
Citation: de Castro, G.G.R.; Santos,

T.M.B.; Andrade, F.A.A.; Lima, J.;

Haddad, D.B.; Honório, L.d.M.; Pinto,

M.F. Heterogeneous Multi-Robot

Collaboration for Coverage Path

Planning in Partially Known

Dynamic Environments. Machines

2024, 12, 200. https://doi.org/

10.3390/machines12030200

Academic Editors: Luis Payá, Oscar

Reinoso García and Helder Jesus

Araújo

Received: 16 February 2024

Revised: 7 March 2024

Accepted: 12 March 2024

Published: 18 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Heterogeneous Multi-Robot Collaboration for Coverage Path
Planning in Partially Known Dynamic Environments
Gabriel G. R. de Castro 1,† , Tatiana M. B. Santos 2,† , Fabio A. A. Andrade 3,4,∗,† , José Lima 5,6,7,† ,
Diego B. Haddad 1,† , Leonardo de M. Honório 8,† and Milena F. Pinto 1,†

1 Federal Center of Technological Education of Celso Suckow da Fonseca (CEFET/RJ),
Rio de Janeiro 20271-204, Brazil; gabriel.guitar@gmail.com (G.G.R.d.C.); diego.haddad@cefet-rj.br (D.B.H.);
milena.pinto@cefet-rj.br (M.F.P.)

2 Departamento de Ciências da Computação, Fluminense Federal University (UFF), Niteroi 22020-091, Brazil;
tatianambs9@gmail.com

3 Department of Microsystems, Faculty of Technology, Natural Sciences and Maritime Sciences,
University of South-Eastern Norway (USN), 3184 Borre, Norway

4 NORCE Norwegian Research Centre, 4068 Stavanger, Norway
5 Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança,

5300-253 Bragança, Portugal; jllima@ipb.pt
6 Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de

Bragança, 5300-253 Bragança, Portugal
7 INESC Technology and Science, 4200-465 Porto, Portugal
8 Department of Electrical Engineering, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil;

leonardo.honorio@ufjf.edu.br
* Correspondence: fabio@ieee.org
† These authors contributed equally to this work.

Abstract: This research presents a cooperation strategy for a heterogeneous group of robots that
comprises two Unmanned Aerial Vehicles (UAVs) and one Unmanned Ground Vehicles (UGVs) to
perform tasks in dynamic scenarios. This paper defines specific roles for the UAVs and UGV within
the framework to address challenges like partially known terrains and dynamic obstacles. The UAVs
are focused on aerial inspections and mapping, while UGV conducts ground-level inspections. In
addition, the UAVs can return and land at the UGV base, in case of a low battery level, to perform hot
swapping so as not to interrupt the inspection process. This research mainly emphasizes developing
a robust Coverage Path Planning (CPP) algorithm that dynamically adapts paths to avoid collisions
and ensure efficient coverage. The Wavefront algorithm was selected for the two-dimensional offline
CPP. All robots must follow a predefined path generated by the offline CPP. The study also integrates
advanced technologies like Neural Networks (NN) and Deep Reinforcement Learning (DRL) for
adaptive path planning for both robots to enable real-time responses to dynamic obstacles. Extensive
simulations using a Robot Operating System (ROS) and Gazebo platforms were conducted to validate
the approach considering specific real-world situations, that is, an electrical substation, in order to
demonstrate its functionality in addressing challenges in dynamic environments and advancing the
field of autonomous robots.

Keywords: multi-robot; coverage path planning; dynamic environment

1. Introduction

In the literature, several reports have surveyed strategies for the cooperation of hetero-
geneous robots [1,2]. One intriguing interaction between heterogeneous robots is a UAV
landing on an Unmanned Ground Vehicle (UGV), where the UGV is in motion, requiring
the UAV to adjust its velocity to reach the landing spot dynamically [3]. In Berger et al. [2],
the authors also proposed a similar approach. The UAV can land and return from a UGV
base to perform a “hot swapping”. Multi-robot cooperation is also used to perform Cover-
age Path Planning (CPP). The coordination of heterogeneous robots, including both aerial
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vehicles and ground-based UGVs, within the framework of CPP presents a promising
approach for a wide range of applications due to the possibility of an efficient coverage of
large and complex environments [4].

An important aspect to be mentioned in cooperation between robots is the fact that
most of the research in the literature encompasses homogeneous multi-robot systems due
to their simplicity and scalability [5,6]. The heterogeneity among robot teams enhances
performance in various aspects [6]. This collaboration between heterogeneous robots
introduces new challenges, particularly in task allocation, where factors such as robot
characteristics (e.g., battery life and coverage area) must be carefully considered [6]. UGVs
can handle substantial payloads, accommodating various sensors and actuators, albeit with
limited visibility. In contrast, UAVs offer an elevated viewpoint but are constrained by
limited payload capacity and flight time due to power constraints [3].

Note that integrating aerial and ground robots assign new implementations for ad-
vancing the coordination and communication between the robots to guarantee efficient
cooperation. Addressing challenges concerning the optimal distribution of tasks across
these varied platforms, the efficient management of energy resources, and the assurance of
safe interactions in dynamic settings is extremely important. In this sense, it is essential to
develop robust algorithms that can flexibly adjust the cooperation of the heterogeneous
robot teams to ensure the successful implementation of the coverage path planning with
real-world conditions and uncertainties.

