyze the danger of this
material through the BASTA project (Boost Applied ammunition detection through Smart
data inTegration and AI workflows), tasked with identifying and improving underwater
unexploded ordnance (UXO) detection approaches.

The UUDs can be equipped with a robotic arm to perform more complex tasks,
obtaining an Underwater Vehicle Manipulation System (UVMS). Some tasks a UVMS
executes are the collection of objects [7] and marine products [8] and the maintenance of
underwater structures [9], among others. Depending on the degrees of freedom of the
manipulator robot to be coupled to the underwater drone, it will be challenging to carry
out the assigned task for the UVMS due to the disturbances added to the drone caused by
the movement of the manipulator.

When a UVMS has more than one manipulator robot attached to its mobile platform,
the result is an underwater vehicle multi-manipulator system (UVMMS). Although some
bio-inspired underwater robots known as bionics possess mechatronic multibodies, they
differ from a UVMMS due to motion generation, as can be reviewed in [10,11].

The aggregated disturbances or interaction forces in a UVMS can be estimated by
generating a mathematical model, which is acquired through different methodologies,
depending on the researcher’s focus. Suppose the UVMS is analyzed as two independent
systems. In that case, the UUD as vehicle is model with the methodology reported in [12],
where a movement of 6-DOF in an underwater environment with external forces is consid-
ered. The external component depends on the fluid, represented by the Euler–Lagrange
technique. At the same time, the manipulator robot can define it using the Newton–Euler
or Euler–Lagrange formulism.

Suppose it is desired to obtain the mathematical model as a coupled and unique system.
In that case, there are some techniques presented in the literature, such as [13] where the
system is expressed as the sum of two forces, generalized active force and generalized
inertia force, obtained from the analysis of linear and angular speeds and accelerations;
while in [14], the modeling strategy is derived from the Newton–Euler formulation, taking
the base of the manipulator as a mobile base. However, the mentioned methodologies lack
information to reproduce the technique.

This article presents a model of a UVMMS represented as a dependent system between
its elements, that is, where the manipulator robot depends on the movement information
of the underwater vehicle, and in turn, the underwater vehicle requires information about
the torques generated due to the movement of the vehicle. This reaction also depends on
the disturbances of the marine environment.

The contribution of this paper is to extend the dynamic model for marine vehicles,
described by Fossen [15], to the case of a particular family of UVMMS. A new notation
is proposed to include the description of the vehicle as well as the manipulators in an
intuitive way.

In the proposed analysis, the UVMMS consists of a 6-DOF (degree of freedom) under-
water vehicle with K serial robotic manipulators with actuated joints. Figure 1 shows a
scheme of the general system, where coordinate systems are represented using Red, Green
and Blue color convention for the X, Y and Z axes. This color code will continue to be used
in later sections to indicate axes in free-body diagrams..

The suggested approach for calculating the mathematical model is separated into three
phases: kinematic, kinetic, and external forces analyses. For each phase, the study will be
carried out for the general case and then applied to the vehicle and the manipulator links.
The modeling technique used to analyze this system is the Newton–Euler formulation.
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Figure 1. Location of the frames fixed to the elements of the UVMMS.

2. Kinematics

Kinematics refers to the study of motion without considering the forces that cause
it. A kinematic model [16] includes a description of position r, angular velocity ω, linear
velocity v, angular acceleration α, and linear acceleration a.

The system shown in Figure 1 has a complex geometric structure; to describe the
kinematics of each one of its elements, it is necessary to fix frames in several parts of the
system. In the proposed analysis, frames are located at the beginning of each link [17].

The origin of the inertial frame of the world is denoted by On using the NED conven-
tion, the frame attached to the vehicle is represented by O0, the location of the center of
gravity (CoG) of the vehicle is denoted by g0.

The origin of the frame attached to link l, of manipulator k, is denoted by Ol|k and is
defined using Denavit–Hartenverg convention (D-H), the attachment point of manipulator
k is located at O1|k, the location of the CoG of link l of manipulator k is denoted by gl|k.

The total number of links of manipulator k is denoted by L|k, and the end effector’s
location is indicated by rL|k

ee/L|k.

Notation for rotations will be defined as Ri
j, which denotes the rotation matrix of origin

Oj relative to Oi.
Explicit notation for positions, velocities, and accelerations will be defined using two

subscripts j/i, indicating the related frames, and one superscript k showing the frame used
to express the quantity, i.e., rk

j/i denotes the relative position of origin Oj relative to frame
Oi expressed in frame Ok.

A simplified notation will be defined to improve readability: the latter subscript will
be omitted when it refers to the inertial frame, and the superscript will be omitted when it
relates to the local frame, i.e., velocity vl

l/n denoted using explicit notation is equivalent to
vl in simplified notation.

When considering moving frames, the derivative of a vector concerning time, depends
on the frame chosen to perform the calculation. The notation for derivatives will be defined
using a left subscript indicating the selected frame, i.e.,

nd
dt (v

n
l/n) represents the derivative

of vn
l/n in the inertial frame.
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Note that, in general, the derivative of a vector in the inertial frame
nd
dt (v

n
l/n) is different

from the derivative of the vector in the local frame
ld
dt (v

l
l/n); the relation between these two

concepts is obtained from the relation of the vectors to be derived vn
l/n = Rn

l vl
l/n, as follows

in Equation (1):

nd
dt (v

n
l/n) =

nd
dt (Rn

l vl
l/n)

= Rn
l

ld
dt (v

l
l/n) + ωn

l/n × Rn
l vl

l/n

= Rn
l

ld
dt (v

l
l/n) + ωn

l/n × vn
l/n (1)

This is obtained using the product rule for derivation and the fact that the derivative of
a rotation matrix can be expressed in terms of a skew matrix of the corresponding angular
velocity, which can be written in product form.

To avoid confusion, Newton’s notation will be used to denote derivative in local frame
v̇l

l/n =
ld
dt (v

l
l/n).

2.1. General Motion between Two Moving Frames

Consider a frame Oj that is translating and rotating relative to frame Oi, which is
also translating and rotating relative to inertial frame On, as shown in Figure 2. In this
subsection, the general motion of frame Oj is calculated, the equations found will be used
to define the motion of the UVMMS links.

{n} xn

yn

zn

{i} xi

yi

zi

{j}
xj

yj

zj

rn
i/n

ri
j/i

ωi
i/n

vi
i/n

ω
j
j/n

vj
j/n

Figure 2. General motion between two moving frames.

Although the next analysis is well known, there are several variations in the con-
siderations and notation used in different areas, i.e., underwater vehicles and robotic
manipulators, furthermore, particular movements are sometimes considered rather than
the more general case, i.e., one of the frames is fixed or rotates but does not translate, etc.
To avoid confusion with the existing literature, the angular and linear motion, to be used in
the analysis of all elements of the UVMMS, is formulated here with the chosen notation.

2.1.1. Angular Motion

Orientation of frame Oj relative to On, denoted by rotation matrix Rn
j , is calculated as

the result of the successive rotations Rn
i and Ri

j, as follows in Equation (2):

Rn
j = Rn

i Ri
j (2)

Angular velocity of frame Oj relative to On, denoted by ωn
j/n, is calculated by the

derivative of Equation (2), which lends to Equation (3):

ωn
j/n = ωn

i/n + Rn
i ωi

j/i (3)

Angular acceleration of frame Oj relative to On, defined as αn
j/n :=

nd
dt (ω

n
j/n), is calcu-

lated in Equation (4):
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αn
j/n = αn

i/n + Rn
i ω̇i

j/i + ωn
i/n × Rn

i ωi
j/i (4)

2.1.2. Linear Motion

Position of frame Oj relative to On, denoted by vector rn
j/n, is the sum of positions rn

i/n
and rn

j/i, as follows in Equation (5):

rn
j/n = rn

i/n + Rn
i ri

j/i (5)

where relative position was calculated as rn
j/i = Rn

i ri
j/i.

