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Abstract: Advances in machining technology and materials science impose the identification of
optimal settings for process-related parameters to maintain high quality and process efficiency. Given
the available resources, manufacturers should determine an advantageous process parameter range
for their settings. In this work, the machinability of a special tool steel (UNIMAX® by Uddeholm,
Sweden) under dry CNC turning is investigated. The working material is examined under two states;
annealed and hardened. As major machinability indicators, main cutting force Fz (N) and mean
surface roughness Ra (µm) were selected and studied under different values for the cutting conditions
of cutting speed, feed rate, and depth of cut. A systematic experimental design was established as per
the response surface methodology (RSM). The experimental design involved twenty base runs with
eight cube points, four center points in the cube, six axial points, and two center points in the axial
direction. Corresponding statistical analysis was based on analysis of variance and normal probability
plots for residuals. Two regression models referring to main cutting force and surface roughness
for both the annealed and hardened states of the material were developed and used as objective
functions for subsequent evaluations by three modern meta-heuristics under the goal of machinability
optimization, namely multi-objective grey wolf algorithm, multi-objective multi-verse algorithm
and multi-objective ant lion algorithm. All algorithms were found capable of providing beneficial
Pareto-optimal solutions for both main cutting force and surface roughness simultaneously whilst
regression models achieved high correlation among input variables and optimization responses.

Keywords: UNIMAX® tool steel; dry CNC turning; main cutting force; surface roughness; multi-
objective optimization; grey wolf algorithm; multi-verse algorithm; ant lion algorithm

1. Introduction

Cold-work tool steels constitute the majority of materials used for numerous industrial
applications, where the temperature is below 200 ◦C. Typical mechanical properties of
cold-work tool steels have high hardness [1,2], high wear resistance, and good toughness
and compressive strength [3]. As major alloying elements for tool steels, carbon and
carbide-forming elements such as Cr, Mo, V, and W are used. Carbon content may typically
vary from 0.5 to 2.5 wt.% C and other values, whilst other alloying elements may vary from
1 to 13 wt.%. Representative examples of commercially available tool steels are AISI H13
(ORVAR®), CALMAX®, Sverker® 21, and UNIMAX® to name a few. UNIMAX® is a high-
hardness electro-slag, remelted tool steel which provides great wear resistance even over
extended working timespans at elevated temperatures. As such, it is suitable for coating
and nitriding. UNIMAX® performs very well in the precision forging, hot stamping, and
molding of reinforced plastics. In this process, a conventionally solidified ingot is used as
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an electrode and slag is placed at the bottom of the furnace. Heat is produced when a high
AC current is passed from the electrode to the slag. Due to the high electrical resistivity
of the slag, it melts first. The electrode starts melting when it is submerged in the molten
bath of slag. The molten steel and the slag are contained in a copper mold which is cooled
by water. The droplets of molten steel are denser than the slag and hence pass through
it. They are collected in the pool of molten steel which solidifies with time. The highly
reactive slag used in the electro-slag remelting operation removes the oxide inclusions and
reduces the sulfur content [4]. In contrast to the “up-hill casting” technique [4,5] the higher
solidification rate achieved in electro-slag remelting reduces carbide banding, carbide size
and grain size. In most applications, special tool steels may be used after proper heat
treatment in controlled environments. The typical range for heat treatment is between 45 to
65 HRC [6]. Since most of these materials are difficult to machine, a significant number of
research contributions have been devoted for investigating the machinability indicators
and different manufacturing processes, i.e., cutting forces and surface roughness [7–11].
All special engineering alloys, including UNIMAX®, require the proper selection of cutting
tool materials, especially in the case of finish machining. Noticeable contributions in the
field have reported the usage of cubic boron nitride tools and polycrystalline diamond
tools in the form of cutting inserts. Such materials are mandatory for maintaining surface
finish and accuracy. The rationale behind their selection is the fact that ordinary cutting
materials do not sustain their chemical stability during the machining process; they exhibit
rapid tool wear owing to high temperatures and strong adhesion. Cutting tool selection
should also be based on proper geometry according to the machining stage. Normally,
hard-turning cutting inserts have an 0.8 mm tool tip radius whilst those used for finish-
turning have a smaller tool tip radius equal to 0.4 mm. Even though these conventional
geometries have been widely applicable, they may restrict productivity or deteriorate
quality owing to the narrow range for selecting feed rates. A cutting insert with large
tool tip radius will maintain surface quality, but it will lead to higher cutting forces and
chattering. On the contrary, cutting inserts with smaller radii will reduce cutting force, but
they dramatically restrict the applicable range of feed rate selection for maintaining a good
surface finish. To balance this trade-off between productivity and surface finish, wiper
geometries for cutting inserts have been developed to provide an alternative to high surface
finish [12–23]. Undoubtedly, every manufacturing process is affected by its corresponding
process parameters. To determine feasible or even advantageous settings for process
parameters, handbooks and cutting tool catalogues are available to practitioners to select
specific values from a constrained applicable range. However, such recommended ranges
for setting process parameters are far from being optimal to satisfy performance metrics. In
addition, with new developments and novel aspects concerning modern materials, such
recommendations are yet to be provided. Based on this context, artificial intelligence and
soft computing techniques [24–30] are continuously implemented to provide advantageous
solutions to almost any manufacturing process.

