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Abstract: This study aims to propose a sampled-data control technique, utilizing a linear matrix
inequality (LMI) approach, to achieve string-stable vehicle platooning in a cooperative adaptive
cruise control (CACC) system with communication delays. To do this, a decentralized sampled-data
controller design technique that combines one controller using sensor measurements and another
one utilizing vehicle-to-vehicle (V2V) communication, ensuring both individual and string stability,
is proposed first. Next, a memory sampled-data control (MSC) approach is presented to account
for transmission delays in V2V communication. Additionally, an improved Lyapunov–Krasovskii
functional (LKF) is presented to improve computational complexity and sampling performance. The
design conditions are formulated as linear matrix inequalities (LMIs) in the time domain, facilitating
efficient stability analysis and optimization. Finally, vehicle platooning simulations are provided to
validate the effectiveness and feasibility of the proposed technique.

Keywords: cooperative adaptive cruise control (CACC); communication delays; linear matrix
inequality (LMI) approach; sampled-data control; string stability; vehicle platooning

1. Introduction

Adaptive cruise control (ACC) is an established driver assistance technology that auto-
matically adjusts a vehicle’s velocity to maintain a safe distance from the vehicle ahead [1].
ACC utilizes sensors such as radar or LiDAR to detect the distance and speed of the pre-
ceding vehicle, enabling the vehicle to autonomously accelerate or decelerate to match
the traffic conditions. Recently, there has been a growing focus on cooperative adaptive
cruise control (CACC), an expanded technology of ACC that improves safety, efficiency,
and traffic flow through vehicle-to-vehicle (V2V) communication and collaboration [2,3].
This advanced expansion has sparked significant research interest and ongoing studies to
investigate the potential benefits of CACC. In particular, CACC enables vehicles to form
closely spaced groups called platoons, where vehicles move in a coordinated manner [4–11].
By enabling vehicles to exchange information, CACC enhances the coordination and co-
operation among vehicles in a platoon. This cooperative aspect allows for more precise
velocity control and tighter vehicle spacing, which can further reduce congestion and
enhance fuel efficiency.

Meanwhile, guaranteeing string stability is crucial in vehicle platoon control to prevent
disturbances or uncertainties from amplifying and causing instability. Achieving this often
involves complex processes in the frequency domain, where parameters are manually de-
termined to obtain a transfer function that represents the signal flow between the preceding
and following vehicles while ensuring its magnitude remains limited to one [12–17]. Due to
the inefficiency of determining parameters through trial and error in the frequency domain,
recent studies [18,19] have proposed a controller synthesis method for CACC that applies
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a time domain definition to string stability and autonomously derives the parameters.
When it becomes possible to analyze string stability in the time domain, controller design
conditions can be expressed using linear matrix inequalities (LMIs), simplifying the process
of specifying system requirements and constraints. Additionally, the use of LMIs enables
efficient stability analysis and optimization, facilitating the evaluation of performance and
robustness in platoon control systems. By considering the trade-off between performance
and robustness, this approach contributes to the design of platoon control systems that
achieve string stability while satisfying desired performance objectives.

In the CACC scheme, vehicles rely on both signals from the preceding vehicle mea-
sured by the sensors attached to the ego vehicle and transmitted via V2V communication.
To facilitate V2V communication in CACC, sampled signals need to be utilized. Sam-
pled signals significantly improve transmission efficiency by reducing the amount of data
exchanged between vehicles. This conserves communication bandwidth, minimizes con-
gestion on the communication channels, and enables efficient and reliable information
exchange. In conclusion, the use of sampled signals in CACC offers advantages such as
improved transmission efficiency and reliability, making the application of sampled-data
control techniques practical and applicable in the development and implementation of
CACC systems. However, considering that most studies on CACC have been conducted
in the continuous-time domain, there is a need for ongoing studies on the sampled-data
control approach [20] to CACC.

On the other hand, the constant time headway (CTH) strategy, which aims to main-
tain a fixed time gap between the preceding and following vehicles within a platoon, is
widely used as the inter-vehicle spacing strategy in CACC systems [21,22]. To achieve this,
information about the acceleration of the preceding vehicle is crucial. Without information
about the preceding vehicle’s acceleration, the CACC system cannot effectively respond
to changes in the preceding vehicle’s dynamics. As a result, the inter-vehicle travel time
becomes variable, potentially leading to instability. Therefore, accurate and up-to-date
information about the acceleration of the preceding vehicle is highly important for the CTH
strategy in CACC. However, the acceleration of the preceding vehicle is obtained by the fol-
lowing vehicle through V2V communication, which also needs to consider the transmission
delay. Thus, a decentralized controller design approach is necessary to flexibly incorporate
feedback control based on sensor-acquired information and feedforward control based on
information with delay obtained through communication.

In this context, applying conventional sampled-data control approaches to CACC
systems is impractical due to the time delays that occur in V2V communication. Recently,
research has been actively conducted on memory sampled-data control (MSC), an extended
form of the conventional sampled-data control scheme, to address the issue of transmission
delays between the sampler and the controller [23–27]. Therefore, the MSC approach
can be introduced in CACC systems that rely on delayed data obtained through V2V
communication to explicitly consider communication delays in the controller design and
ensure control performance and stability.