UAVs are a promising solution applicable across various domains, including search
and rescue [7,8], inspection [9], Industry 4.0 [10], and remote sensing [11], among other
fields. Over the years, these robots have proven to be valuable tools for exploring com-
plex and dynamic environments [12,13]. Their adaptability to tasks of different levels of
complexity, capacity to adjust to dynamic surroundings, and agility for maneuvering make
them versatile tools for different applications [14,15].

In complex and dynamic scenarios, trajectory planning is crucial, enabling UAVs
to track targets during missions by following predefined global paths while navigating
dynamically [16]. In dynamic settings, potential obstacles pose challenges for UAVs. That
being the case, UAVs must exhibit autonomy to execute various operations and make
informed decisions based on available data. Path planning, in particular, demands access to
extensive environmental data to ensure credibility, safety, and efficiency [17]. UAVs face the
critical challenge of determining an optimal, or nearly optimal, collision-free route while
considering both the initial and target positions. This requires continuous monitoring of
the vehicle during its operation. Additionally, the flight time imposes several challenges
for this kind of robot.

While UAVs are limited by battery life and flight duration, UGVs typically have higher
payload capacity, allowing this kind of robot to carry heavier equipment, sensors, and
payloads, making them suitable for applications requiring extensive sensor arrays and
can operate for longer periods, especially if equipped with efficient power sources [2]. In
this sense, by integrating these two kinds of robots, UAVs, and UGVs, in an inspection
process, which is the case of this research work, diverse terrains and environments can
be coverage more effectively. UAVs can provide aerial overviews and reconnaissance,
identifying potential obstacles or areas of interest. At the same time, UGVs can navigate
complex terrain, investigate ground-level details, and interact with the environment directly
if needed. Their different behavior features can improve the inspection process by acquiring
environmental data from both aerial and ground-level perspectives, having a continuous
inspection, overcoming the individual limitations of each robot, and enhancing overall
mission effectiveness.

In an autonomous inspection process, two motion planning strategies based on sen-
sory information acquired from the environment exist: global and local path planning [18].
The literature presents several solutions for these strategies [19,20]. Global path plan-
ning involves generating a trajectory from the robot’s current position to the goal while
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considering the entire environment, whereas local path planning focuses on navigating
around obstacles.

Motion planning algorithms are crucial for guiding autonomous robots as they navi-
gate through complex and multi-dimensional environments [21,22]. Diverse approaches
in the literature rely on heuristic methods for motion planning [23]. A drawback of these
approaches is that they often encounter challenges when applied to high-dimensional set-
tings, which are most common in real-world applications. In response to these challenges,
researchers have explored alternative approaches, including using Neural Networks (NN)
as online path planners, as demonstrated in Sung et al.’s research [24].

The training dataset employed for this purpose incorporates the designated paths the
robots intend to navigate. NNs offer flexibility and real-time adaptability. This makes then
suitable for various applications and dynamic, complex environments. By learning from the
training data, NN-based path planners can effectively navigate through environments with
varying obstacles and terrain, adjusting their trajectories in real time based on the sensory
inputs. Integrating NN-based path-planning techniques into autonomous robot systems
can enhance their adaptability and robustness, enabling them to navigate challenging
environments more effectively. The NN employed is a promising solution for improving
the autonomy and performance of UGVs and UAVs in real-world applications, such as
surveillance, exploration, and inspection tasks.

Adaptability becomes an important feature in dynamic environments where sensors
may detect unanticipated obstacles. Path planning systems must swiftly respond to these
detected obstacles, recalibrating the assigned path to ensure avoidance while progressing
toward the final destination [25]. For example, Zhang et al. [26] introduced a solution
that employs the A* algorithm for global path planning in partially known maps, fol-
lowed by using the Q-learning method for local path planning to navigate around locally
detected obstacles.

The inspection process is performed in an electrical substation. This environment was
chosen due to its critical infrastructure components. Electrical substations require regular
inspections and maintenance to ensure operational efficiency and safety. This is a complex
scenario for the robots because they can encounter operators in the field as well as cable
trays, piping, conduits, and other structural supports that can make their navigation during
inspections difficult.

In this work, the authors propose combining online adaptive and coverage path
planning algorithms. By integrating DQN into our cooperative robotics framework, we aim
to address the challenges associated with dynamic environments, including unanticipated
obstacles and changing terrain conditions. The motivation behind this integration is to
enable the robotic inspection system to navigate efficiently through the electrical substation,
covering all necessary areas while avoiding collisions and hazards. The CPP algorithm
generates feasible paths to coverage all inspected area. At the same time, the combination
of RRT and DRL techniques enables the robots to dynamically adjust their paths based on
real-time sensor data, optimizing coverage and ensuring the inspection of the whole facility.

1.1. Main Contributions

This work introduces a novel cooperation strategy for a heterogeneous group of
robots, specifically two UAVs and one UGV. The robots operate to perform an inspection
mission. The strategy addresses the challenges of partially known terrains and potential
dynamic obstacles, delineating the distinct roles of the UAVs and the UGV within the
proposed cooperation framework. The UAVs are tasked with conducting aerial inspections,
providing continuous updates to the environmental map, and swiftly navigating complex
environments from an elevated high. Simultaneously, the UGV is responsible for ground-
level inspections, contributing to map updates, as shown in Figure 1.
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Figure 1. General idea.