This work investigates the effect of rotational speed, feed rate, and depth of cut on
main cutting force and surface roughness during the dry CNC turning of UNIMAX® tool
steel (Uddeholm-Sweden) under two discrete states; one soft annealed to approximately
180 HB/10 HRC (delivery condition) and one hardened to approximately 513–534 HB/
53–54 HRC. Statistical outputs are further examined to create robust regression models and
utilize them as objective functions to optimize the dry CNC turning process for UNIMAX®

tool steel. As regards this particular material, research results have yet to be presented to
facilitate industrial applications. The work contributes to practical decision-making when
it comes to the selection of optimal cutting parameters for the CNC turning of UNIMAX®

tool steel in soft-annealed and hardened conditions with a predetermined hardness range.
The results come with the novel aspect of generally implementing several variants of
new intelligent algorithms for optimizing the CNC turning operations of difficult-to-cut
materials and alloys such as the one studied in the current work.
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2. Materials and Methods
2.1. Design of Experiments

Aiming at examining the influence of the independent variables n (rpm), f (mm/rev),
and a (mm) on the responses of the Fz (N) and Ra (µm) experiments, CNC turning exper-
iments were executed considering the experimental protocol. Central composite design
(CCD) is an important approach in response surface methodology (RSM). It allows for
determining the corner, axial, and center points of the design and therefore it can lead to
more controllable solution domains for fitting a second-order regression model. However,
the CCD approach has the drawback of involving a relatively large number of experimental
runs owing to experimental replicates. As a result, the CCD method would be better
selected when the number of independent variables is low (i.e., three parameters). In the
current study, the three independent parameters give a reasonable number of experimental
runs. By maintaining uniform accuracy for three-factor experimentation, 8 factorial points,
6 axial points, and 6 center runs, 20 experimental runs were generated. The experimental
design is summarized in Table 1. Note that spindle speed n (rpm) is not considered as a
main cutting condition parameter, and cutting speed, Vc (m/min), which is the peripheral
speed of the workpiece, should be taken into account instead or at least to accompany the
resulting rotational speed given the initial diameter of the workpiece. Consequently Table 1
gives the three levels of cutting speed Vc (m/min) corresponding to the spindle speed’s
experimental levels.

Table 1. Cutting parameters and corresponding experimental levels.

Central Composite Design of Experiments

Parameter Symbol Level

Low (−1) Center (0) High (1) Unit

Spindle speed
(Cutting speed)

n
(Vc)

1500
(141)

1750
(165)

2000
(188) rpm (m/min)

Feed rate f 0.050 0.125 0.200 mm/rev

Depth of cut a 0.500 1.000 1.500 mm

UNIMAX® tool steel of the known Swedish manufacturer Uddeholm® was used in
its delivery condition, i.e., 180 HB (10 HRC) and in a hardened state with a hardness
equal to 513–534 HB (53–54 HRC). Two pre-machined rods, 30 mm in diameter, 300 mm
length, having ten discrete zones separated by 5 mm grooves were used for the main
experiments for ensuring chip removal (Figure 1). Figure 1a illustrates a pre-processed
and a finished rod whilst Figure 1b depicts the CBN wiper cutting insert that was used
(SECO® TNGA332S-00820-L1-C, CBN200) held on a PTJNR 2525M16 insert holder. The
surface roughness of the initial samples was found to be equal to 2.26 and 1.87 for the “as
received” and “hardened” material conditions, respectively.