Based on the observations mentioned above, this study proposes a sampled-data
CACC technique that ensures string-stable vehicle platooning considering communication
delays, using the LMI approach. Firstly, the CTH strategy is introduced to derive the
platooning error dynamics in an interconnected form. The decentralized sampled-data
controller is composed of a controller based on the measurements from the ego vehicle
and another controller using the information on the preceding vehicle transmitted via V2V
communication. To effectively consider the time delays caused by V2V communication, the
MSC technique is applied, and a novel Lyapunov–Krasovskii functional (LKF) is introduced
to improve sampling performance. The controller design conditions are formulated as
an optimization problem in the form of LMIs, ensuring individual stability of all vehicles
within the platoon and string stability of the platoon. Finally, simulation examples of
vehicle platooning are provided to demonstrate the feasibility and effectiveness of the
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proposed design technique. The main contributions of this study can be summarized
as follows:

1. This study introduces a practical CACC technique for vehicle platooning, incorporat-
ing the MSC technique to enhance the reliability of V2V communication.

2. The proposed controller design conditions, applicable to variable-sampling intervals,
are established in the time domain as LMIs, simultaneously ensuring both individual
stability and string stability.

3. An improved LKF, designed with partitioned sampling intervals and considering
essential states for the CACC system configuration, is proposed. This improved LKF
reduces conservatism in the design conditions of the sampled-data controller and
optimizes computational complexity.

Notations : The notation Rn represents an n-dimensional Euclidean space and Rn×m

denotes the set of all n × m real matrices. The identity matrix and the zero matrix of
appropriate dimensions are denoted by I and 0, respectively. An integer set 1, 2, . . . , p is
represented as Ip for a positive integer p. The notation Sym{X} = X + XT is used to
represent the shorthand form of a matrix X. For a symmetric matrix X, the notation X ≻ 0
(X ≺ 0) indicates that X is positive (negative) definite. col{· · · } and diag{· · · } denote a
column vector and a block-diagonal matrix, respectively. ∗ in the matrix represents the
transposed element of its symmetric position. The space of functions ϕ : [a, b] → Rn,
which are absolutely continuous on [a, b), have a finite limθ→b− ϕ(θ) and square-integrable
first-order derivatives, denoted by Wn[a, b).

2. Problem Statement
2.1. Vehicle Longitudinal Dynamics

In this study, we consider the following third-order linear model describing the vehicle
longitudinal dynamics, which is obtained using conventional exact feedback linearization
to simplify its complexity [28]:

ṗi(t) = vi(t)
v̇i(t) = ai(t)
ȧi(t) = 1

ς ui(t)− 1
ς ai(t), i ∈ IN ,

(1)

where pi(t), vi(t), ai(t), and ui(t) represent the position, velocity, acceleration, and control
input of the i-th vehicle and ς is a time constant representing the engine dynamics of
the vehicle.

2.2. Platooning Error Dynamics

This study considers the vehicles in a platoon with a predecessor-following (PF)
topology. The actual inter-vehicle distance between the i-th vehicle and its predecessor
vehicle is given by:

di(t) = pi−1(t)− pi(t). (2)

In this paper, the CTH strategy, where each following vehicle maintains a constant
time headway from the vehicle in front, is adopted [21]. Based on the CTH strategy, the
desired spacing between the i-th vehicle and its predecessor vehicle can be expressed
as follows:

d̂i(t) = ds + λvi(t), (3)

where ds is the standstill distance and λ is the headway time.
Based on Equations (2) and (3), the spacing error is defined as

d̃i(t) = di(t)− d̂i(t)

= pi−1(t)− pi(t)− ds − λvi(t). (4)
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Definition 1. The vehicle platooning with PF topology is said to be achieved if

lim
t→∞

∥d̃i(t)∥ = 0 and lim
t→∞

∥ṽi(t)∥ = 0. (5)

Now, the error dynamics are derived to achieve Equation (5). The time derivative of
Equation (4) yields

˙̃di(t) = ṽi(t)− λai(t), (6)

where ṽi(t) = vi−1(t)− vi(t) is the velocity error in the platoon with PF topology; thus, the
time derivative of ṽi(t) is determined by

˙̃vi(t) = ai−1(t)− ai(t). (7)

By combining Equations (1), (6), and (7), the platooning error system can be obtained
as the following interconnected form:{

ẋi1(t) = A1xi1(t) + Hxi2(t) + B1ui(t)
ẋi2(t) = A2xi2(t) + B2ui−1(t),

(8)

where

xi1 = col
{

d̃i(t), ṽi(t), ai(t)
}

; xi2 = ai−1(t);

A1 =

0 1 −λ
0 0 −1
0 0 − 1

ς

; H =

0
1
0

; B1 =

0
0
1
ς

;

A2 = −1
ς

; B2 =
1
ς

.