Linear velocity of frame Oj relative to On, defined as vn
j/n :=

nd
dt (r

n
j/n), is calculated as

follows in Equation (6):

vn
j/n = vn

i/n + Rn
i vi

j/i + ωn
i/n × Rn

i ri
j/i (6)

Linear acceleration of frame Oj relative to On, defined as an
j/n :=

nd
dt (v

n
j/n), is calculated

as follows in Equation (7):

an
j/n = an

i/n + Rn
i v̇i

j/i + αn
i/n × Rn

i ri
j/i + ωn

i/n × (2Rn
i vi

j/i + ωn
i/n × Rn

i ri
j/i) (7)

The pose of Oj defined using Equations (2) and (5) can be described, using simplified
notation, as follows in Equation (8):

Rn
j = Rn

i Ri
j (8a)

rn
j = rn

i + Rn
i ri

j/i (8b)

Velocity Equations (3) and (6) can be expressed in local frame by multiplying them by
Rj

n, in simplified notation, as follows in Equation (9):

ωj = Rj
i(ωi + ωi

j/i) (9a)

vj = Rj
i(vi + vi

j/i + ωi × ri
j/i) (9b)

Acceleration Equations (4) and (7) can be expressed in local frame by multiplying
them by Rj

n, in simplified notation, as follows in Equation (10):

αj = Rj
i(αi + ω̇i

j/i + ωi × ωi
j/i) (10a)

aj = Rj
i(ai + v̇i

j/i + αi × ri
j/i + ωi × (2vi

j/i + ωi × ri
j/i)) (10b)

2.2. Movement of the Vehicle

In this analysis, a 6-DOF underwater vehicle is considered: its position is defined
using Cartesian coordinates, and its orientation is defined by a rotation matrix, relative to
On, using Roll, Pitch, Yaw (RPY) convention, as shown in Figure 3.

Under these considerations, the pose of the vehicle, relative to On, is defined as follows
in Equation (11):

Rn
0 = Rz(ψ0)Ry(θ0)Rx(ϕ0) (11a)

rn
0/n = [x0, y0, z0]

⊺ (11b)

where the rotations relative to On are defined as follows in Equation (12):

Rn
0 =

cψ0 −sψ0 0
sψ0 cϕ0 0
0 0 1

 cθ0 0 sθ0
0 1 0

−sθ0 0 cθ0

1 0 0
0 cϕ0 −sϕ0

0 sϕ0 cϕ0

 (12)

where s· = sin(·) and c· = cos(·). The vector of orientation using RPY convention, of the
vehicle relative to On, is defined as Θn

0 =
[
ϕ0 θ0 ψ0

]
.
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Figure 3. Movements and notation for a 6-DOF underwater vehicle.

The velocity of O0 expressed in the local frame can be defined in terms of the velocity
of the vehicle expressed in the world frame [15], as follows in Equation (13):

ω0 = R0
nωn

0/n = R0
n[ϕ̇0, θ̇0, ψ̇0]

⊺ (13a)

v0 = R0
nvn

0/n = R0
n[ẋ0, ẏ0, ż0]

⊺ (13b)

The acceleration of O0 expressed in the local frame can be defined in terms of the
acceleration of the vehicle expressed in the world frame, as follows in Equation (14):

α0 = R0
nαn

0/n = R0
n[ϕ̈0, θ̈0, ψ̈0]

⊺ (14a)

a0 = R0
nan

0/n = R0
n[ẍ0, ÿ0, z̈0]

⊺ (14b)

2.3. Movement of Manipulator Links

In this subsection, the position, velocity, and acceleration of frame Ol+1|k attached to
link l + 1|k of manipulator k will be defined in terms of the motion relative to the previous
link l|k, to improve readability the notation |k has been omitted. However, this analysis
must be done for each manipulator k.

To calculate pose, velocity, and acceleration of link l + 1, consider Oi = Ol and
Oj = Ol+1 in the equations of the general motion.

The pose of Ol+1 is defined using Equation (8), as follows in Equation (15):

Rn
l+1 = Rn

l Rl
l+1 (15a)

rn
l+1/n = rn

l/n + Rn
l rl

l+1/l (15b)

Relative rotation Rl
l+1 and translation rl

l+1/l between two consecutive links can be
represented in matrix form Tl

l+1, which is called homogeneous transformation, as follows
in Equation (16):

Tl
l+1 =

[
Rl

l+1 rl
l,l+1

01×3 1

]
(16)

Orientation and position defined in Equation (15) can be described in matrix form
as follows in Equation (17):

Tn
l+1 = Tn

l Tl
l+1 =

[
Rn

l rn
l/n

01×3 1

][
Rl

l+1 rl
l+1/l

01×3 1

]
(17)

Considering all intermediate links, the position of the end effector can be evaluated
as follows in Equation (18):

Tn
l = Tn

0 T0
1 T1

2 T2
3 · · · TL−2

L−1 TL−1
L rL

ee/L (18)

where rL
ee/L = [rL

ee/L, 1]⊺ is the generalized position vector of the end effector relative to OL.
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The transformation of Ol relative to frame Ol−1, is defined using DH parameters
θl , dl , al , αl , the relative homogeneous transformation is defined as in Equation (19):

Tl−1
l =


cθl −sθl 0 al

sθl cαl cθl cαl −sαl −sαl dl
sθl sαl cθl sαl cαl cαl dl

0 0 0 1

 (19)

This is the transformation obtained when considering frame Ol attached to link l when
its origin is located at joint axis l, it is defined in terms of a rotation about x̂l−1, from ẑl−1 to
ẑl , an angle αl , followed by a translation along x̂l−1, from ẑl−1 to ẑl , a distance al , followed
by a rotation about ẑl , from x̂l−1 to x̂l , an angle θl , followed by a translation along ẑl , from
x̂l−1 to x̂l , a distance dl .

The relative velocity between link l and previous link l − 1 depends on the type ql of
joint ql as shows in Figure 4. In the proposed analysis, it is considered to be either rotational
or prismatic, as follows in Equation (20):

ql =

{
1 , if joint l is rotational
0 , if joint l is prismatic

(20)

Ol

Ol+1
ql+1

Ogl+1

ql+1 = 1

Ol

Ol+1
ql+1

Ogl+1

ql+1 = 0

Figure 4. Notation for manipulator links according to joint type ql .

Considering that joint ql+1 moves along axis ẑ = ẑl+1
l+1 of the local frame of link l + 1,

the relative angular and linear velocity between consecutive links can be defined as follows
in Equation (21):

ωl+1
l+1/l = ẑq̇l+1ql+1 (21a)

vl+1
l+1/l = ẑq̇l+1q̄l+1 (21b)

where q̄l+1 = 1 − ql+1 is the complement of ql+1.
The velocity of frame Ol+1, expressed in local frame Ol+1, is calculated using

Equation (9), as follows in Equation (22):

ωl+1 = Rl+1
l ωl + ẑq̇l+1ql+1 (22a)

vl+1 = Rl+1
l (vl + ωl × rl

l+1/l) + ẑq̇l+1q̄l+1 (22b)

The acceleration of frame Ol+1, expressed in local frame Ol+1, is calculated using
Equation (10), as follows in Equation (23):

αl+1 = Rl+1
l αl + (ẑq̈l+1 + Rl+1

l ωl × ẑq̇l+1)ql+1 (23a)

al+1 = Rl+1
l (al + αl × rl

l+1/l + ωl × (ωl × rl
l+1/l)) + (ẑq̈l+1 + 2Rl+1

l ωl × ẑq̇l+1)q̄l+1 (23b)

2.4. Movement of the CoG

To calculate the pose, velocity, and acceleration of the CoG of link l, consider a frame
Ogl attached to link l, fixed at the CoG and having the same orientation as Ol . In this
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case Equations (9) and (10) are reduced because Rj
i is an identity matrix and ωj/i = 0 and

vj/i = 0.
Under these considerations, the pose the CoG of link l, is calculated by taking Oi = Ol

and Oj = Ogl in Equation (8), as follows in Equation (24):

Rn
gl
= Rn

l (24a)

rn
gl/n = rn

l/n + Rn
l rl

gl/l (24b)

where rl
gl /l = [xgl , ygl , zgl ]

⊺ is the link’s CoG position relative to local frame Ol .
Similarly, velocity of the CoG of link l, is calculated by taking Oi = Ol and Oj = Ogl

in Equation (9), as follows in Equation (25):

ωgl = ωl (25a)

vgl = vl + ωl × rl
gl/l (25b)

Finally, acceleration of the CoG of link l, is calculated by taking Oi = Ol and Oj = Ogl

in Equation (10), as follows in Equation (26):

αgl = αl (26a)

agl = al + αl × rl
gl /l + ωl × (ωl × rl

gl/l) (26b)

Equations (24)–(26) are valid not only for the manipulators link’s CoG, but also can be
used to analyse the vehicle’s CoG, considering l = 0.