Furthermore, the UGV can serve as a landing point for the UAVs to perform “hot”
battery swapping, as demonstrated in the literature [27,28]. The main idea is to ensure
uninterrupted data collection without constant human intervention, enhancing the overall
efficiency of the inspection operation.

This work also emphasizes the development of an architecture that combines online
adaptive and coverage path planning. The CPP algorithm is based on the Wavefront
algorithm. All robots must follow the predefined route given by the offline CPP. However,
the online adaptive methodology dynamically adjusts the path in real-time. This part of the
methodology combines Rapidly Exploring Random Trees (RRT) and Deep Reinforcement
Learning (DRL) techniques, similar to Castro et al. [12]. Different from this mentioned
work, the neural network model and the filters associated with the outputs are the same for
the UAVs and UGV. Only the input vector assumes other values since the agent’s sensors,
the pose, and path next node can differ for each robot. The main contributions of this work
can be summarized as follows.

• Introducing a cooperation strategy for a group of heterogeneous robots operating
in dynamic environments with partial knowledge of the area and with potential
dynamic obstacles;

• Proposing an effective CPP strategy considering the minimization of travel distance,
reducing mission time, and considering constraints like flying time of UAVs;

• Assessing the proposed approach by performing tests in a realistic simulation envi-
ronment as a proof of concept.

This work does not focus on the details of implementing the image processing algo-
rithm for the inspection process and implementing the “hot-swapping” battery procedure.
These aspects fall outside the scope of this research. Extensive simulations are conducted
using the Robot Operating System (ROS) and the Gazebo platform to assess the efficacy of
the proposed methodology.

1.2. Organization

The rest of this paper is organized as follows. Section 2.1 provides an overview of re-
lated works focusing on cooperation between robots and coverage path planning. Section 3
presents an overview of the proposed architecture for the partially unknown environment
and its mathematical foundations. Section 4 validates and assesses the proposed strategy.
Finally, the concluding remarks and ideas for future work are given in Section 5.

2. Related Works
2.1. Cooperative Heterogeneous Robots

The cooperation between robots is designed to maximize local objectives based on
each robot’s behavior and strategies. In the case of formations, the robots typically entail
cooperative interactions, where the agent states are interlinked based on objectives like en-
ergy efficiency (similar to birds flocking in an aerodynamically optimized V-formation [29]).
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Concerning swarms, they are comprised of groups of similar agents exhibiting emergent
behavior resulting from local interactions between the agents [30].

Homogeneous robots, i.e., identical or similar robots, share the same functionalities.
Their collaboration enables them to perform tasks by coordinating the robots’ actions to
achieve specific objectives [5]. Compared to heterogeneous robots, this kind of collaboration
may lack the ability to solve tasks in complex scenarios, as demonstrated in [2]. In this
sense, the choice between homogeneous and heterogeneous groups of robots is based on
the application’s requirements.

Heterogeneous robots have diverse capabilities and functionalities that allow them
to perform tasks in different applications. The collaboration of different kinds of robots
introduces challenges for task allocation, considering factors like battery life and coverage
area alongside novel applications and concepts. The great advantage of using UGVs is that
they can carry substantial payloads. This enables them to carry a variety of sensors and
actuators and possible interaction with the environment. This kind of robot suffers from a
limited perspective due to its low positioning. The use of UAVs offers a high viewpoint but
with constraints in payload capacity and flight duration due to power efficiency [3].

In this sense, several challenges are still being studied regarding the collaboration
of a heterogeneous group of robots. For instance, Shi et al. [6] tackled the synchronizing
tasks between diverse robots by introducing a partitioning approach for heterogeneous
environments that accounts for the cost space associated with their varying capabilities.
Chen et al. [31] showed a two-stage path-planning approach using a modified ant colony
optimization and genetic algorithm. In their work, the UGV’s path was restricted to the
road network, and the UAV’s and UGV’s paths were optimized simultaneously to get the
optimized paths.

Another significant contribution arose from the work of Kim et al. [32], where the
authors proposed an optimal path strategy for navigating 3D terrain maps using UAV
sensors to ensure precise task execution. Arbanas et al. [33] designed a UAV capable of
picking up and placing packages into a mobile robot to improve the process of autonomous
transportation. In Stentz et al. [34], a UAV accompanies the UGV to detect obstacles such
as holes or steep slopes.

Several works in the literature have proposed solutions to deal with heterogeneous
robots in different scenarios. Berger et al. [2] suggested an architecture for agriculture
cooperation between UAV and UGV for insect trap inspection, where the aircraft can land
on the UGV for charging purposes. Zhao et al. [35] proposed an approach for elderly care
based on seven heterogeneous nursing robots and a multi-robot task allocation algorithm
considering execution time and energy consumption. Quenzel et al. [36] showed the
application of a team of UAVs cooperating with a UGV for autonomous fire fighting.

Regarding real-world tests, the work of Langerwisch et al. [37] showed cooperation in
a large field experiment with six heterogeneous UGVs and UAVs to perform reconnaissance
and surveillance without constant observation by a human operator. The authors of
Michael et al. [38] worked with controlling the formation of the ground robots performed
by a UAV as a flying eye.