The machining experiments were conducted using a HAAS® TL-1 CNC turning center
(Figure 2a). The CNC turning center was equipped with a three-component KISTLER® dy-
namometer accompanied with its corresponding data acquisition interface (Labview® mod-
ule) to collect online measurements for the three components of cutting forces (Figure 2b).
The TESA® Rugosurf 10-G portable roughness tester (Figure 2c) was used for collecting the
measurements for mean surface roughness Ra (µm).
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Figure 2. Experimental set-up. (a) The HAAS® TL-1 CNC turning center with KISTLER® three-
component cutting force dynamometer; (b) Labview® environment to measure cutting force signals;
(c) TESA® Rugosurf 10 G setup for roughness measurements.

2.2. Experimental Results

The actual measurements of main cutting force Fz, were further examined to compute
the average values from raw data. The average values from the meaningful regions (i.e.,
where high cutting force signals occurred) were calculated to establish the first response. To
examine surface roughness, each cutting zone was measured three times on the periphery
of the work piece at an angle of 120◦ and the mean value was kept to represent the final
result. To distinguish the two material conditions of the working material, the terms “AR”
and “HRD” were adopted. The former term refers to the “as received” (annealed) state
of UNIMAX®, whereas the latter (HRD) corresponds to the hardened material condition.
The asterisk “*” in the experimental results denotes the corrected values in the response
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surface experiments based on the CCD design. The effect of the machining parameters as
well as the error estimation were studied using analysis of variance (ANOVA). The results
for the two responses of Fz and Ra referring to both material conditions of the examined
UNIMAX® steel are summarized in Table 2.

Table 2. Experimental results for main cutting force (Fz) and surface roughness (Ra).

No. n/(Vc)
(rpm)/(m/min) f (mm/rev) a

(mm)
Fz

(N) AR
Fz

(N) HRD
Ra

(µm) AR
Ra (µm)

HRD

1 1500 (141) 0.050 0.50 140.760 120.644 4.499 1.291

2 2000 (188) 0.050 0.50 98.581 120.270 4.453 1.261

3 1500 (141) 0.200 0.50 170.008 280.139 6.778 4.279

4 2000 (188) 0.200 0.50 220.991 250.178 6.587 4.081

5 1500 (141) 0.050 1.50 220.166 320.886 4.931 1.753

6 2000 (188) 0.050 1.50 200.773 270.034 4.511 1.325

7 1500 (141) 0.200 1.50 430.855 580.945 6.863 4.362

8 2000 (188) 0.200 1.50 320.351 570.847 6.563 4.040

9 1750 (165) 0.125 1.00 340.837 410.206 5.134 2.349

10 1750 (165) 0.125 1.00 340.263 410.124 5.122 2.251

11 1750 (165) 0.125 1.00 340.936 410.553 4.996 1.969

12 1750 (165) 0.125 1.00 340.957 410.326 4.819 1.612

13 1342 * (126) 0.125 1.00 280.011 340.845 5.054 1.846

14 2158 * (203) 0.125 1.00 295.215 300.899 4.782 1.574

15 1750 (165) 0.025 * 1.00 180.069 210.112 4.468 1.260

16 1750 (165) 0.250 * 1.00 400.445 410.702 11.434 9.226

17 1750 (165) 0.125 0.18 * 80.407 90.524 5.205 1.997

18 1750 (165) 0.125 1.82 * 392.834 430.412 5.384 2.176

19 1750 (165) 0.125 1.00 340.529 410.353 5.358 2.150

20 1750 (165) 0.125 1.00 340.023 410.152 5.251 2.043

St.Dev. 102.768 135.341 1.575 1.863

Mean 273.751 337.958 5.610 2.642

Median 307.783 375.485 5.128 2.02

Range 350.448 490.421 6.981 7.966

* Experimental values with reference to “alpha” factor of CCD design.

MINITAB® R17 software was used to statistically analyze the experimental data. The
regression models generated as per the full quadratic response surface regression depiction
are shown in Equation (1) up to Equation (4) for Fz-AR (N), Fz-HRD (N), Ra-AR (µm) and
Ra-HRD (µm), respectively.