Equations (15) and (22)–(26) are known as the forward recursion in the Newton–Euler
formulation of the dynamic model of a robot manipulator, meanwhile the movement of
vehicle defined by Equations (11), (13) and (14) are the initial conditions for this case
of study.

3. Kinetics

Kinetics refers to the study of motion considering the forces that cause it. A kinetic
model includes the translational and rotational movement of the CoG [18].

When calculating the dynamic model of a mechanical system, the most popular
approaches are the Euler–Lagrange formulation and Newton–Euler (NE) approach; in
this work, NE was chosen because this formulation describes all the force and torque
components in each link of the robot [19]. This is useful to calculate the reaction forces
of the manipulator to the vehicle, as well as to describe the forces on the links of the
manipulators resulting from the movement of the vehicle, allowing the complete model to
be rewritten in different levels of abstraction, as will be shown in Section 5.

In this part of the kinetics analysis, gravity forces will not be considered, as they will
be included as part of the restoration forces in the hydrostatic study.

3.1. General Motion of a Rigid Body

According to Euler’s first and second axioms, the relation between the forces and the
movement generated on a rigid body is defined as follows in Equation (27):

Nn
gl
=

nd
dt (In

gl
ωn

gl/n) (27a)

Fn
gl
=

nd
dt (mlvn

gl/n) (27b)

where Nn
gl

and Fn
gl

denote the total moment and force applied at the CoG of link l expressed
in On, In

gl
represents the inertia matrix of link l measured at gl described in On.

Note that In
gl

depends on the current orientation of link l, however it can be rewritten
in terms of Il

gl
, the constant inertia relative to local frame Ol , as follows: In

gl
= Rn

l Il
gl

Rl
n.
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By calculating the derivatives in Equation (27), is calculated Equation (28):

Nn
gl
= Rn

l Il
gl

ω̇l
gl /n + ωn

l/n × Rn
l Il

gl
ωl

gl /n (28a)

Fn
gl
= mlan

gl /n (28b)

Total force and moment can be expressed in local frame Ol , by multiplying
Equation (28) by Rl

n, which using simplified notation, is calculated in Equation (29):

Ngl = Igl αgl + ωl × Igl ωgl (29a)

Fgl = mlagl (29b)

Note that in Equation (29) it has been substituted the fact that αgl = Rl
nαn

gl/n =
ld
dt (ω

l
gl /n) = ω̇l

gl /n, which is obtained following the procedure describe in Equation (1).
To evaluate Equation (29), it is necessary to identify the total force Fg0 and moment

Ng0 , applied at the CoG of each link.

3.2. Movement of Manipulator Links

In the same way, as in the kinematic analysis, the notation |k has been omitted to
improve readability. However, this analysis must also be done for each manipulator k.

Based on Figure 5, total force Fgl and moment Ngl , at the CoG of link l, are calculated
in Equation (30):

Ngl = nl − Rl
l+1nl+1 + rl

l/gl
× fl − rl

l+1/gl
× Rl

l+1 fl+1 + nel (30a)

Fgl = fl − Rl
l+1 fl+1 + fel (30b)

where fl and nl denote the force and moment exerted to link l, expressed in local frame Ol .

Og0

Ol

Ol+1

Fgl

Ngl

fl

nl

fl+1

nl+1

Figure 5. Total force and moment on a manipulator link.

The sum of external forces and moments are denoted by fel and nel , expressed in local
frame Ol , which includes the disturbances produced by the fluid or other sources.

Position of frame Ol+1 relative to Ogl , expressed in Ol , is calculated as rl
l+1/gl

=

rl
l+1/l − rl

gl/l .
The required joint forces or moments τl are found by taking the ẑ component of the

force or moment exerted to link l, by previous link l − 1, depending on ql , as follows in
Equation (31):

τl =

{
n⊺

l ẑ , if ql = 1
f ⊺l ẑ , if ql = 0

(31)

3.3. Movement of the Vehicle

Using Figure 6, total force and moments at the underwater vehicle are calculated
as follows in Equation (32):
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Ng0 = n0 − Σm
k=1(R0

1|kn1|k) + r0
0/g0 × f0 − Σm

k=1(r
0
1|k/g0

× R0
1|k f1|k) + ne0 (32a)

Fg0 = f0 − Σm
k=1(R0

1|k f1|k) + fe0 (32b)

Equation (32) has the same structure as Equation (30); the difference is that in the
analysis of the vehicle, several reaction forces are calculated, one for each manipulator at
the first link, denoted by f1|k.

Position of frame O1|k relative to Og0 , expressed in O0, is calculated as r0
1|k/g0

=

r0
1|k/0 − r0

g0/0.

On
xn
yn

zn

O0

O1|1

O1|2

O1|K

Ng0

Fg0

n0

f0
n1|1

f1|1

n1|2

f1|2

n1|K

f1|K· · ·
Figure 6. Total force and moment on the vehicle.

Equation (30) is known as backward recursion in the Newton–Euler formulation of the
dynamic model of robot manipulator, while Equation (32) propagates the reaction forces of
all manipulators to the vehicle, the initial conditions of this recursion are the forces fee and
moments nee at the end effectors when an object is being manipulated, which otherwise
are zero.

4. External Forces

The marine environment generates external disturbances that interact with the system,
such as the hydrostatic and hydrodynamic forces. Depending on craft type and the author’s
interest analysis, these forces are computed differently [20].

Given an underwater vehicle coupled with two manipulators [21], the hydrodynamic
effects considered are added mass, drag forces, buoyancy, and current waves. The parame-
ters are obtained through Navier–Stokes equations.

In the modeling and control of lightweight underwater vehicle–manipulator sys-
tems [22], the hydrodynamic effects of interest are added mass, hydrodynamic drag, restor-
ing forces, and external disturbances, where the last consider the friction between the
links of the manipulator, underwater currents and forces generated by the contact of the
end-effector with the environment.

In this project, the hydrodynamics effects to be considered are restoration forces,
including weight and buoyancy, added masses effects and damping forces. Other effects
that are not considered, but can be added, are skin friction, lift, and non-linear drag forces;
also, other environmental disturbances that can be contemplated are wind, waves, vortexes,
and ocean currents [15].

4.1. Restoring Forces

Restoration forces are analyzed in the field of hydrostatics, which studies incompress-
ible fluids at rest; it includes gravitational force fwl and buoyancy force fbl

.
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Considering a NED convention for the world frame On, the gravitational force fwl and
moment of link l, expressed in Ol , are defined as follows in Equation (33):

nwl = 0 (33a)

fwl = ml gRl
n ẑ (33b)

where g is the magnitude of gravity acceleration, nwl = 0 because gravitational force is
exerted at the link’s CoG.

The buoyancy force fbl
on link i is proportional to the mass of the fluid displaced by

the moving body, in the opposite direction of the gravitational force [22], by Archimedes’
principle is defined as follows in Equation (34):

nbl
= rl

bl/gl
× fbl

(34a)

fbl
= −m fl

gRl
n ẑ (34b)

where m fl
is the mass of the fluid displaced by the link, calculated as m f l = ρ f l∇l where

ρ f l is the density of the fluid and ∇l the volume of the fluid displaced by link l.
Center of buoyancy CoB relative to CoG is calculated as rl

bl /gl
= rl

bl /l − rl
gl /l , where

rl
bl /l = [xbl

, ybl
, zbl

]⊺ is the CoB expressed in local frame Ol .

4.2. Added Mass Forces

When a submerged body moves, it must displace a volume of the fluid that surrounds
it. In the hydrodynamics field, this phenomena can be modeled as a virtual mass added to
the system [15].