In this paper, we employ the MSC control scheme to achieve the platoon. Based on the
MSC control scheme, we propose the platooning controller for the i-th vehicle as follows:

ui(t) = K1xi1(tk) + K2xi2
(
tk − τ

)
for t ∈ [tk, tk+1), (9)

where K1 ∈ R1×3 and K2 ∈ R1 are gain matrices to be determined, respectively; the k-
th sampling time tk > 0 is defined for k ∈ Z ≥ 0 and satisfies tk+1 − tk = hk with an
allowable variable-sampling interval hk ∈ [h1, h2]; and τ > 0 is the communication delay
that occurs when the vehicle receives information from the predecessor vehicle via V2V
communication.

Remark 1. In this study, considering the need to account for communication delays in obtaining the
acceleration of the preceding vehicle through V2V communication, we choose to use the platooning
error system in an interconnected form (8). By integrating a controller based on sensor information
and another controller utilizing V2V communication, the decentralized sampled-data controller
(Equation (9)) provides a comprehensive approach to addressing the complexities of the platooning
system with communication delays.

Remark 2. Applying the conventional sampled-data control approach directly to the CACC system
cannot guarantee stability and control performance due to the time delays caused by V2V com-
munication. Recently, studies on the MSC [23,24,26,27], an extended form of the sampled-data
control, have shown potential in addressing the transmission delay issue between the sampler and
the controller. Inspired by this, we introduce the MSC technique to the CACC system to address
the challenge posed by communication delays. By effectively managing and compensating for
communication delays, the MSC technique holds promise for improving the overall reliability and
effectiveness of the CACC system, leading to safer and more efficient vehicle platooning.
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Now, by substituting Equation (9) into Equation (8), we obtain the closed-loop error
system, as follows: 

ẋi1(t) = A1xi1(t) + Hxi2(t) + B1K1xi1(tk)

+ B1K2xi2
(
tk − τ

)
ẋi2(t) = A2xi2(t) + B2ui−1(t).

(10)

The problem below is provided to clarify the objective of the controller design pro-
posed in this study.

Problem 1. Design the decentralized sampled-data controller (9) in the platoon with the PF
topology to meet the following criteria:

1. The equilibrium of xi1(t) is asymptotically stable when ui−1(t) = 0, ensuring individual stability;
2. The following inequality is guaranteed, which ensures string stability [29]:

∥Si(t)∥L2 ≤ ∥Si−1(t)∥L2 , 2 ≤ i ≤ N,

which is satisfied by∫ t f

0
ST

i (s)Si(s)ds ≤ V(0) +
∫ t f

0
ST

i−1(s)Si−1(s)ds, (11)

where t f is the termination time of control; Si(t) represents a signal that can correspond to
either the spacing error d̃i(t), the velocity vi(t), the acceleration ai(t), or the control input
ui(t) of the i-th vehicle; and V(0) represents a value of the scalar function V(t) at t = 0.

Remark 3. In this study, we offer Problem 1, which provides control design conditions to ensure both
individual vehicle stability within a platoon and string stability for the entire platoon simultaneously.
Additionally, in this study, Si−1(t) is set as ui(t) to ensure string stability for the spacing error
d̃i(t), the velocity vi(t), and the acceleration ai(t) [18].

2.3. Required Lemmas

Before advancing to the next section, some lemmas are introduced.

Lemma 1 ([30]). For any positive definite matrix R ∈ Rn×n, any matrix Z of appropriate
dimension, scalars ρ1 and ρ2 satisfying ρ1 < ρ2, and vector functions ζ(t) and X : [ρ1, ρ2] → Rn,
the following inequality always holds:

−
∫ ρ2

ρ1

XT(s)RX(s)ds ≤ (ρ2 − ρ1)ζ
T(t)ZR−1ZTζ(t)

+ 2ζT(t)Z
∫ ρ2

ρ1

X(s)ds.

Lemma 2 ([31]). Let the vector function X(t) ∈ Wn[ρ1, ρ2) and X(ρ1) = 0 for scalars ρ1 and ρ2
satisfying ρ1 < ρ2. Then, for any positive definite matrix Q ∈ Rn×n, the following inequality holds:

∫ ρ2

ρ1

XT(s)QX(s)ds ≤ 4(ρ2 − ρ1)
2

π2

∫ ρ2

ρ1

ẊT(s)QẊ(s)ds.

3. LMI-Based Sampled-Data Controller Design

In this study, the following LKF for the error system (Equation (10)) is considered:

Vi(t) =
3

∑
j=1

Vij(t) for t ∈ [tk, tk+1), (12)
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where

Vi1(t) = xT
i1(t)Pi1xi1(t) + xT

i2(t)Pi2xi2(t);

Vi2(t) = (tk+1 − t)

{ ∫ t

η(tk ,t)
X1(s)TQi1X1(s)ds +

∫ η(tk ,t)

tk

X1(s)TQi2X1(s)ds

}
;

Vi3(t) = (h2 + τ)2
∫ t

tk−τ
ẋT

i2(s)Ri ẋi2(s)ds − π2

4

∫ t

tk−τ
X2(s)T RiX2(s)ds;

Qi1 =

[
Qi11 Qi12
∗ Qi13

]
; Qi2 =

[
Qi21 Qi22
∗ Qi23

]
;

X1(t) = col{xi1(tk), ẋi1(t)}; X2(t) = xi2(t)− xi2(tk − τ);

η(tk, t) = tk + σ(t − tk) for 0 < σi < 1;

{Pi1, Qi13, Qi23} ∈ R3×3 are positive definite matrices; Pi2 and Ri are positive scalars;
{Qi11, Qi21} ∈ R3×3 are symmetric matrices; and {Qi12, Qi22} ∈ R3×3 are full-rank matrices.