2.2. Coverage Path Planning

In recent decades, the collaboration in multi-robot systems in practical applications
has gained significant attention. This collaboration poses the challenge of Multi-Robot
Task Allocation (MRTA), where the objective is to coordinate numerous robots to complete
specific tasks under defined constraints [39]. These tasks encompass various domains,
ranging from land-based robots like Automated Guided Vehicles (AGVs) and UGVs to
air-based robots, including planes, blimps, and UAVs. Water-based robots, exemplified by
Autonomous Underwater Vehicles (AUVs) and Unmanned Surface Vehicles (USVs), consti-
tute the third category. For the scope of this study, the focus will be on the collaboration
between one UGV and two UAVs in an inspection task.
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Inspection tasks using UAVs should guarantee flight time optimization due to bat-
tery time restrictions, the best trajectory to cover a determined area, and data gathering
for further processing. CPP devises a robot’s path to cover an accessible area within a
predetermined environment. This methodology must be efficient and provide sufficient
information for the necessary analysis. An inspection application that applies CPP can be
seen at Song and Arshad [40]. The authors perform an underwater inspection using AUV.
In Kim et al. [41], the authors inspect a mining area using a two-wheeled robot.

The algorithms employed for CPP need to ensure that the robot covers all accessible
areas. Commonly used techniques include heuristic methods, graph-based algorithms,
artificial intelligence algorithms, and metaheuristic approaches. These algorithms range
from traditional methods like Dijkstra’s algorithm [42], A* [43] search to more advanced
techniques such as genetic algorithms [44], particle swarm optimization (PSO) [45], and neural
networks [13]. Tan et al. [46] have an interesting review of coverage path planning in robotics.

Another CPP challenge is managing uncertainty regarding the robot’s position and
dynamic surroundings. This uncertainty implies that the robot’s location might abruptly
change due to external forces or calculation errors. The kidnapped robot problem is a
standard scenario used for assessment, where the robot’s position is altered during its
movement, requiring adjustment in the path planning process [13].

Not all path-planning methods can effectively address this challenge and identify fea-
sible routes. Neural networks offer an additional advantage by being capable of handling
kidnapped robot problems and moving targets. An interesting work based on Deep Neural
Network (DNN) to address high-dimensional problems was proposed by Qureshi et al. [47].
Their architecture consists of an encoder network responsible for learning to encode a point
cloud of obstacles into a latent space and a planning network. Convolutional Neural Net-
works (CNNs) have been employed to analyze camera images and generate collision-free
paths in unknown dynamic environments [48]. As demonstrated in Cui et al. [49], rein-
forcement learning techniques have outperformed traditional Q-learning-based algorithms,
leading to superior results in path planning for various applications.

Table 1 gives an overview of the characteristics of the mentioned works to compare
them with the proposed methodology. Note that this work addresses the cooperation
between heterogeneous robots (i.e., two UAVs and one UGV) in a dynamic environment
partially mapped with potential obstacles. Each robot operates based on its feature behavior
and functionality. The UAV gathers aerial information, and the UGV performs ground-level
inspection. Similar to the proposition of [2], the UGV is a reference landing point for the
UAV when the battery is low to perform “hot swapping”. The main advantage of this
proposition is the uninterrupted data collection. That is, when one of the UAVs has a low
battery and requires hot swapping, the other one continues the inspection process.

Table 1. Related works.

Work Year Cooperation/Robot Characteristics

Stentz et al. [34] 2003 UAV and UGV UAV detects obstacles for the UGV

Langerwisch et al. [37] 2013 6 UAVs and UGVs
Real application for reconnaissance and

surveillance without constant
human observation

Kim et al. [32] 2019 UAVs Optimal path strategy for navigating 3D
terrain maps

Qureshi et al. [47] 2019 7 DOF Robot
Manipulator Neural network for motion planning

Wu et al. [48] 2019 UAV Path planning using CNNs for
dynamic environments

Kang et al. [29] 2020 UAVs formation Maximization of local objectives based on
individual robot behavior

Madridano et al. [5] 2021 Homogeneous robots Coordination of robots that share
similar functionalities
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Table 1. Cont.

Work Year Cooperation/Robot Characteristics

Quenzel et al. [36] 2021 Team of UAVs and UGV UAVs cooperating with a UGV for autonomous
fire fighting

Cui et al. [49] 2021 UAV Reinforcement learning for UAV path planning

Zhao et al. [35] 2022 Nursing robots Multi-robot taks allocation for elderly care

Berger et al. [2] 2023 One UAV and one UGV Architecture for UAV and UGV cooperation
in agriculture

Proposed Work 2024 Two UAVs and one UGV
Efficient cooperation between two UAVs and
one UGV in dynamic environments without

interrupting the inspection process

As can be seen, different from the mentioned works, which are focused on aspects such
as optimal path strategy, neural network-based motion planning, or the coordination of
homogeneous robots, our proposed approach introduces a strategy to ensure uninterrupted
data collection during an inspection process. The proposition also tackles the challenge of
dynamic environments since the robot can encounter operators in the field and structural
supports during the navigation.

3. Proposed Methodology

Figure 2 provides an overview of the proposed cooperation strategy. The UAVs take
on the role of conducting aerial inspections and continuously updating the environment
map. They can swiftly maneuver and gather information from an elevated perspective.
Simultaneously, the UGV is responsible for ground-level inspections, contributing to map
updates, and demonstrating a unique feature: the ability to transport a UAV on its top. This
dual functionality enhances the versatility of the UGV, allowing it to operate independently
and in tandem with the UAV. An interesting aspect of this cooperation is the concept of “hot
swapping.” In cases where the UAV’s battery level becomes low during its aerial mission,
it can seamlessly land on the UGV for a swift battery replacement or recharge. When this
happens, the other UAV continues the mission. This feature ensures the UAV’s continuous
operation and minimizes downtime, making the entire system more efficient and adaptable
to the dynamic demands of the environment. Note that it is considered that the robots
share information about their positions and progress and detect obstacles to avoid conflicts,
ensuring seamless cooperation.