Fz-AR (N) = −1617 + 1.589 × n + 1811 × f + 687 × a − 0.000423 × n2−6018 × f2−180.3 × a2 + 0.014 × n × f − 0.1387 ×
n × a + 595 × f × a

(1)

Fz-HRD (N) = −1282 + 1.305 × n + 2025 × f + 538 × a − 0.000380 × n2−7105 × f2−184.3 × a2 + 0.074 × n × f − 0.0306 ×
n × a + 905 × f × a

(2)
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Ra-AR (µm) = −5.09 + 0.0116 × n − 26.3 × f + 1.65 × a − 3 × 10−5 × n2 + 186.1 × f2 − 0.251 × a2 − 0.0002 × n × f −
0.00048 × n × a − 1.43 × f × a

(3)

Ra-HRD (µm) = −9.18 + 0.01259 × n−29.5 × f + 1.88 × a − 4 × 10−5 × n2 + 218.0 × f2−0.317 × a2 − 0.0004 × n × f −
0.00052 × n × a −1.61 × f × a

(4)

Tables 3–6 summarize the results obtained by the analysis of variance (ANOVA) with reference
to the experimental results. In the ANOVA, a result of less than 0.05 for the p-value suggests that
the corresponding independent variable is significant. When it comes to lack-of-fit, the p-value must
be greater than 0.05 to exhibit insignificance. An insignificant lack-of-fit is preferred, suggesting a
negligible error contribution to the model.

Table 3. ANOVA table for response surface regression: Fz (N)-AR vs. n, f, a.

Source DF Seq.SS Contribution % Adj.SS Adj.MS F-Val. p-Val.

Model 9 188,566 93.97 188,566 20,951.8 17.32 <0.005
Linear 3 137,073 68.31 128,711 42,903.6 35.46 <0.005
n (rpm) 1 696 0.35 657.0 657.0 0.54 0.478
f (mm/rev) 1 53,315 26.57 41,005 41,004.9 33.89 <0.005
a (mm) 1 83,062 41.39 87,049 87,048.9 71.95 <0.005
Square 3 45,100 22.48 45,100 15,033.3 12.43 0.001
n2 1 6729 3.35 9252 9251.6 7.65 0.020
f 2 1 11,057 5.51 12,192 12,192.4 10.08 0.010
a2 1 27,314 13.61 27,314 27,314.2 22.58 0.001
2-way int. 3 6393 3.19 6393 2131.0 1.76 0.218
n × f 1 1 0 1 0.5 0 0.984
n × a 1 2405 1.20 2405 2404.7 1.99 0.189
f × a 1 3988 1.99 3988 3987.6 3.30 0.100
Error 10 12,098 6.03 12,098 1209.8
Lack-of-fit 5 12,097 6.03 12,097 2419.5 6.56 0.235
Pure error 5 1 0 1 0.1
Total 19 200,664 100

R2 93.97%

Table 4. ANOVA table for response surface regression: Fz (N)-HRD vs. n, f, a.

Source DF Seq.SS Contribution % Adj.SS Adj.MS F-Val. p-Val.

Model 9 339,052 97.42 339,052 37,672 41.99 <0.005
Linear 3 280,464 80.59 269,026 89,675 99.95 <0.005
n (rpm) 1 1837 0.53 1687 1687 1.88 0.200
f (mm/rev) 1 103,913 29.86 83,447 83,447 93.01 <0.005
a (mm) 1 174,714 50.20 183,892 183,892 204.97 <0.005
Square 3 49,244 14.15 49,244 16,415 18.30 <0.005
n2 1 5102 1.47 7466 7466 8.32 0.016
f 2 1 15,623 4.49 16,996 16,996 18.94 <0.005
a2 1 28,519 8.19 28,519 28,519 31.79 <0.005
2-way int. 3 9345 2.69 9345 3115 3.47 0.059
n × f 1 16 0 16 16 0.02 0.898
n × a 1 117 0.03 117 117 0.13 0.725
f × a 1 9212 2.65 9212 9212 10.27 0.009
Error 10 8972 2.58 8972 897
Lack-of-fit 5 8972 2.58 8972 1794 4.25 0.244
Pure error 5 0 0 0 0
Total 19 348,024 100

R2 97.42%
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Table 5. ANOVA table for response surface regression: Ra (µm)-AR vs. n, f, a.

Source DF Seq.SS Contribution % Adj.SS Adj.MS F-Val. p-Val.