Remark 4. In this study, inspired by [32,33], we introduce Vi2(t) to the LKF, Equation (12). By
dividing the time between consecutive sampling intervals into two segments and constructing
separate Lyapunov functionals for each segment, Vi2(t) can play a crucial role in extending the
allowable sampling interval.

Remark 5. Recent studies on the MSC, specifically considering both the delay states of the system
and the controller, have employed the LKF proposed in [31]. However, it is worth noting that most
of these studies focus on non-delay systems, yet they still apply the LKF proposed above without
modifications [24–27]. Applying the aforementioned LKF directly to non-delay systems includes
unnecessary states x(t − τ) in their stability condition, resulting in the increased dimension of the
required LKF and computational complexity. In order to address this issue, this study introduces the
improved Lyapunov functional Vi3(t) to overcome the problem of unnecessary states in the CACC
system design. By proposing Vi3(t), this study effectively resolves the issue of unnecessary states,
simplifies the controller design process, and reduces computational complexity.

In this section, the following vector and matrix notations are utilized to simplify
the expressions:

ζi(t) = col
{

xi1(t), ẋi1(t), xi1(tk), xi1
(
η(tk, t)

)
, xi2(t), ẋi2(t), xi2(tk − τi), ui−1(t)

}
,

Ip =
[
0n1×n1(p−1) In1×n1 0n1×{n1(4−p)+4n2}

]T
,

Iq+4 =
[
0n2×{4n1+n2(q−1)} In2×n2 0n2×n2(4−q)

]T
,

where n1 = 3, n2 = 1, and {p, q} ∈ I4.
First, the following theorem provides a condition to determine whether the previously

designed controller satisfies the design condition given in Problem 1.

Theorem 1. For the given positive scalars α1, α2, β1, β2, τ, h1 < h2, and σ < 1 and controller
gains K1 and K2 of the sampled-data controller (Equation (9)), if there exist positive definite matrices
Pi1, Qi13, and Qi23; positive scalars Pi2 and Ri; symmetric matrices Qi11 and Qi21; any full-rank
matrices Mi1, Qi12, Qi22, Zi1, and Zi2; and any scalar Mi2 such that the following LMIs hold
for (i, s) ∈ IN × I2, then the error system (Equation (10)) satisfies the design criteria stated
in Problem 1:

Ωi1(hs) ≺ 0, (13)

Ωi2(hs) ≺ 0, (14)



Machines 2024, 12, 165 7 of 18

where

Ωi1(hs) =

[
Ψi1 + hsΨi2 KT

∗ −I

]
;

Ωi2(hs) =


Ψi1 + hsΨi3 KT (1 − σ)hsZi1 σhsZi2

∗ −I 0 0
∗ ∗ −(1 − σ)hsQi13 0
∗ ∗ ∗ −σhsQi23

;

Ψi1 = (h2 + τ)2 I6Ri IT
6 − π2

4
(I5 − I7)Ri(I5 − I7)

T − I8 IT
8

+ Sym
{

I1Pi1 IT
2 + I5Pi2 IT

6 + (−I3Qi12 +Zi1)(I1 − I4)
T

+ (−I3Qi22 +Zi2)(I4 − I3)
T

+ Λ1MT
i1
(
− IT

2 + A1 IT
1 + HIT

5 + B1K1 IT
3 + B1K2 IT

7
)

+ Λ2MT
i2
(
− IT

6 + A2 IT
5 + B2 IT

8
)}

;

Ψi2 =
[
I3 I1

]
Qi1

[
I3 I1

]T − σi
[
I3 I4

]
(Qi1 −Qi2)

[
I3 I4

]
;

Ψi3 = −I3
{
(1 − σ)Qi11 + σQi21

}
IT
3 ;

K = K1 IT
3 + K2 IT

7 ;

Λ1 = I1 + α1 I2 + α2 I3;

Λ2 = I5 + β1 I6 + β2 I7.

Proof. Differentiating Vi1(t) with respect to t yields

V̇i1(t) = 2xT
i1(t)Pi1 ẋi1(t) + 2xT

i2(t)Pi2 ẋi2(t)

= ζT
i (t)

[
Sym

{
I1Pi1 IT

2 + I5Pi2 IT
6
}]

ζi(t). (15)

Moreover, V̇i2(t) is obtained as follows:

V̇i2(t) = (tk+1 − t)
{
X1(t)TQi1X1(t)− σX1

(
η(tk, t)

)T
(Qi1 −Qi2)X1

(
η(tk, t)

)}
− (t − tk)xT

i1(tk)
{
(1 − σ)Qi11 + σQi21

}
xi1(tk)

− 2xT
i1(tk)

{
Qi12

(
xi1(t)− xi1

(
η(tk, t)

))
+ Qi22

(
xi1

(
η(tk, t)

)
− xi1(tk)