The mathematical expression of added mass forces highly depends on the geometry,
velocity of the vehicle, frequency of the fluid, etc.; when considering a symmetric body and
irrotational ocean currents, it can be approximated as follows in Equation (35):

nal = −Ial αl − ωl × (Ial ωl) (35a)

fal = −m fl
arl (35b)

Ial is an inertia matrix due to added link masses l.
The relative acceleration arl due to the surrounding fluid is defined as arl = al − Rl

na f l
where a f l is the acceleration of the fluid expressed in inertial frame On.

Considering irrotational fluid implies ω f l = 0.

4.3. Damping Forces

Another hydrodynamic effect is the damping caused by the fluid’s viscosity that
causes dissipative forces of drag (profile and superficial friction) and lifts that act on the
body’s center [23]. The lift forces are orthogonal to the velocity of the fluid, and the drag
forces are parallel to the velocity of the fluid and act on the CoM of the body [14].

Damping forces and moments are nonlinear and coupled; the following Equation (36)
represents only the linear decoupled part of these phenomena:

ndl
= −Dlωl (36a)

fdl
= −dlvrl (36b)

where Dl and dl represent the linear coefficients of the damping forces.
Considering the fluid forces in Equations (33)–(36), the total external force and moment

are defined as follows in Equation (37):

nel = nbl
+ nal + fdl

(37a)

fel = fwl + fbl
+ fal + fdl

(37b)
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Several other disturbances can produce an even more realistic simulation model; those
can be added to Equation (37) in terms of the force and moment exerted on the CoG.

5. Different Approaches in Numerical Implementation of the Mathematical Model

In this section, an analysis of the different approaches used to implementing a nu-
merical simulation of the mathematical model is presented. For a detailed description of a
complete implementation, considering control inputs, hydrodynamic effects, and a specific
kinematic configuration, refer to Section 6.

Depending on the level of refinement chosen to represent the links of the mathematical
model, three approaches are identified for the numerical implementation of the UVMMS
mathematical model: refined, intermediate, and coarse approaches.

5.1. Refined Approach

The refined approach is to consider every link of the UVMMS as an individual system
of equations. This approach would require representing each link using an independent set
of forward and backward recursion equations, which relate its motion with the next and
previous links as described in the kinematic and kinetic models.

In the case of the vehicle link, the state variables are η̇0 = [ωn
0 , vn

0 ]
⊺ and η0 = [Θ, P]⊺,

which represents the velocity and position of the vehicle relative to On, expressed in On.
Algorithm 1 shows the calculations used to represent the behavior of the vehicle link.

Algorithm 1 Mathematical model of the vehicle.

input τv, ntr, ftr, v f l , η̇, η
output ν̇l , νl , Rn

l , η̈
procedure VEHICLEMODEL

Define rigid body parameters: rl
gl/l , mgl , Igl

Define external forces parameters: ∇l , Ial , dl , Dl , rl
bl/gl , g, ρ f l , m f l

Calculate Rn
l ▷ Equations (11a) and (12)

Calculate νl = [ωl , vl ]
⊺ ▷ Equation (13)

Calculate ωgl and vgl ▷ Equation (25)
Calculate external forces ▷ Equations (33)–(37)
Calculate forces and moments Fgl , Ngl , fl and nl ▷ Equation (32)
Calculate αgl and agl ▷ Equation (29)
Calculate ν̇l = [αl , al ]

⊺ ▷ Equation (26)
Calculate η̈ ▷ Equation (14)

In the case of a manipulator link, the state variables are q̇ and q. Algorithm 2 shows
the calculations used to represent the behavior of a manipulator link.

Algorithm 2 Mathematical model of a manipulator link.

input ν̇l−1, νl−1, τl , nl+1, fl+1, v f l , Rn
l−1, q̇, q, ql+1

output ν̇l , νl , nl , fl , Rn
l , q̈

procedure SINGLELINKMODEL

Define rigid body parameters: ql , Rl−1
l , Rl

l+1, rl−1
l/l−1, rl

l+1/l , mgl , Igl

Define external forces parameters: ∇l , Ial , dl , Dl , rl
bl/gl , g, ρ f l , m f l

Calculate Rn
l ▷ Equation (2)

Calculate νl = [ωl , vl ]
⊺ ▷ Equation (22)

Calculate ωgl and vgl ▷ Equation (25)
Calculate external forces ▷ Equations (33)–(37)
Calculate forces and moments Fgl , Ngl , fl and nl ▷ Equation (30)
Calculate αgl and agl ▷ Equation (29)
Calculate ν̇l = [αl , al ]

⊺ ▷ Equation (26)
Calculate q̈ ▷ Equation (23)
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Note that velocity νl = [ωl , vl ]
⊺ and acceleration ν̇l = [αl , al ]

⊺ vectors, expressed in
local frame Ol , are defined to simplify the connection between link models.

The dynamics of the UVMMS are the behavior produced by the interaction of all the
system links, as shown in the blocks diagram of Figure 7.

Underwater
vehicle Link 1|1 Link 2|1 Link 3|1

Link 1|2 Link 2|2 Link 3|2

Total
reaction

τv η η̇

v f l

τ1|1 τ2|1 τ3|1

τ1|2 τ2|2 τ3|2

q1|1 q2|1 q3|1

q1|2 q2|2 q3|2

q̇1|1 q̇2|1 q̇3|1

q̇1|2 q̇2|2 q̇3|2

Rn
0 Rn

1 Rn
2 Rn

3

Rn
1 Rn

2 Rn
3

ν ν ν ν

ν ν ν

ν̇ ν̇ ν̇ ν̇

ν̇ ν̇ ν̇

ftr f1|1 f2|1 f3|1 f4|1

f1|2 f2|2 f3|2 f4|2

ntr n1|1 n2|1 n3|1 n4|1

n1|2 n2|2 n3|2 n4|2

0, 0, 0
0, 0, 0

0, 0, 0
0, 0, 0

Figure 7. Blocks diagram of a UVMMS using refined approach.

Note that, in Figure 7, each block shown represents an individual link of the UVMMS
where Underwater vehicle is implemented using Algorithm 1 and Link k|m are imple-
mented using Algorithm 2. The block called Total reaction calculates the sum of all
reaction forces and moments produced by the manipulators on the vehicle, the expression
is obtained from Equation (32), as shown in Algorithm 3.

Algorithm 3 Computation of the total reaction forces and moments produced by the
manipulators.

input f1|k, n1|k and q1|k k ∈ [1 : K]
output ftr, ntr
procedure TOTALREACTION

Define R0
1|k and r0

1|k/g0 for all manipulators ▷ Equations (39) and (40)

ftr = ∑k(R0
1|k f1|k)

ntr = ∑k(R0
1|kn1|k + r0

1|k/g0 × R0
1|k f1|k)

5.2. Intermediate Approach

An intermediate approach will be to consider each manipulator as a single system.
This approach would require the implementation of the forward recursion from the first to
the last link of every manipulator attached to it, and it will also need the implementation of
the backward recursion to propagate the forces from each end effector to the vehicle. The
required calculations are shown in Algorithm 4.

The dynamics of the UVMMS is the behavior produced by the interaction of the vehicle
and the manipulators, as shown in the blocks diagram of Figure 8.