Model 9 43.4157 92.12 43.4157 4.8240 12.98 <0.005
Linear 3 30.8937 65.55 36.7643 12.2548 32.98 <0.005
n (rpm) 1 0.1473 0.31 0.1421 0.1421 0.38 0.550
f (mm/rev) 1 30.6931 65.12 36.5846 36.5846 98.46 <0.005
a (mm) 1 0.0533 0.11 0.0375 0.0375 0.10 0.757
Square 3 12.4698 26.46 4.1566 4.1566 11.19 0.002
n2 1 0.6894 1.46 0.5614 0.5614 1.51 0.247
f 2 1 11.7276 24.88 11.6648 11.6648 31.39 <0.005
a2 1 0.0529 0.11 0.0529 0.0529 0.14 0.714
2-way int. 3 0.0522 0.11 0.0174 0.0174 0.05 0.986
n × f 1 0.0001 0.00 0.0001 0.0001 0.00 0.989
n × a 1 0.0230 0.06 0.0292 0.0292 0.08 0.785
f × a 1 3.7158 0.05 0.0230 0.0230 0.06 0.809
Error 10 3.5361 7.88 0.3716 0.3716
Lack-of-fit 5 0.1797 7.50 0.7072 0.7072 1.68 0.187
Pure error 5 0.1797 0.38 0.0359 0.0359
Total 19 47.1315 100

R2 92.12%

Table 6. ANOVA table for response surface regression: Ra (µm)-HRD vs. n, f, a.

Source DF Seq.SS Contribution % Adj.SS Adj.MS F-Val. p-Val.

Model 9 62.9558 95.47 62.9558 6.9951 23.44 <0.005
Linear 3 45.9046 69.62 54.2317 18.0772 60.57 <0.005
n (rpm) 1 0.1517 0.23 0.1485 0.1485 0.50 0.497
f (mm/rev) 1 45.6974 69.30 54.0454 54.0454 181.09 <0.005
a (mm) 1 0.0555 0.08 0.0377 0.0377 0.13 0.730
Square 3 16.9874 25.76 16.9874 5.6625 18.97 <0.005
n2 1 0.8127 1.23 0.6532 0.6532 2.19 0.170
f 2 1 16.0906 24.40 15.9990 15.9990 53.61 <0.005
a2 1 0.0841 0.13 0.0841 0.0841 0.28 0.607
2-way int. 3 0.0638 0.10 0.0638 0.0213 0.07 0.974
n × f 1 0.0005 0.00 0.0005 0.0005 0.00 0.969
n × a 1 0.0341 0.05 0.0341 0.0341 0.11 0.742
f × a 1 0.0293 0.04 0.0293 0.0293 0.10 0.761
Error 10 2.9845 4.53 2.9845 0.2984
Lack-of-fit 5 2.6471 4.01 2.6471 0.5294 3.85 0.204
Pure error 5 0.3373 0.51 0.3373 0.0675
Total 19 65.9403 100