)}
−

∫ t

η(tk ,t)
ẋi1(s)Qi13 ẋi1(s)ds −

∫ η(tk ,t)

tk

ẋi1(s)Qi23 ẋi1(s)ds. (16)

By applying Lemma 1 to the integral terms in Equation (16), we obtain

−
∫ t

η(tk ,t)
ẋi1(s)Qi13 ẋi1(s)ds

≤(t − tk)(1 − σ)ζT
i (t)Zi1Q−1

i13Z
T
i1ζi(t) + 2ζT

i (t)Zi1

(
xi1(t)− xi1

(
η(tk, t)

))
, (17)

−
∫ η(tk ,t)

tk

ẋi1(s)Qi23 ẋi1(s)ds

≤(t − tk)σζT
i (t)Zi2Q−1

i23Z
T
i2ζi(t) + 2ζT

i (t)Zi2

(
xi1

(
η(tk, t)

)
− xi1(tk)

)
, (18)
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where Zip with p ∈ I2 is a full-rank matrix of appropriate dimension. Considering
inequalities (17) and (18) in Equation (16) yields

V̇i2(t) ≤ ζT
i (t)

[
Sym

{
(−I3Qi12 +Zi1)(I1 − I4)

T + (−I3Qi22 +Zi2)(I4 − I3)
T}

+ (t − tk)
{
− I3

(
(1 − σ)Qi11 + σQi21

)
IT
3 + (1 − σ)Zi1Q−1

i13Z
T
i1 + σZi2Q−1

i23Z
T
i2

}
+ (tk+1 − t)

([
I3 I1

]
Qi1

[
I3 I1

]T
− σ

[
I3 I4

]
(Qi1 −Qi2)

[
I3 I4

])]
ζi(t). (19)

Lastly, V̇i3(t) becomes

V̇i3(t) = (hi2 + τ)2{ẋi2(t)Ri ẋi2(t)
}
− π2

4
X2(t)T RiX2(t)

= ζT
i (t)

{
(h2 + τ)2 I6Ri IT

6 − π2

4
(I5 − I7)Ri(I5 − I7)

T
}

ζi(t). (20)

On the other hand, based on the error system (Equation (10)), it can be derived that the
following equations hold for any full-rank matrix Mi1 ∈ R3 and any scalar Mi2:

0 = 2
(

Mi1xi1(t) + α1 Mi1 ẋi1(t) + α2 Mi1xi1(tk)
)T

×
(
− ẋi1(t) + A1xi1(t) + Hxi2(t) + B1K1xi1(tk) + B1K2xi2(tk − τ)

)
= ζT

i (t)
{

2(I1 MT
i1 + α1 I2 MT

i1 + α2 I3 MT
i1)(−IT

2 + A1 IT
1 + HIT

5 + B1K1 IT
3 + B1K2 IT

7 )
}

ζi(t)

= ζT
i (t)

[
Sym

{
Λ1 MT

i1
(

IT
2 + A1 IT

1 + HIT
5 + B1K1 IT

3 + B1K2 IT
7
)}]

ζl(t), (21)

0 = 2
(

Mi2xi2(t) + β1 Mi2 ẋi2(t) + β2 Mi2xi2(tk − τ)
)T(− ẋi2(t) + A2xi2(t) + B2ui−1(t)

)
= ζT

i (t)
{

2(I5 MT
i2 + β1 I6 MT

i2 + β2 I7 MT
i2)(−IT

6 + A2 IT
5 + B2 IT

8 )
}

ζi(t)

= ζT
i (t)

[
Sym

{
Λ2 MT

i2(−IT
6 + A2 IT

5 + B2 IT
8 )

}]
ζi(t), (22)

where αp and βp with p ∈ I2 are given positive scalars, Λ1 = I1 + α1 I2 + α2 I3, and
Λ2 = I5 + β1 I6 + β2 I7.

Then, by combining Equations (15) and (20)–(22) and inequality (19) into a single
inequality, we can obtain

V̇i(t) ≤ ζT
i (t)

[
(h2 + τ)2 I6Ri IT

6 − π2

4
(I5 − I7)Ri(I5 − I7)

T

+ Sym
{

I1Pi1 IT
2 + I5Pi2 IT

6 + (−I3Qi12 +Zi1)(I1 − I4)
T + (−I3Qi22 +Zi2)(I4 − I3)

T

+ Λ1 MT
i1
(

IT
2 + A1 IT

1 + HIT
5 + B1K1 IT

3 + B1K2 IT
7
)
+ Λ2 MT

i2
(
− IT

6 + A2 IT
5 + B2 IT

8
)}

+ (tk+1 − t)
{[

I3 I1
]
Qi1

[
I3 I1

]T − σi
[
I3 I4

]
(Qi1 −Qi2)

[
I3 I4

]}
+ (t − tk)

{
− I3

(
(1 − σ)Qi11 + σQi21

)
IT
3 + (1 − σ)Zi1Q−1

i13Z
T
i1 + σZi2Q−1

i23Z
T
i2

}
ζi(t)

]
. (23)