Where τk represents the vector of control inputs, for manipulator k defined as
τk = [τ1|k, τ2|k, . . . , τL|k]

⊺ and Qk represents the vector of joint positions.
Note that, in Figure 8, the blocks labeled as Robotic manipulator k represent the

model of all the links in that kinematic chain, which is equivalent to the union of all the
blocks labeled as Link k|m in Figure 7, but the system of equations and the programming
loops are implemented as in Algorithm 4.
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Algorithm 4 Mathematical model of a complete manipulator.

input ν̇0, ν0, τm, v f l , Rn
0 , q̇, q

output n1, f1, q̈
procedure MANIPULATORMODEL

for all l ∈ {1, . . . , L} do
Define rigid body parameters: ql , Rl−1

l , rl−1
l/l−1, mgl , Igl

Define external forces parameters: ∇l , Ial , dl , Dl , rl
bl/gl , ρ f l , m f l

for l = 1, . . . , L do ▷ Forward recursion
Calculate Rn

l ▷ Equation (2)
Calculate ωl and vl ▷ Equation (22)
Calculate ωgl and vgl ▷ Equation (25)
Calculate αl and al ▷ Equation (26)
Calculate αgl and agl ▷ Equation (29)
Calculate external forces ▷ Equations (33)–(37)

for l = L, . . . , 1 do ▷ Backward recursion
Calculate forces and moments Fgl , Ngl , fl and nl ▷ Equation (30)
Calculate q̈l ▷ Equation (23)

Underwater
vehicle

Robot
manipulator 1

Robot
manipulator 2

Total
reaction

τv

v f l

Rn
0

ν0

ν̇0

ftr f1

f2

ntr n1

n2

Q1

Q̇1

Q2

Q̇2

τ2

τ1

η η̇

Figure 8. Blocks diagram of a UVMMS using intermediate approach.

5.3. Coarse Approach

A coarse approach is to consider all the links of the UVMMS, including the vehicle, as
a single system. This approach would require the implementation of the forward recursion
from the vehicle link to the last link of every manipulator attached to it, it will also need the
implementation of the backward recursion to propagate the forces from each end effector
to the vehicle.

This approach can be implemented on a single process with a single vector input
τ = [τv, τ1|k, τ2|k, . . . , τL|k]

⊺, which represents the vector of control inputs for all the actuators
of the UVMMS and a single vector output ξ = [η, Q1, Q2, . . . , η̇, Q̇1, Q̇2, ..., ]⊺. The complete
model can be represented with a single block, implemented using Algorithm 5.
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Algorithm 5 Mathematical model of a complete UVMMS.

input τv, τm, v f l , q̇, q, η̇, η
output η̈, q̈
procedure UVMMSMODEL

Define vehicle’s RB parameters: rl
gl/l , mgl , Igl

Define vehicle’s EF parameters: ∇l , Ial , dl , Dl , rl
bl/gl , g, ρ f l , m f l

for all l ∈ {1, . . . , L} and k ∈ {1, . . . , K} do
Define manipulator’s RB parameters: ql|k, Rl−1

l|k , rl−1
l|k/l−1, mgl|k, Igl|k

Define manipulator’s EF parameters: ∇l|k, Ial|k, dl|k, Dl|k, rl
bl|k/gl , ρ f l|k, m f l|k

Calculate Rn
0 ▷ Equations (11a) and (12)

Calculate ω0 and v0 ▷ Equation (13)
Calculate ωg0 and vg0 ▷ Equation (25)
Calculate α0 and a0 ▷ Equation (26)
Calculate αg0 and ag0 ▷ Equation (29)
for k = 1, . . . , K do

for l = 1, . . . , L do ▷ Forward recursion
Calculate Rn

l|k ▷ Equation (2)
Calculate ωl|k and vl|k ▷ Equation (22)
Calculate ωgl|k and vgl|k ▷ Equation (25)
Calculate αl|k and al|k ▷ Equation (26)
Calculate αgl|k and agl|k ▷ Equation (29)
Calculate external forces ▷ Equations (33)–(37)

for l = L, . . . , 1 do ▷ Backward recursion
Calculate forces and moments Fgl|k, Ngl|k, fl|k and nl|k ▷ Equation (30)
Calculate q̈l|k ▷ Equation (23)

Calculate external forces for the vehicle ▷ Equations (33)–(37)
Calculate vehicles forces and moments Fg0, Ng0 ▷ Equation (32)
Calculate η̈ ▷ Equation (14)

Note that this approach is equivalent to all the blocks shown in Figure 8 but the
programming loops for the forward and backward recursion required for each manipulator,
using the equations of the vehicle as initial conditions, are implemented in a single function.

Although the three approaches presented in this section are equivalent, there are
differences in computational cost and the level of detail of the information obtained: for
instance, the refined approach has a higher computational cost but it allows the user to
monitor the reaction forces and moments between any consecutive links; the intermediate
approach, on the other hand, only allows the total reaction force and moment produced
on the vehicle by the manipulators to be monitored; finally, the coarse approach can be
faster, depending on the implementation, but is it not possible to monitor the reaction
forces between any elements.

6. Simulation Validation

In this section, a numerical simulation of a particular UVMMS is presented. The system
is built on an underwater vehicle with six degrees of freedom and four anthropomorphic
manipulators attached to it, as shown in Figure 9.

Unless otherwise specified, all the parameters are expressed in standard units: kilo-
gram, meter, and second; however, to avoid scale problems during the numerical solution
of the differential equations, the quantities can be coded using gram, millimeter, and sec-
ond in their place. Signals can be transformed back to standard units when presented in
the results.
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On

xn

yn

zn
O0

O1|1

O2|1

O3|1

O1|2

O2|2

O3|2

O1|3

O2|3

O3|3

O1|4

O2|4

O3|4

0.08 m

0.18 m

0.32 m

0.12 m

Figure 9. Coordinate frames for each element of the UVMMS.

6.1. Vehicle’s Parameters

The underwater vehicle is based on a customized BlueROV2 Heavy, its parameter
values are taken from the literature [24,25].

The mass parameters of the vehicle, as used in Equations (26) and (29), are defined
as follows:

m0 = 11.5 kg, Ig0 =

0.16 0 0
0 0.16 0
0 0 0.16

kg m2, r0
g0/0 =

 0
0

0.02

m

The buoyancy parameters of the vehicle, as used in Equation (34), are defined as:
∇0 = 11.702 × 10−3 m3, ρ f 0 = 1000 kg m−3 and r0

b0/g0
=

[
0 0 0

]⊺m.
In this case the mass of the fluid displaced by the vehicle is m f 0 = ρ f 0∇0 = 11.702 kg

so the magnitude of the buoyancy force is | fb0 | = m f0 g = 114.8 kg m s−2, which is greater
than the magnitude of the gravitational force, calculated as | fw0 | = m0g = 112.8 kg m s−2.

The inertia matrix due to added vehicle’s mass, as used in Equation (35), is defined
as follows:

Ia0 =

0.12 0 0
0 0.12 0
0 0 0.12

kg m2 rad−1

The linear damping parameters of the vehicle, as used in Equation (36), are defined
as follows:

d0 =

4.03 0 0
0 6.22 0
0 0 5.18

kg s−1, D0 =

0.07 0 0
0 0.07 0
0 0 0.07

kg m rad−1
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The configuration matrix of the thrusters T(α), which is the function of the orientation
of each thruster α and relates the force in task space to the forces on each thruster, is
expressed numerically as shown in Equation (38):

T(α) =



0.7071 0.7071 −0.7071 −0.7071 0 0 0 0
−0.7071 0.7071 −0.7071 0.7071 0 0 0 0

0 0 0 0 −1 1 1 −1
60 −60 60 −60 −218 −218 218 218
60 60 −60 −60 120 −120 120 −120

−188.8 188.8 188.8 −188.8 0 0 0 0

 (38)

6.2. Manipulator’s Parameters

For simplicity, all four manipulators are designed equally, and attached symmetrically
at the bottom of the underwater vehicle. The transformation of the first link frame, of each
manipulator k, relative to the vehicle frame, is calculated as a translation in the three axes
and a single rotation produced by the first joint, as follows in Equation (39):

T0
1|k =


cq1|k −sq1|k 0
sq1|k cq1|k 0 r0

1|k/0
0 0 1
0 0 0 1

 (39)

where r0
1|k/0 is defined as follows, according to Figure 9:

r0
1|1/0 =

0.08
0.18
0.32

m, r0
1|2/0 =

−0.08
0.18
0.32

m, r0
1|3/0 =

−0.08
−0.18

0.32

m, r0
1|4/0 =

 0.08
−0.18

0.32

m (40)

Note that origin O1|k must be located at the same point as origin O2|k, so that axis x̂1|k
intersects axis ẑ2|k.

As the relative transformations of the second and third links involves more than one
rotation and translation, they are calculated using the Table 1:

Table 1. DH parameters of the second and third link of the robotic manipulators.