Figure 2. Overview of the proposed cooperation strategy.
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3.1. Problem Description

Let the world space of states be defined asW = R5 andO,D1,D2 and G closed subsets
ofW , hence O,D1,D2,G ⊂ W and described as:

• O(x, y, z) : The obstacles space of states.
• Cu(x, y, z) : The desired area for UAVs to cover.
• Cg(x, y) : The desired area for UGVs to cover.
• D1(xd1, yd1, zd1, sd1, bd1) : The UAV1 space of states.
• D2(xd2, yd2, zd2, sd2, bd2) : The UAV2 space of states .
• G(xg, yg, sg) : The UGV space of states .

Where:

xi, yi, zi are the respective agent’s pose.
si is the sensors readings vector.
bi is the agent’s battery percentage status where {b ∈ Q|b = [0, 100]}.
The desired coverage areas described by Cu and Cg are defined by fixing the z parame-

ter and then subtractingW and O. Equation (1) shows that relation, where for the UAV,
the z parameter will be the altitude for inspection, and for the UGV, z is set to 0.

Cu =W(x, y, z)−O(x, y, z) f orz = set altitude

Cg =W(x, y, 0)−O(x, y, 0) f orz = 0
(1)

The problem can be described as trying to find the best path P , in terms of overlapping
and maneuvering that links all the states in the substates Cu and Cg with their respective
agent’s home position, constrained by the status battery (bd1, bd2), the pre-defined inspec-
tion altitude and the world bounders (x f , y f , z f ). Equation (2) describes the paths and
the constraints for UAVs and UGV, where Ju and Jg will be our cost function and the
optimization of them is the developed architecture proposed in this work.

Pu = min(∑ Ju(xi, yi, zi, bd1, bd2))

Pg = min(∑ Jg(xgi, ygi)))

with :

xgi, ygi ≤ x f , y f

xi, yi ≤ x f , y f

zi = Inspection altitude

bd1, bd2 > 20%

(2)

3.2. Ground Inspection

In the context of coverage path planning for heterogeneous robot teams, it is essential
to establish a clear mission initiation protocol. Typically, the UGV takes the lead by initiating
the mission. As it sets out on its path, the UGV’s first task is to ensure the path ahead is clear
and free of obstacles. If the UGV is not currently engaged in hot swapping (i.e., the seamless
battery replacement or recharging mechanism), it proceeds with the mission. This mission
involves systematically navigating the environment, collecting data, and contributing to the
coverage inspection task. This approach reflects the coordinated workflow where the UGV
assumes the initial responsibility, examines the path’s feasibility, and, when conditions
permit, initiates the mission. Systematic coordination and path verification are essential
to ensuring successful and efficient coverage path planning in dynamic environments.
Figure 3 summarizes this process.
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Figure 3. UGV mission initiation and verification.

3.3. Aerial Inspection

In this specific scenario, as already mentioned, the multi-robot collaboration involves
a team of two UAVs and one UGV. The UGV initiates the path assessment and mission to
provide the conditions for the UAVs. Additionally, it assumes the responsibility of data
collection and updating the map. Furthermore, if one of the UAVs experiences a low battery,
the UGV facilitates the hot-swapping process.

Both UAVs are primarily tasked with aerial inspections. However, their operations
must be carefully orchestrated to ensure coordination and prevent redundant visits to the
same points of interest (PoI). It is worth noting that if the UGV encounters a PoI during
its ground-level mission, it can request the UAV currently on patrol to adjust its routine
and investigate the identified PoI. This collaborative approach ensures efficient coverage
and thorough inspection of the target area. Figure 4 illustrates the routine of the UAV 1.
Note that during data collection in the predefined path generated by the CPP algorithm,
the UAV must check the free path to navigate and its battery status. Note that both UAVs
present the same routine when performing inspection.

Figure 5 shows the position information exchanged between the aircraft during a
mission and the ground base unit. The UAV must periodically transmit its current position
coordinates to the UGV to allow the ground vehicle to maintain awareness of the UAV’s
location in real time. Simultaneously, the UGV relays its position information to the UAV for
mutual situational awareness. This bidirectional exchange of position information enables
the UGV to accurately track the UAV’s movements and adjust its own path or mission
objectives accordingly. For instance, if the UGV identifies a PoI during its ground-level
inspection, it can request an aerial inspection in the same location.
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Figure 4. Routine of UAV 1.

Figure 5. Information exchanging between the UAV during a mission and the UGV.

3.4. Coverage Path Planning Algorithm

The CPP algorithm was selected by considering scalability, computational cost, and
feasibility for handling automated inspections in a substation. Both UAVs and UGV must
follow a predefined path generated by the offline CPP. This path is then dynamically
adjusted in real-time using a sensor-based machine learning technique. The authors have
chosen to implement the Wavefront algorithm, discussed in [50], for the two-dimensional
offline CPP.