To satisfy the inequality (11) stated in Problem 1, we add Ji(t) = uT
i (t)ui(t)−uT

i−1(t)ui−1(t)
to both sides of inequality (23), which results in the following:

V̇i(t) + Ji(t) ≤ ζT
i (t)

[
Ψi1 +KTK+ σZi2Q−1

i23Z
T
i2

+ (tk+1 − t)Ψi2 + (t − tk)
{

Ψi3 + (1 − σ)Zi1Q−1
i13Z

T
i1
}]

ζi(t), (24)

where

Ψi1 = (h2 + τ)2 I6Ri IT
6 − π2

4
(I5 − I7)Ri(I5 − I7)

T − I8 IT
8
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+ Sym
{

I1Pi1 IT
2 + I5Pi2 IT

6 + (−I3Qi12 +Zi1)(I1 − I4)
T

+ (−I3Qi22 +Zi2)(I4 − I3)
T

+ Λ1MT
i1

(
− IT

2 + A1 IT
1 + HIT

5 + B1K1 IT
3 + B1K2 IT

7

)
+ Λ2MT

i2

(
− IT

6 + A2 IT
5 + B2 IT

8

)}
;

Ψi2 =
[
I3 I1

]
Qi1

[
I3 I1

]T − σ
[
I3 I4

]
(Qi1 −Qi2)

[
I3 I4

]
;

Ψi3 = −I3

(
(1 − σ)Qi11 + σQi21

)
IT
3 ;

K = K1 IT
3 + K2 IT

7 .

From inequality (24) and hk = tk+1 − tk, it is obvious that V̇i(t) + Ji(t) < 0 is guaran-
teed by

tk+1 − t
hk

(Ψi1 +KTK+ hkΨi2)

+
t − tk

hk

[
Ψi1 +KTK+ hk

{
Ψi3 + (1 − σ)Zi1Q−1

i13Z
T
i1 + σZi2Q−1

i23Z
T
i2

}]
≺ 0. (25)

Moreover, since inequality (25) is convex in t ∈ [tk, tk+1), it implies that inequality (25)
holds when the following inequalities are simultaneously fulfilled

Ψi1 +KTK+ hkΨi2 ≺ 0, (26)

Ψi1 +KTK+ hk
{

Ψi3 + (1 − σ)Zi1Q−1
i13Z

T
i1 + σZi2Q−1

i23Z
T
i2
}
≺ 0. (27)

Applying the Schur complements to both inequalities (26) and (27) yields

Ωi1(hk) =

[
Ψi1 + hkΨi2 KT

∗ −I

]
≺ 0,

Ωi2(hk) =


Ψi1 + hkΨi3 KT (1 − σ)hkZi1 σhkZi2

∗ −I 0 0
∗ ∗ −(1 − σ)hkQi13 0
∗ ∗ ∗ −σhkQi23

 ≺ 0.

Considering that Ωip(hk) with p ∈ I2 above is convex in hk ∈ [h1, h2], we obtain

Ωip(hk) :=
h2 − hk
h2 − h1

Ωip(h1) +
hk − h1

h2 − h1
Ωip(h2) ≺ 0,

which is ensured by

Ωip(hs) ≺ 0 for (p, s) ∈ I2 × I2.

Therefore, if the LMIs (inequalities (13) and (14)) hold, we obtain

V̇i(t) + Ji(t) ≤ 0. (28)

Under ui−1(t) = 0, it follows from inequality (28) that

V̇i(t) ≤ −uT
i (t)ui(t) ≤ 0. (29)

Next, we show the positive definiteness of Vi(t) by requiring it to be positive definite
only at sampling instants. From Equation (12), it can be confirmed that

lim
t→tk

Vi1(t) = Vi1(tk) ≥ 0,
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lim
t→t−k

Vi2(t) = lim
t→t+k

Vi2(t) = Vi2(tk) = 0.

However, Vi3(t) is discontinuous at t = tk. Hence, we need to establish both the positive
definiteness of Vi3(t) and that the jumps of Vi3(t) at tk do not increase, i.e., Vi3(tk) = 0.
As X2(t)− X2(tk − τ) = 0 when t = tk − τ, and applying Lemma 2 to the last term in
Vi3(t) yields

Vi3(t) ≥ φ(t)
∫ t

tk−τ
ẋT

i2(s)Ri ẋi2(s)ds

= W1(t) +W2(t),

where

φ(t) = (h2 + τ)2 − (t − tk + τ)2;

W1(t) = φ(t)
∫ t

t−τ
ẋT

i2(s)Ri ẋi2(s)ds;

W2(t) = φ(t)
∫ t−τ

tk−τ
ẋT

i2(s)Ri ẋi2(s)ds.

Since φ(t) > 0, W1(t) ≥ 0, and W2(tk) = 0, we have limt→t−k
Vi3(t) ≥ Vi3(tk) ≥ 0. There-

fore, it can be concluded that limt→tk Vi(t) = Vi(tk). Consequently, from inequality (29),
we obtain Vi(t) ≥ Vi(tk+1) ≥ 0, which implies the positive definiteness of Vi(t). Thus, we
can ensure that the equilibrium of Equation (10) is asymptotically stable, satisfying the first
condition stated in Problem 1.