Transformation θ d a α

T1|k
2|k

q2|k +
π
2 0 0 π

2

T2|k
3|k

q3|k 0 0.12 m 0

The corresponding transformations are evaluated using Equation (19), as follows:

T1|k
2|k =


−sq2|k −cq2|k 0 0

0 0 −1 0
cq2|k −sq2|k 0 0

0 0 0 1

 T2|k
3|k =


cq3|k −sq3|k 0 0.12 m
sq3|k cq3|k 0 0

0 0 1 0
0 0 0 1


Mass parameters of the links, as used in Equations (26) and (29), are defined as follows

in Table 2:
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Table 2. Mass parameters of a 3-DOF Underwater Anthropomorphic Manipulator Robot.

Links ml|k (kg)
Igl|k (1 × 10−5 kg m2) rl

gl|k /l (1 × 10−3 m)

k = 1, 2 k = 3, 4 k = 1, 2 k = 3, 4

1|k 0.096
 5.57 −0.09 −0.05
−0.09 4.87 0.09
−0.05 0.09 3.16

  5.57 −0.09 0.05
−0.09 4.87 −0.09

0.05 −0.09 3.16

 −5.33
1.61
1.00

  5.33
−1.61

1.00


2|k 0.183

3.72 0.00 0.35
0.00 39.65 0
0.35 0.00 38.08

 3.72 0.00 0.35
0.00 39.65 0
0.35 0.00 38.08

 65.56
0.01
0.86

 65.56
0.01
0.86


3|k 0.217

7.16 0.47 6.06
0.47 138.66 −0.02
6.06 −0.02 138.38

  7.16 −0.47 −6.06
−0.47 138.66 −0.02
−6.06 −0.02 138.38

 53.78
0.30
1.09

  53.78
−0.30
−1.09



Hydrodynamic parameters, as used in Equations (34)–(36), are defined as follows in
Table 3:

Table 3. Hydrodynamic parameters of a 3-DOF Underwater Anthropomorphic Manipulator Robot.

Link
∇k Iak dk Dk

(1 × 10−3 m3) (1 × 10−3 kg m2 rad−1) (1 × 10−3 kg s−1) (1 × 10−3 kg m rad−1)

1|k 0.076
0.004 0 0

0 0.004 0
0 0 0

 0.67 0 0
0 0.67 0
0 0 0

 0.07 0 0
0 0.07 0
0 0 0.07


2|k 0.152

0 0 0
0 2.8 0
0 0 2.8

 0 0 0
0 0.67 0
0 0 0.67

 0.07 0 0
0 0.07 0
0 0 0.07


3|k 0.164

0 0 0
0 10.3 0
0 0 10.3

 0 0 0
0 0.67 0
0 0 0.67

 0.07 0 0
0 0.07 0
0 0 0.07



The inertia of the added mass [13], as well as the damping coefficients [26], are
approximated considering a cylindrical geometry and the viscosity of a fluid.

The density of the fluid is considered the same, for the three links ρ fk
= 1000 kg m−3

and the center of buoyancy is considered at the same point as the center of gravity, for the
three links rk

bk/gk
=

[
0 0 0

]⊺m.
The vector of control inputs is calculated using PID controllers for the position and

orientation of the vehicle and the movement of the joints as shown in Figure 10.

MOD

PD
Controller

PD
Controller

PID
Controller

Rn
0

T (α)
−1 T(α)

eξ

ex

ey

ez

eϕ

eθ

eψ

eq1

eq2

eq3

Θn
0 τv

τm

Figure 10. UVMMS controller detail.
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Where MOD block represents a modulus function that maps rotation angles to the
range [0, 2π] , Rn

0 is the rotation matrix of the vehicle to the inertial frame, defined in
Equation (12), T(α) is the forward kinematics of the thrusters, defined in Equation (38),
and T−1(α) denotes the pseudo-inverse of T(α). The saturation blocks are used to limit the
maximum output of the actuators, which is 1.1376 kg m2 s−2 for joints and 4× 106 kg m2 s−2,
for thrusters.

6.3. Complete Simulation Diagram

A complete implementation of the UVMMS model simulation is presented in Figure 11:
as can be seen, a refined approach was used to implement the simulation of the rigid body
dynamics, so each link of the system is modeled inside an independent block. With
this approach, it is even possible to obtain the information on the reaction forces and
moments, not only between the vehicle and the manipulators, but also between any two
consecutive links.

A detail of the implementation of each manipulator is shown on Figure 12, where the
propagation of velocities and forces is shown in detail.

Reference Controller

Underwater vehicle

Total
reaction

RM 1 RM 2 RM 3 RM 4

Fluid

ξre f
e τv

τm1 τm2 τm3 τm4Q̇ Q̇ Q̇ Q̇Q Q Q Q

ξ

η

η̇

Rn
0 ν0 ν̇0

f1|1 n1|1 f1|2 n1|2 f1|3 n1|3 f1|4 n1|4

v f l

Figure 11. Implementation of the proposed simulator for a UVMMS.
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ν
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f1

f2
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n1

n2

n3

Rn
0

Rn
1

Rn
2

Rn
3

τm

τq1
τq2
τq3

v f l

[0, 0, 0] [0, 0, 0]

0

q1

q2

q3

Q

Figure 12. Detail on the implementation of the blocks inside each manipulator.
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The mathematical model for the proposed UVMMS is validated through simulations
with three different conditions: first, the moments produced by the underwater vehicle
movement on the robotic manipulators are simulated by controlling the pose of the vehicle
without controlling the manipulators; second, the moments produced by the robotic manip-
ulators’ movement on the underwater vehicle are simulated by controlling the joints of the
robotic manipulators without controlling the orientation of the underwater vehicle; and
third, the complete behavior of the UVMMS is simulated by controlling all the elements of
the system to compensate for reaction forces between both subsystems.

6.4. Simulation of Moments Produced by the Underwater Vehicle Movement on the
Robotic Manipulators

In this test, a trajectory for the UVMMS is defined using the next expressions:

ξd(t) =


xd = 0.5 sin ( 2π

5 t) si t5 < t ≤ t6 ow xd = 0
yd = 0.5 sin ( 2π

5 t) si t1 < t ≤ t2 ow yd = 0
zd = 0 ϕd = 0 θd = 0
ψd = π

4 sin ( 2π
5 t) si t3 < t ≤ t4 ow ψd = 0

q1d = 0 q2d = 0 q3d = 0

(41)

where t1 = 2.5 s, t2 = 12.5 s, t3 = 15 s, t4 = 25 s, t5 = 27.5 s and t6 = 37.5 s, with
a simulation time of 40 s. The UVMMS trajectory tracking is implemented using a PD
(Proportional-Derivative) controller, where the gains are assigned only for the underwater
vehicle; they are shown in the following Table 4:

Table 4. Gains used in a PD controller for a 6-DOF underwater vehicle.

PD x y z ϕ θ ψ

KP 3 × 102 5 × 102 3 × 102 3 × 102 3 × 102 3 × 102

KD 1 × 102 1 × 102 1 × 102 1 × 102 1 × 102 1 × 102

Figure 13 shows the response of the UVMMS when the vehicle is following the defined
trajectory using the PD controller: note that for the manipulator’s joints no trajectory has
been defined, as they are not actuated in this test.
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Figure 13. Simulation of moments produced by the underwater vehicle movement on the
robotic manipulators.

Note that the motion induced on the manipulators by the motion of the vehicle is
produced by the inertia of the manipulator’s links and the forces produced by the velocity
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and acceleration terms in the equations of motion. It can be seen that from 15 s, there
is a greater activity for the manipulator robot because the underwater vehicle begins its
trajectory on the “y” axis and later with movement over ψ.