R2 95.47%

The Anderson–Darling normality test is used to validate the generated models’ suitability
referring to the Fz (N) and Ra (µm) responses. In the Anderson–Darling test, if p is lower than the
selected significance level (c.i. = 0.05), the data fails to follow a normal distribution. In this study,
the ANOVA results for the generated quadratic models, indicate that the models are suitable for
predicting Fz (N) and Ra (µm). The coefficient of determination (R2) indicates the percentage of total
variation in the response explained by the terms in the models. In the study, the ANOVA shows
that after examining the residuals for all four quadratic models referring to both material hardness
conditions of UNIMAX®, they are considered suitable for predicting Fz (N) and Ra (µm) with quite
high contributions, i.e., 93.97% for the main cutting force plot of the “AR” material condition, 95.10%
for the main cutting force plot of the “HRD” material condition, and 92.12% and 95.47% for surface
roughness in the “AR” and the “HRD” conditions, respectively. p-values for lack-of-fit are beyond
0.05 (Figure 3).
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With reference to the p-value for parameter effects, it has been concluded that in both the
cases of the annealed and the hardened UNIMAX® conditions, main cutting force Fz (N) is mainly
influenced by the linear terms, followed by the square terms and the interaction terms. Specifically,
for cutting force Fz, the linear terms in “AR” case of UNIMAX® are 68.59% significant, followed by
the square terms with 22.48% and 2-way interactions with 3.19%. Lack-of-fit error contributes as
much as 6.03%. Similarly, for cutting force Fz, the linear terms in the “HRD” case of UNIMAX® are
80.59% significant, followed by the square terms with 14.15% and 2-way interactions with 2.69%.
Lack-of-fit error contributes as much as 2.58%. In both cases for Fz, depth of cut primarily affects Fz,
followed by feed rate and spindle speed. When it comes to surface roughness, the linear terms in
the “AR” case of UNIMAX® are 65.55% significant, followed by the square terms with 26.46% and
2-way interactions with 0.11%. Lack-of-fit error contributes as much as 7.50%. Similarly, the linear
terms in the “HRD” case of UNIMAX® are 69.62% significant, followed by the square terms with
25.76% and 2-way interactions with 0.11%. Lack-of-fit error contributes as much as 4.01%. In both
cases for Ra, feed rate primarily affects Ra, followed by spindle speed and depth of cut. By examining
the individual effects of each process parameter on the responses of main cutting force Fz and surface
roughness Ra, the following results are observed. Referring to the main effects of the parameters
concerning main cutting force Fz, depth of cut a (mm) has the largest effect on main cutting force Fz
(N), followed by feed rate f (mm/rev) and rotational speed n (rpm) in both hardness conditions of
UNIMAX®. Main cutting force gradually increases with the increase in all three parameters, with
emphasis on depth of cut a (mm). Main cutting force reaches high values at middle levels of rotational
speed, and high levels for feed rate and depth of cut, while main cutting force is higher in the case
of the hardened condition of UNIMAX®. Figure 4a depicts the main effects of process parameters
on the main cutting force in the “AR” case (material “as received”) and Figure 4b depicts the main
effects of process parameters on the main cutting force in the “HRD” case (material “hardened”).

As far as the main effects of process parameters on surface roughness Ra are concerned, feed
rate f (mm/rev) has the largest effect on the response of surface roughness Ra (µm) in both material
conditions of UNIMAX. The most advantageous values for roughness are exhibited at middle levels
of feed rate, i.e., 0.2 mm/rev. Surface roughness gradually increases with an increase in rotational
speed (1750 rpm) and then becomes lower for n = 2000 rpm. Depth of cut does not seem to affect
surface roughness. Figure 5a depicts the main effects of process parameters on surface roughness
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in the “AR” case (material “as received”) whereas Figure 5b depicts the main effects of process
parameters on surface roughness in the “HRD” case (material “hardened”).
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condition of UNIMAX®.

Contour plots are an alternative depiction of 3D surfaces on a 2D illustration. They involve two
predictors (parameters) on the X and Y axes whilst the response is shown on the Z axis in the form of
a contour. Representative contour plots for Fz and Ra responses were created to show their variability
as functions of different pairs of independent variables. Figure 6 shows the resulting changes in
main cutting force and surface roughness when altering the two most influential process parameters
regarding the response under examination, i.e., feed rate with depth of cut for Fz and feed rate with
spindle speed for Ra.

It is clear that f (mm/rev) and a (mm) yield the largest effect on Fz (N) referring to both
material conditions. Main cutting force is maintained at low levels if moderate feeds are applied in
combination with low-to-moderate depths of cut. Main cutting force reaches its highest value close
to the highest feed rate levels and depth of cut. Figure 7 depicts the resulting tool wear by using
the cutting parameter values of the 7th experimental run (Table 1; n = 1500 rpm, f = 0.2 mm/rev,
a = 1.5 mm) for the HRD condition of UNIMAX® tool steel. It is shown that severe abrasion and
extensive tool wear are exerted on the insert’s tool nose owing to high levels of feed and linear speed
where more heat dissipates into the working sample during CNC dry turning.

Surface roughness is maintained at moderate to high spindle speeds, with low-to-moderate
feeds, while higher values for spindle may be used only in combination to moderate feeds to avoid
excessive tool wear, mainly referring to the hardened “HRD” UNIMAX® condition.
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3. Multi-Objective Optimization
For both UNIMAX® tool steel conditions, two bi-objective optimization problems have been