The Wavefront algorithm is a grid-based approach that propagates a wave from a
target point throughout the map, applying a cost function to each grid. This cost function,
which can be a distance transform as described in Jarvis et al. [51], has the drawback of
producing a path with many curves, posing challenges for odometry estimation in robot
implementation. They introduced a new variable to the cost function to address this issue:
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the variable γ. Figure 6 demonstrates an implementation of the algorithm using only a
distance transform, highlighting the path’s curvature. It shows a grid-based map with
several cells representing different terrain or obstacles. The starting point is labeled as “S”,
and the goal point is labeled as “G”. Figure 6a presents the wave propagation from the
goal point throughout the map. This illustrates the distance process transform propagation,
where each cell is assigned a cost based on its distance from the goal. Figure 6b is the
optimal result path acquired from the wave propagation.

Figure 6. Wavefront algorithm example for the random map, where S is the starting point, and G is
the goal. (a) Distance transform propagation wave from the goal. (b) Path acquired from the wave.

Zelinsky [50] applied a path transform approach, wherein instead of propagating
the distance from the goal, the algorithm propagates a new cost function. This cost func-
tion takes advantage of a weighted sum between the distance and a discomfort factor
associated with moving near obstacles. The path transform cost function for each cell is
described in Equation (3), where the discomfort factor can be adjusted to influence the
path’s adventurous or conservative nature.

J(x, y, γ) = D(x, y) +
n=N

∑
n=0

γ ·O(x, y) (3)

J(x, y, γ): Cost function;
D(x, y): Manhattan distance from the cell to the goal;
N: Number of objects;
γ: Discount factor;
O(x, y): Obstacle distance.

Figure 7 illustrates the path generated when applying the path transform cost function
to the same map shown in Figure 6. This strategy aims to shape the environment, resulting
in a path with fewer turns and more straight segments.

Figure 7a gives the path transforms wave propagation originating from the goal point
throughout the map. From Figure 7b, it is possible to verify that the path obtained through
this modified approach tends to exhibit fewer curves and more straight segments. This is
achieved by shaping the environment in a manner that encourages smoother trajectories,
which has the potential to simplify navigation and reduce computational complexities.
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Figure 7. Wavefront algorithm example for the random map, where S is the starting point, and G is
the goal. (a) Path transforms propagation wave from the goal. (b) Path acquired from the wave.

3.5. Deep Q-Network

DRL is a fusion of deep and reinforcement learning algorithms. It combines the robust
perceptual problem-solving capabilities of deep learning algorithms with the adaptive
learning outcomes characteristic of reinforcement learning algorithms. Q-learning is a
method inside the DRL family that returns the optimal solution based on a Q-value table.
This algorithm encounters scalability issues when dealing with large state spaces in real-
world applications. In response to this challenge, the Deep Q-Network (DQN) algorithm
emerges as a promising method to address this issue. It adeptly addresses scalability
concerns by integrating the Q-learning algorithm with an empirical playback mechanism,
generating a target Q value by applying a convolutional neural network [52].

In previous work [12], the authors have extended the DRL technique to solve complex
tasks such as path planning and obstacle avoidance. An adaptive path planning algorithm
that combines classic path planning algorithms and DQN methods was developed. In
this work, the authors extrapolated that concept and applied the same algorithm as a
local optimal obstacle avoidance for all the agents within our heterogeneous robot team.
The integration of DQN allows the robots to dynamically adjust their paths and navigate
around obstacles encountered during their missions, ensuring safe and efficient operation
in dynamic environments. The DQN topology described in [12] comprises a fully connected
neural network with three layers: one for input, one hidden layer, and the last for outputting
the results. Table 2 shows the number of neurons and the structure of the model. The model
was extensively trained into two parts, one using an ambient developed in Python 3.8 and
the other on software to simulate gravity, wind, and robotic kinematics. The simulated
agent was put in these simulation environments and tried to survive objects in collision
routes to it for as long as possible. It receives positive rewards if the decision leads the agent
to the direction pointed as a target, and a negative reward is given if it collides, resetting
the simulation and starting the next training event.

Table 2. Neural network model description.

Layer Type Input Hidden Output

Number of neurons 12 30 6
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The input of the model is a subset of the already-discussed (Section 3.1) agent’s space
of states (D1,D2,G) plus the information about the next path step, given by Pi(x, y, x) and
described as (xn, yn, zn). Equation (4) shows the relation of the neural network input I and
the agent’s space of states.

Id1 = D1(xd1, yd1, zd1, sd1) + Pd1(x, y, x)

Id2 = D2(xd2, yd2, zd2, sd2) + Pd2(x, y, x)

Ig = G(xg, yg, sg) + Pg(x, y, x)

(4)

The output layer returns a distributed probability that indicates the direction where
the agent should move. Figure 8 compiles the information about the input and output of
the model.

Figure 8. Representation of the DQN input and output variables.

To choose the output, the authors decided to apply two filters. The first uses sensor
information and forces output probability to be equal to zero for occupied directions. The
second one is to sample the output based on the likelihood. Let the neural network function
be described as N(input) and filter one and two by f1 and f2, respectively; the final output
can be written as Equation (5).

Out = f2(N(xi, yi, zi, si, xn, yn, zn). f1(si)) (5)

The neural network model and the filters are the same for the UAVs and UGVs;
only the input vector assumes other values since the agent’s sensors, the pose, and the
path of the next node can be different for each robot. The neural network function is
only evoked when the determined path is not empty, in other words, when Pi ∩O 6= 0.
The agent’s path returns to the already calculated Pi after five network events or when
‖(xi − xn, yi − yn, zi − zn)‖2 = 0.