6.5. Simulation of Moments Produced by the Robotic Manipulators Movement on the
Underwater Vehicle

In this test, a trajectory for the robotic manipulators attached to the UVMMS is defined
using the next expressions:

ξd(t) =


xd = 0 yd = 0 zd = 0
q1d = π

4 sin ( 2π
5 t) si t1 < t ≤ t2 ow q1d = 0

q2d = π
4 sin ( 2π

5 t) si t3 < t ≤ t4 ow q2d = 0
q3d = π

4 sin ( 2π
5 t) si t5 < t ≤ t6 ow q3d = 0

(42)

where h = 0.3 m, t1 = 10 s, t2 = 20 s, t3 = 25 s, t4 = 35 s, t5 = 40 s, t6 = 50 s, with
a simulation time of 55 s. The signals are alternated between the different manipulators
to avoid collisions. In this test, the depth is the only degree of freedom actuated on the
underwater vehicle, all the other signals were turned off, because it is desired to observe the
effect produced by the motion of the manipulators on the vehicle. The trajectory tracking
for all the manipulators is implemented using a PID (Proportional–Integral–Derivative)
controller with the same gains, and the gains are presented in Table 5:

Table 5. Gains used in a PID controller for a 3-DOF underwater anthropomorphic robot manipulator.

PID q1|k q2|k q3|k

KP 5 × 10−3 8 × 10−1 5 × 10−1

KI 1 × 10−1 0.5 × 10−1 1 × 10−1

KD 3 × 10−3 0.4 × 10−3 5 × 10−1

Figure 14 shows the response of the UVMMS when the manipulators are following
the defined trajectory using the PID controllers. Note that for the vehicle no trajectory has
been defined, as only the depth is actuated.
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Figure 14. Simulation of moments produced by the robotic manipulators movement on the underwa-
ter vehicle.

Note that the motion induced on the vehicle, by the motion of the robotic manipulators,
is produced by the inertia of the vehicle and the reaction forces and moments produced by
the motion of the manipulators. Trajectory tracking starts at 10 s, which is why oscillating
movements are displayed in the orientation response of the manipulator vehicle. The effect
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on the vehicle can be observed when the movement of joint q2|k produces a change in the
orientation of the vehicle.

6.6. Simulation of the Complete Behavior of the UVMMS When Fully Actuated

In this test, a trajectory for all the elements of the UVMMS is defined. For the vehicle,
the next expressions are proposed:

ηd(t) =



xd = 0.5sin ( 2π
10 t)

yd = 0.5cos ( 2π
10 t)

zd = h
t2−t1

(t − t1)

ϕd = 0, θd = 0

ψd =

∣∣∣∣ 3π
2 − 2π

10 t
2π

∣∣∣∣
(43)

where h = 0.5 m, with a simulation time of 20 s. The trajectory for the first manipulator is
defined in task space, relative to the attachtment point, as follows:

Pd(t) =


xd = 0.08sin ( 2π

5 t) + 0.24
yd = 0
zd = 0.08cos ( 2π

5 t) + 0.11
(44)

The actual trajectories for the manipulator in joint space are obtained using inverse
kinematics. Trajectory tracking is implemented using the controller gains defined in the
previous test, which are shown on Tables 4 and 5. The trajectory-tracking response of the
UVMMS generalized coordinates is presented in Figure 15.

Note that even when all the actuators of the system are controlled in this test, it is
still possible to note the interactions forces between the systems; however, the effects are
attenuated by the actuators.
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Figure 15. Simulation of the complete behavior of the UVMMS when fully actuated.

Figure 16 shows the 3D representation of the trajectory followed by the UVMMS in the
last test, which is a spiral movement of the underwater vehicle, maintaining the orientation
to the center of the spiral.
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Figure 16. 3D representation of the spiral path used for fully actuated simulation.

7. Discussion

The importance of obtaining a model for an underwater vehicle multi-manipulator
system (UVMMS) is to know the effects of interaction by coupling and propose an adequate
control strategy. The Newton–Euler formulation was used to model the dynamics of an
underwater 3-DOF anthropomorphic robot due to the analysis of the forces and reaction
pairs between the links, providing sufficient information to adhere to the model of the
underwater vehicle. The results obtained were as expected, observing the coupling effects
between an underwater vehicle and a manipulator robot by following individual trajectories
in synchrony by simulation.

Equations (23) and (26) are equivalent to the representation of Craig [17] (Equa-
tions (6.47) and (6.48)) with relative linear velocity and acceleration equal to zero, because
rotational joints where considered.

Note that Craig denotes the linear acceleration of link l relative to the inertial frame,
rotated to the local frame, as l v̇l , in contrast with the presented work where it is denoted
by al

l/n. The reader must not confuse al
l/n with v̇l

l/n, in the notation of the presented work,
because the latter represents the derivative of velocity expressed in local frame.

In fact, the relation between these variables is obtained by multiplying Equation (1) by
Rl

n, as follows:
al

l/n = v̇l
l/n + ωl

l/n × vl
l/n (45)

Equation (26) is also equivalent to the acceleration calculated by Fossen [15] (Equa-
tion (3.33)) in the analysis of the CoG of an underwater vehicle. The equivalence is evident
when substituting Equation (45) in (26).

There are several examples in the literature that show the equivalences between the
dynamic model obtained using NE and EL (Euler–Lagrange) methods. In particular, the
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formulation of Spong [27] is clear and well explained. Although he uses a different conven-
tion to locate the frames on the links, the presented properties of the skew matrices were
useful for the authors of the presented work to represent the velocities and accelerations in
a vector and non-matrix manner, having the advantage of the reduction of terms.

The approach consulted in [28] is a combination of the NE and EL (Euler–Lagrange)
methods, expressed in a matrix manner and where the parameters are simplified assuming
that the vehicle body is symmetrical in most of its planes. Although the analysis begins with
the expression of velocities and accelerations over their 6-DOF, it ends up being expressed
with the EL formulation.

Other works that use a decoupled approach [29–31], are also equivalent to the pre-
sented work because, as shown in Section 2, the corresponding equations are particular
cases of the general equations of motions presented in this work.

8. Conclusions

This work shows the analysis of kinematic, kinetic, and dynamic behavior of multi-
ple manipulators coupled to an underwater vehicle (UVMMS) through the approaches:
refined, intermediate, and approximate. In the first approach, the links of the UVMMS
are presented individually, being expressed by the equations given by the NE recursive
algorithm (forward recursion and backward recursion). For the intermediate approach,
the elements are reduced because the links of the manipulators are taken as a set, where
the dynamics of the UVMMS is defined as the behavior produced by the interaction of the
vehicle and the manipulators. The coarsed approach considers UVMMS as a single system,
that is, it is a unification of the three approaches. It should be noted that in each approach
external forces derived from the underwater environment are considered.

The model is validated with a simulation of the UVMMS that uses an underwater
vehicle with parameters from a commercial BlueRobotics [24,25] platform and four 3-DOF
anthropomorphic manipulator robots. In the response of the generalized coordinates of
the UVMMS it is observed that in a simulation time of 50 s and 55 s some oscillations
occur in different trajectory tracking, due to the implemented controller. As modeling was
emphasized in this project, a control that considered the model was not considered, only
that it evaluated it; however, as future work we have to work on a control that includes the
model, as well as personalized tasks for the manipulators.

Author Contributions: Conceptualization, G.L.-G. and R.S.N.-C.; methodology, G.L.-G., R.S.N.-C.
and E.D.A-Y.; software, E.D.A-Y.; validation, R.S.N.-C.; formal analysis, J.H.-V.; investigation, G.L.-G.,
R.S.N.-C., E.D.A-Y., J.H.-V., G.C.-G., C.R.-G.; resources, G.C.-G. and C.R.-G.; data curation, G.L.-G.,
R.S.N.-C. and E.D.A-Y.; writing—original draft preparation, G.L.-G.; writing—review and editing,
R.S.N.-C.; visualization, E.D.A-Y.; supervision, R.S.N.-C.; project administration, R.S.N.-C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Butcher, P.A.; Colefax, A.P.; Gorkin, R.A., III; Kajiura, S.M.; López, N.A.; Mourier, J.; Purcell, C.R.; Skomal, G.B.; Tucker, J.P.; Walsh,