formulated and solved using three modern meta-heuristics, namely the multi-objective grey wolf
algorithm, MOGWO [28], the multi-verse optimization algorithm MOMVO, [29] and the multi-
objective ant lion algorithm, MOALO [30]. Fz and Ra are the two optimization objectives with respect
to the three cutting conditions of n (rpm), f (mm/rev), and a (mm). The solution domain has been
created by adhering to the same parameter low-high levels whilst each candidate solution is a vector
corresponding to the values of three machining parameters within their predefined ranges. The
two problems were examined with respect to the default settings for algorithm-specific parameters
by applying 20 individuals and 1000 generations as the maximum number for evaluations. The
simulations were run in MATLAB® 2014b. For all three algorithms, 50 results for the non-dominated
solutions were stored. Figure 7 depicts the strongest non-dominated solutions set observed by
conducting a series of independent runs to examine the variability in the optimal solutions. All
three algorithms managed to obtain a uniform set of non-dominated solutions that cover most of
the experimental region. Figure 8a depicts the non-dominated optimal solutions obtained by the
algorithms in the case of the “AR” UNIMAX® condition. MOGWO managed to cover almost the
entire Pareto space by providing all types of solutions, with others favoring either cutting force or
surface roughness. MOMVO and MOALO provided denser solution sets with emphasis on the center
of the Pareto fronts. This is the region where both objectives are facilitated, and their trade-off is
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balanced. Figure 8b depicts the non-dominated optimal solutions obtained by the algorithms in the
case of the “HRD” hardened UNIMAX® condition.
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By observing the Pareto fronts, the better coverage and spread of the non-dominated solutions
are shown. MOGWO managed to obtain a Pareto front of solutions with the largest spread covering
the entire experimental space. The majority of the solutions obtained by MOMVO and MOALO
cover the center of Pareto region where both objectives are favored. In general, all algorithms have
managed to provide beneficial solutions for optimizing the CNC turning of UNIMAX® tool steel for
both examined material conditions. However, noticeable observations lead to the conclusion that
the MOALO algorithm exhibited the best performance from the perspective that its corresponding
non-dominated solutions occupy the central region of the Pareto front as mentioned, whilst very few
solutions are shown to exist on maximized results referring to the Fz and Ra axes. This implies that
the MOALO algorithm managed to maintain an efficient balance between cutting force and surface
roughness, and this is justified by the indications of low cutting force results with a simultaneous
minimization of surface roughness. Each of the algorithms achieved better results from a different
perspective or performance metric, allowing an engineer to select a solution according to the specific
needs and interest in terms of machinability requirements. Therefore, it is the job of the end user to
decide which of these solutions should be implemented regarding production needs and priorities in
terms of machining objectives.

4. Conclusions
In this study, the effect of CNC turning parameters, namely, spindle speed n, feed rate f, and

depth of cut a was examined by considering main cutting force Fz and surface roughness Ra as
major machinability responses. This research refers to two conditions of the UNIMAX® tool steel:
as-received (soft-annealed, 10 HRC) and hardened (53–54 HRC). Response surface methodology was
adopted to establish the experimental design under the central composite design (CCD) approach.
ANOVA and regression analysis were the two key statistical tools that were used to interpret the
results. Normal probability and contour plots were investigated to study the variability of the effects
of independent turning parameters. The experimental results were further used for generating
regression models that served as objective functions for optimizing the objectives of Fz and Ra using
three cutting-edge intelligent algorithms, namely, MOGWO, MOMVO, and MOALO. The findings of
the study are summarized as follows:

• When finish-turning the UNIMAX® in its hardened “HRD” condition, main cutting force Fz is
approximately 19% larger than the one corresponding to the “AR” (soft-annealed) state. Yet,
surface roughness is reduced to 47.1% providing a superior surface finish.

• According to the analysis of variance, the hierarchy of the effects of the cutting parameters in
terms of cutting force suggests the linear terms, the square terms, and finally the interaction
terms, regardless of the material conditions.

• Depth of cut and feed rate are influential cutting parameters for main cutting force, whilst feed
rate and spindle speed are influential cutting parameters for surface roughness, regardless of the
material conditions. Both objectives of main cutting force Fz and surface roughness Ra alter their
experimental trends from one condition to another with quite high complexity. This can justify
the implementation of intelligent algorithms to solve multi-objective optimization problems.
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• There is no clear superiority in the application of multi-objective intelligent algorithms to this
case of the machinability optimization problem. However, the different algorithms may exhibit
different performance behavior affecting computational costs depending on the problem under
question. Algorithms should be tested by conducting several evaluations and examining their
statistical outputs to gain a clear understanding of their performance. Final selections for the
settings of advantageous machining parameters to facilitate all objectives under study should
be based on requirements corresponding to the production and shop floor’s resources.
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