Figure 9 shows an example of a coverage path planning mission where the UGV
faces an unmapped obstacle and recalculates the route. In this figure, the green triangle
represents the unmapped obstacle, and the red line represents the recalculated route.
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Figure 9. Recalculating a new route (i.e., red line) for the UGV due to an unmapped obstacle.

4. Results and Discussion
4.1. Hardware Description

The simulations were conducted on a notebook with 8GB of RAM and powered by
a 2.7 GHz Corei5-5200 processor. The chosen operating system distribution was a 64-bit
Ubuntu 18.04 Bionic, complemented by the lightweight LXDE desktop environment. All
algorithms were coded using Python 3.10. It is possible to access all the source code and
relevant information on the following GitHub repository: https://github.com/gelardrc/
mixedmission.git (last accessed on 2 January 2024).

In order to create the simulation, the authors used Gazebo software Version 11 along-
side ROS. Gazebo is a software simulation tool that offers a wide array of pre-built models
for designers to create lifelike environments. Beyond its visual capabilities, Gazebo empow-
ers users to establish a complete dynamic interface, encompassing factors like gravity, wind,
dynamic elements, and more. ROS is an open-source middleware framework designed to
streamline the development and control of robotic systems. Its architecture is flexible and
modular, giving the developers a powerful tool to create and handle the many processes
in the robotic world. Figure 10 visually represents the simulated UAV and UGV models
employed in the Gazebo simulation software. Figure 11 shows the Gazebo’s world with
the electrical substation model, where all simulations were conducted.

https://github.com/gelardrc/mixedmission.git
https://github.com/gelardrc/mixedmission.git
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Figure 10. Gazebo’s models. (a) UAV iris model. (b) UGV model.

Figure 11. Simulated world created on Gazebo.

4.2. Simulations

The proposed methodology for CPP in a dynamic environment was verified using
Software-in-the-Loop (SITL) simulations using the PX4 open-source flight control plat-
form [53]. SITL is a technique that involves testing a system’s control software in a computer
simulation environment, offering advantages like saving time and resources, security, ease
of repetition, iterative development, evaluating edge cases, and supporting training in safe
and controlled environments [54]. The simulations involved an Iris quadrotor model within
the Gazebo robot simulator, as illustrated in Figure 10a. The communication between the
simulated quadrotor and PX4 was established through the MAVLink API. This API defines
a set of messages facilitating the transfer of sensor data from the simulated environment
to PX4, and reciprocally, it conveys motor and actuator values applied to the simulated
vehicle [55]. Besides that, authors also applied the UGV (i.e., Figure 10b) developed by
Santos et al. [56] during simulations inside Gazebo.

4.2.1. System Intregration

The interconnection among these systems was performed using ROS. Figure 12 shows
a diagram with the hierarchy of these connections. This figure has three main blocks. The
block PX4 on SITL represents the two simulated UAVs within the PX4 SITL environment,
where the PX4 autopilot firmware is running. This simulates the UAVs’ behavior and
provides a controlling interface. Note that the MAVlink protocol is used for communication
between autopilots and onboard systems or ground stations. The other block, the ROS
Master Station, represents the ROS framework to build the robotic system. The ROS Master
Station serves as the central coordinator for communication within a ROS-based system.
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Finally, the last block, UGV, represents the ground-based robot that has a companion
computer that has an onboard processing unit that processes the path planning tasks
and the Real-Time Appearance-Based Mapping (RTAB-Map) package used for real-time
simultaneous localization and mapping (SLAM).

Figure 12. Communication hierarchy of robotic systems.

The ROS Master is a central component that manages the registration and discovery of
nodes within the ROS system, integrating the communication among the subsystems inside
each agent. The communication in ROS is based on a publish-subscribe model and a service-
oriented architecture, allowing different components to exchange data and information.
One of these elements is the Node, which represents individual software modules that serve
as a key element in decomposing a robotic system. These nodes communicate with each
other through an ROS structure known as topics. Figure 13 illustrates essential nodes, topics,
and their intercommunication during simulations. The UGV (Figure 13b) is performing
the inspection using the node /rtabmap, and for its navigation, it is using /imuFilter and
/camera nodes. Its companion computer communicates with the motors through /serial_node.
Regarding the UAVs, Figure 13a, the topics with the points of interest are sent from the
node /pt_interesse to the nodes /missao, /uav1/path_rviz_pose_1, and /uav2/path_rviz_pose_2.
Thus, the robots know exactly the points being inspected, in case one UAV has to stop
is currently mission. Note that the robots are communicating through MAVROS (nodes
/uav1/mavros and /uav2/mavros).

As mentioned, the UGV uses the RTAB ROS package for simultaneous mapping
and localization of the robot. Additionally, the robot computes wheel odometry. The
companion computer processes the fused odometry data through the Extended Kalman
Filter (EKF) The companion computer also handles mapping, communicating with
the Arduino, as detailed in [56]. The Arduino board is responsible for controlling the
motors, enabling the execution of movements based on the processed mapping and
localization information.