A.J.; et al. The drone revolution of shark science: A review. Drones 2021, 5, 8. [CrossRef]
2. Guedes, G.H.S.; Araújo, F.G. Underwater drones reveal different fish community structures on the steep slopes of a tropical

reservoir. Hydrobiologia 2022, 849, 1301–1312. [CrossRef] [PubMed]
3. Chassignet, E.P.; Xu, X.; Zavala-Romero, O. Tracking marine litter with a global ocean model: Where does it go? Where does it

come from? Front. Mar. Sci. 2021, 8, 667591. [CrossRef]
4. Escobar-Sánchez, G.; Markfort, G.; Berghald, M.; Ritzenhofen, L.; Schernewski, G. Aerial and underwater drones for marine litter

monitoring in shallow coastal waters: Factors influencing item detection and cost-efficiency. Environ. Monit. Assess. 2022, 194, 863.
[CrossRef] [PubMed]

http://doi.org/10.3390/drones5010008
http://dx.doi.org/10.1007/s10750-021-04790-9
http://www.ncbi.nlm.nih.gov/pubmed/35125510
http://dx.doi.org/10.3389/fmars.2021.667591
http://dx.doi.org/10.1007/s10661-022-10519-5
http://www.ncbi.nlm.nih.gov/pubmed/36219322


Machines 2024, 12, 94 25 of 25

5. Bingham, B.; Foley, B.; Singh, H.; Camilli, R.; Delaporta, K.; Eustice, R.; Mallios, A.; Mindell, D.; Roman, C.; Sakellariou, D.
Robotic tools for deep water archaeology: Surveying an ancient shipwreck with an autonomous underwater vehicle. J. Field
Robot. 2010, 27, 702–717. [CrossRef]

6. Seidel, M.; Frey, T.; Greinert, J. Underwater UXO detection using magnetometry on hovering AUVs. J. Field Robot. 2023, 40,
848–861. [CrossRef]

7. Simetti, E.; Werlingh, F.; Torelli, S.; Bibuli, M.; Odetti, A.; Bruzzone, G.; Rizzini, D.L.; Aleotti, J.; Palli, G.; Moriello, L.; et al.
Autonomous underwater intervention: Experimental results of the maris project. IEEE J. Ocean. Eng. 2017, 43, 620–639. [CrossRef]

8. Cai, M.; Wang, Y.; Wang, S.; Wang, R.; Ren, Y.; Tan, M. Grasping marine products with hybrid-driven underwater vehicle-
manipulator system. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1443–1454. [CrossRef]

9. Kim, J.; Kim, T.; Song, S.; Sung, M.; Yu, S.C. Parent-child underwater robot-based manipulation system for underwater structure
maintenance. Control Eng. Pract. 2023, 134, 105459. [CrossRef]

10. Chen, G.; Peng, W.; Wang, Z.; Tu, J.; Hu, H.; Wang, D.; Zhu, L. Modeling of swimming posture dynamics for a beaver-like robot.
Ocean. Eng. 2023, 279, 114550. [CrossRef]

11. Chen, G.; Xu, Y.; Yang, C.; Yang, X.; Hu, H.; Chai, X.; Wang, D. Design and control of a novel bionic mantis shrimp robot.
IEEE/ASME Trans. Mechatronics 2023, 28, 3376–3385. [CrossRef]

12. Fossen, T.I. Guidance and Control of Ocean Vehicles; Wiley: New York, NY, USA, 1994; Volume 199.
13. Tarn, T.J.; Shoults, G.A.; Yang, S.P. A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method.

Auton. Robots 1996, 3, 269–283. [CrossRef]
14. Scholberg, I. Modeling and control of underwater vehicle-manipulator systems. In Proceedings of the Conference of Marine Craft

Maneuvering and Control, Southampton, UK, 7–9 September 1994.
15. Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Chichester, UK, 2021.
16. Dombre, E.; Khalil, W. (Eds.) Robot Manipulators: Modeling, Performance Analysis and Control; John Wiley & Sons: Chichester,

UK, 2013.
17. Craig, J.J. Robótica; Pearson: Upper Saddle River, NJ, USA, 2006.
18. Murray, R.M.; Li, Z.; Sastry, S.S. A Mathematical Introduction to Robotic Manipulation; CRC Press: Boca Raton, FL, USA, 2017.
19. Bruno, S.; Lorenzo, S.; Luigi, V.; Giuseppe, O. Robotics: Modelling, Planning and Control; Springer: London, UK, 2009.
20. Dhanak, M.R.; Xiros, N.I. (Eds.) Springer Handbook of Ocean Engineering; Springer: Cham, Switzerland, 2016.
21. Li, R.; Anvar, A.P.; Anvar, A.M.; Lu, T.F. Dynamic modeling of underwater manipulator and its simulation. Int. J. Mech.

Mechatronics Eng. 2012, 6, 2611–2620.
22. Barbalata, C. Modelling and Control of Lightweight Underwater Vehicle-Manipulator Systems. Doctoral Dissertation, Heriot-Watt

University, Edinburgh, UK, 2017.
23. Antonelli, G. Underwater Robots: Motion and Force Control of Vehicle-Manipulator Systems; Springer: Berlin, Germany, 2006; Volume 2.
24. BlueRobotics. 2023. Available online: https://bluerobotics.com/store/rov/\bluerov2-upgrade-kits/brov2-heavy-retrofit/

(accessed on 29 November 2023 ).
25. Wu, C.J. 6-DOF Modelling and Control of a Remotely Operated Vehicle. Doctoral Dissertation, College of Science and Engineering,

Flinders University, Bedford Park, Australia, 2018.
26. Antonelli, G. Modelling of Underwater Robots. Underw. Robots 2013, 39, 23–63.
27. Spong, M.W.; Hutchinson, S.M.V. Robot Modelling and Control; John Wiley & Sons: Hoboken, NJ, USA, 2006.
28. Han, H.; Wei, Y.; Ye, X.; Liu, W. Modeling and fuzzy decoupling control of an underwater vehicle-manipulator system. IEEE

Access 2020, 8, 18962–18983. [CrossRef]
29. Zheng, X.; Tian, Q.; Zhang, Q. Development and Control of an Innovative Underwater Vehicle Manipulator System. J. Mar. Sci.

Eng. 2023, 11, 548. [CrossRef]
30. Chang, Z.; Zhang, Y.; Zheng, Z.; Zhao, L.; Shen, K. Dynamics Simulation of Grasping Process of Underwater Vehicle-Manipulator

System. J. Mar. Sci. Eng. 2021, 9, 1131. [CrossRef]
31. Hachicha, S.; Zaoui, C.; Dallagi, H.; Nejim, S.; Maalej, A. Innovative design of an underwater cleaning robot with a two arm

manipulator for hull cleaning. Ocean. Eng. 2019, 181, 303–313. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/rob.20350
http://dx.doi.org/10.1002/rob.22159
http://dx.doi.org/10.1109/JOE.2017.2733878
http://dx.doi.org/10.1109/TASE.2019.2957782
http://dx.doi.org/10.1016/j.conengprac.2023.105459
http://dx.doi.org/10.1016/j.oceaneng.2023.114550
http://dx.doi.org/10.1109/TMECH.2023.3266778
http://dx.doi.org/10.1007/BF00141159
https://bluerobotics.com/store/rov/ \ bluerov2-upgrade-kits/brov2-heavy-retrofit/
http://dx.doi.org/10.1109/ACCESS.2020.2968063
http://dx.doi.org/10.3390/jmse11030548
http://dx.doi.org/10.3390/jmse9101131
http://dx.doi.org/10.1016/j.oceaneng.2019.03.044

	Introduction
	Kinematics
	General Motion between Two Moving Frames
	Angular Motion
	Linear Motion

	Movement of the Vehicle
	Movement of Manipulator Links
	Movement of the CoG

	Kinetics
	General Motion of a Rigid Body
	Movement of Manipulator Links
	Movement of the Vehicle

	External Forces
	Restoring Forces
	Added Mass Forces
	Damping Forces

	Different Approaches in Numerical Implementation of the Mathematical Model
	Refined Approach
	Intermediate Approach
	Coarse Approach

	Simulation Validation
	Vehicle's Parameters
	Manipulator's Parameters
	Complete Simulation Diagram
	Simulation of Moments Produced by the Underwater Vehicle Movement on the Robotic Manipulators
	Simulation of Moments Produced by the Robotic Manipulators Movement on the Underwater Vehicle
	Simulation of the Complete Behavior of the UVMMS When Fully Actuated

	Discussion
	Conclusions
	References