In addition, integrating the inequality (28) from 0 to t f yields

Vi(t f )− Vi(0) +
∫ t f

0
Ji(s)ds ≤ 0.

From Vi(t f ) ≥ 0 for t f > 0, it can be concluded that the second condition given in Problem 1
is also met. This completes the proof of Theorem 1.

The objective of this study is now to find the controller gains K1 and K2 in Theorem 1.
If the controller gains are not given, the matrix inequalities (13) and (14) in Theorem 1 are
not LMIs, which cannot be solved via contemporary numerical solvers. Thus, we provide
the following theorem to reformulate the condition as LMIs:

Theorem 2. For the given positive scalars α1, α2, β1, β2, τ, h1 < h2, and σ < 1, if there exist
positive definite matrices P̄i1, Q̄i13, and Q̄i23; positive scalars P̄i2 and R̄i; symmetric matrices Q̄i11
and Q̄i21; any full-rank matrices M̄i1, Q̄i12, Q̄i22, Z̄i1, and Z̄i2; and any scalar M̄i2 such that the
following LMIs hold for (i, s) ∈ IN × I2, then the error system (Equation (10)) fulfills the design
criteria presented in Problem 1 with the obtained controller gains K1 and K2:

Ω̄i1(hs) ≺ 0, (30)

Ω̄i2(hs) ≺ 0, (31)

where

Ω̄i1(hs) =

[
Ψ̄i1 + hsΨ̄i2 K̄T

∗ −I

]
;

Ω̄i2(hs) =


Ψ̄i1 + hsΨ̄i3 K̄T (1 − σ)hsZ̄i1 σhsZ̄i2

∗ −I 0 0
∗ ∗ −(1 − σ)hsQ̄i13 0
∗ ∗ ∗ −σhsQ̄i23

;
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Ψ̄i1 =(h2 + τ)2 I6R̄i IT
6 − π2

4
(I5 − I7)R̄i(I5 − I7)

T − I8 IT
8

+ Sym
{

I1P̄i1 IT
2 + I5P̄i2 IT

6 + (−I3Q̄i12 + Z̄i1)(I1 − I4)
T

+ (−I3Q̄i22 + Z̄i2)(I4 − I3)
T

+ Λ1
(
− M̄i1 IT

2 + A1M̄i1 IT
1 + HM̄i2 IT

5 + B1K1M̄i1 IT
3 + B1K2M̄i2 IT

7
)

+ Λ2
(
− M̄i2 IT

6 + A2M̄i2 IT
5 + B2 IT

8
)}

;

Ψ̄i2 =
[
I3 I1

]
Q̄i1

[
I3 I1

]T − σ
[
I3 I4

]
(Q̄i1 − Q̄i2)

[
I3 I4

]
;

Ψ̄i3 =− I3
{
(1 − σ)Q̄i11 + σQ̄i21

}
IT
3 ;

K̄ =K̄1 IT
3 + K̄2 IT

7 .

The definitions of the remaining terms are identical to those provided in Theorem 1. Additionally,
the controller gains can be obtained from the solution by K1 = K̄1M̄−1

i1 and K2 = K̄2M̄−1
i2 .

Proof. For j ∈ I2, let M̄ij = M−1
ij , P̄ij = M̄T

ij Pij M̄ij, Q̄ij = M̄T
i1Qij M̄i1, R̄i = M̄T

i2Ri M̄i2,

Z̄ij = M̄T
i1Zij M̄i1, K̄j = Kj M̄ij, Φ1 = diag{M̄i1, M̄i1, M̄i1, M̄i1, M̄i2, M̄i2, M̄i2, I, I}, and

Φ2 = diag{M̄i1, M̄i1, M̄i1, M̄i1, M̄i2, M̄i2, M̄i2, I, I, M̄i1, M̄i1}. Then, by applying a congru-
ence transformation with Φ1 to Ωi1(hs) in inequality (13) and with Φ2 to Ωi2(hs) in
inequality (14), we can obtain the LMIs (inequalities (30) and (31), respectively). This
concludes the proof.

4. Simulation

In this section, vehicle platooning simulations are provided to demonstrate the ef-
ficiency and validity of the proposed method. All simulations were performed using
MATLAB 2023a, with YALMIP [34] serving as the interface for solving the LMIs, and
MOSEK [35] utilized as the solver.

We considered a platoon consisting of six vehicles, with one vehicle as the leader.
All vehicles had the same dynamics, as given in Equation (1), with a time constant of
ς = 0.3. The communication delay with the preceding vehicle was assumed to be τ = 150
(ms). In addition, for the vehicle spacing, the CTH strategy (Equation (3)) is adopted, with
ds = 3 [m] and λ = 0.75.

Assuming a variable-sampling interval hk ∈ [h1, h2] = [0.001, 0.1] and solving for the
LMIs given in Theorem 2 by setting (α1, α2, β1, β2, σ) = (4.2, 22, 0.3, 1.2, 0.1), we obtained
the following controller gains:

K1 =
[
0.3312 2.3104 −0.9364

]
, K2 = 0.1545.

Using the controller gains obtained above, we conducted a vehicle platooning simula-
tion with p1(0) = 5ds, p2(0) = 4ds, p3(0) = 3ds, p4(0) = 2ds, p5(0) = ds, p6(0) = 0, and
v1(0) = v2(0) = v3(0) = v4(0) = v5(0) = v6(0) = 0. The reference speed and acceleration
of the leader vehicle are controlled by the reference input u1(t), which was set as follows:

u1(t) =


2, t ∈ [0, 10]
−1.5, t ∈ [30, 40]
0, else.

The objective of control is to ensure both individual stability, maintaining the stability
of each vehicle within the platoon, and string stability, maintaining the desired spacing
and speed among the vehicles, to avoid undesirable behavior and instability, ensuring the
smooth operation of the platoon. In Figure 1, it can be observed that string stability is
ensured for the control input ui(t), satisfying the second condition described in Problem 1.
Therefore, as mentioned in Remark 3, it can be seen in Figures 2 and 3 that string stability
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is also guaranteed for vi(t), ai(t), and d̃i(t). Furthermore, Figure 3 shows that Equation (5)
is achieved once the preceding vehicle reaches a constant velocity. Finally, considering that
these simulations are based on simulation settings that account for the communication
delay τ, the conclusion that both individual stability and string stability are ensured implies
the robustness of the proposed controller to communication delays.
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Figure 1. The time responses of the control inputs achieved through string-stable vehicle platooning.
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Figure 2. The state trajectories of the position, velocity, and acceleration achieved through string-stable
vehicle platooning.

Next, to illustrate the case of string-unstable vehicle platooning, the headway time was
changed to λ = 0.5, and the simulation was repeated with the same settings. The results
are shown in Figures 4–6. In Figure 4, it can be observed that the control inputs amplify
progressively as they go to the succeeding vehicles, indicating a lack of string stability; thus,
the same results can be observed for other signals, as shown in Figures 5 and 6. As the platoon
size increases, it is necessary to use an appropriate headway time to ensure string stability, as
amplified signals can cause serious problems for the entire system.
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Figure 3. The time responses of the spacing error and velocity error achieved through string-stable
vehicle platooning.
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Figure 4. The time responses of the control inputs achieved through string-unstable vehicle platooning.
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Figure 5. The state trajectories of the position, velocity, and acceleration achieved through string-
unstable vehicle platooning.
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Additionally, we increased the sampling interval to hk ∈ [h1, h2] = [0.01, 0.5] to
compare the headway time, considered as a performance metric for CACC, with respect to
sampling performance. In this case, in order to achieve string-stable vehicle platooning, it
was necessary to increase the headway time to λ = 1.05 and change β2 to 0.5. The relaxation
of sampling performance refers to allowing for a larger sampling interval. This relaxation
can lead to an increase in the conservatism of string stability performance, meaning that
the headway time increases. Therefore, there is a trade-off between achieving higher levels
of string stability and relaxing the sampling performance. For this case, the controller gains
can be obtained as follows:

K1 =
[
0.4134 1.5985 −0.7923

]
, K2 = 0.0017.
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0

1

2
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0

0.5

1

Figure 6. The time responses of the spacing error and velocity error achieved through string-unstable
vehicle platooning.

The control inputs and spacing errors are shown in Figures 7 and 8. In Figure 7, it can
be observed that variable-sampling intervals, which were not visible in the previous figure
due to a smaller sampling interval, are randomly applied within the range of hk ∈ [h1, h2].
Meanwhile, in Figure 8, it can be seen that d̃3(t) exceeds d̃1(t) in the boundary region,
indicating a slight lack of string stability. This is due to the longer delay in responding
to system changes, particularly in the boundary region where signal transitions occur, as
the sampling interval increases. To address this issue, one could consider reducing the
sampling interval, especially in the boundary region, but this is not covered in this study.

Lastly, a comparative analysis was conducted with a previous study. As evident
in Figures 9 and 10, the controller designed in [36] exhibits inferior control performance
compared to the sampled-data controller proposed in this study, as it was designed in the
continuous-time domain. Consequently, it can be concluded that this study could be more
practically applicable to CACC utilizing sampled signals in V2V communication.
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Figure 7. The time responses of the control inputs with (h1, h2) = (0.01, 0.5).
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Figure 8. The time responses of the spacing error with (h1, h2) = (0.01, 0.5).
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Figure 9. The time responses of the spacing error with (h1, h2) = (0.1, 0.3), using Theorem 2.
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Figure 10. The time responses of the spacing error with (h1, h2) = (0.1, 0.3), using the controller
designed in [36].

5. Conclusions

This study has proposed a sampled-data control technique, utilizing an LMI approach,
to achieve string-stable vehicle platooning in the CACC system with communication
delays. A sampled-data controller based on the MSC technique has been designed to
improve the communication performance and reliability of CACC systems based on V2V
communication. The controller design conditions have been derived through an improved
LKF that utilizes partitioned sampling intervals and considers the necessary states for
the CACC system configuration. The derived controller design conditions have been
systematically formulated in the form of LMIs, guaranteeing both individual stability
and string stability in the time domain. Finally, a simulation example has validated the
feasibility and effectiveness of the proposed design technique, emphasizing its potential
for practical application.
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