4.2.2. Mapping

The mapping topic, depicted in Figure 13, is important in this project. This function
allows the robots to understand and navigate the environment, assisting them in detecting
and avoiding obstacles during inspection tasks. The mapping also facilitates localization to
determine their positions relative to the inspection area, ensuring data collection and task
execution. In this sense, all agents interact with this topic, reading from and updating it
with their sensors. The construction of the map topic initially involved the UGV navigating
through the environment, sending camera readings to the RTAB package [57]. The map
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was saved after the explorations and can be transformed into an image, as shown in
Figure 14.

(a)

(b)

Figure 13. Active ROS nodes and topics. (a) UAV1 and UAV2 nodes/topics. (b) UGV nodes/topics.
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Figure 14. A 2D representation of the substation environment.

One of the drones was deployed to achieve a 3D representation of the map topic,
similar to what was accomplished with the UGV. It conducted flights at specific heights,
using its built-in camera to transmit information to the OctoMap Mapping Framework
(Octomap) mapping package [58]. This process aimed to generate a comprehensive 3D
representation of the environment. The aircraft flies at a specific height to acquire images
of the surroundings. These captured images are processed and used in the OctoMap
framework to estimate each voxel’s occupancy in the 3D space. The outcomes of these
readings are depicted in Figure 15, where a 3D modeling software was employed to refine
the grids, providing a better data interpretation. Note that this process can provide valuable
information about the environment, including the locations of obstacles and free space.

Figure 15. A 3D representation of the substation environment.

4.3. Coverage Path Planning
Tuning Wavefront Algorithm

Tuning the Wavefront algorithm involves choosing different values for the discount
factor (γ) already presented in Equation (3). This parameter influences the cost function
used in path planning and directly impacts the algorithm’s behavior and the quality of
the generated paths. As usual for coverage path plannings, the number of overlaps and
maneuvers on the generated path was considered to benchmark the results. The events
generated during simulations are all equal, i.e., they all have identical starting, goal points,
and free areas. Figure 16 shows how the variation of the variable γ changes the results. As
can be seen, the best results are found using gamma near 1, compared with those found
adopting only distance transform.

After applying the developed coverage path planning to the map, it was possible to
trace the route for the UAVs and UGV agents. Figure 17 gives the path constructed by the
Wavefront algorithm. Figure 17a shows the planned path for the UGV. Similarly, Figure 17b
displays the paths planned for the UAVs, highlighting their respective routes. These paths
represent the optimal trajectories identified by the algorithm, considering the Wavefront
tuning by adjusting the discount factor (γ).
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Figure 16. Wavefront benchmark. Dashed lines represent the overlaps, and red lines represent
the maneuvers.

(a)

(b)

Figure 17. Map route generated by wavefront coverage path planning. (a) Planning UGV path.
(b) Planning UAV paths.
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4.4. ROS Implementation

During simulations, the routes defined in the last section were not fixed. Indeed,
they changed many times due to battery scarcity, object avoidance, or even when agents
lost communication with the ROS master. The proposed framework established specific
routines for these three scenarios to mitigate these challenges.

4.4.1. Battery Scarcity

In this test scenario, UAV1 starts the mission from the ground, and UAV2 docks onto
the UGV. UAV1 and UGV begin to follow their pre-determined routes until UAV1’s battery
level drops to 20%; by then, the battery routine is evoked. First, the UGV stops, and UAV2
takes off until it reaches its inspection height; then, UAV1 starts to trace the route to land
on UGV and performs the hot swap; when the UAV1 landing process is over, and the hot
swap is performed, UGV and UAV2 continue their paths. This routine continues until the
mission is over. Figure 18 shows the battery scarcity routine during a simulation.

Figure 18. Simulation for battery scarcity routine. The green line represents the path of UAV1, and
the blue line is the path of UAV2 and UGV.

4.4.2. Avoiding Unmapped Objects

For this simulation, the authors created five random objects with sizes varying from
1 grid occupancy to 10 grids. The simulation started, as described in the battery scarcity
routine. Still, this time, when one agent faces an unexpected object, the unmapped routine
is called, and the obstacle avoidance algorithm based on neural networks performs the
path planning. This process is shown in Figure 19.

4.4.3. Communication Loss

Localization and map information are always shared between the agents in this
proposed framework. The authors created the communication loss routine to enhance
operational safety in these scenarios. It begins when some agent stops receiving connection
information from the ROS master. Then, the flying UAV will return to its takeoff position
(i.e., Return To Home (RTH) procedure); if its battery is under 20%, it will look for the
nearest safe place and try to land on it (or, RTH). During the loss routine, the UGV and
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nested UAV will stop their missions and wait until system communication is fully recovered.
This process is shown in Figure 20.

Figure 19. Simulation for avoiding unmapped objects. The green line represents the path of UAV 1,
the blue line is the path of UAV 2, and the black line is the NN path.

Figure 20. Simulationfor communication loss with battery up to 20%. The green line represents the
path of UAV1, and the blue line is the path of UAV2 and UGV.
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4.4.4. Time Analysis

Time spent during a mission execution is crucial. Although this paper does not intend
to develop an optimum strategy or even a flawless implementation for multiple scenarios,
the authors decided to present some time analysis and path comparison between the
expected results and the actual ones given by simulation. Table 3 compiles all the results
obtained through all simulations in the proposed scenarios. Note that in the hot swap
battery case, the mean time cost to complete the mission is 28 minutes. The mean time cost
is 29 minutes in the scenario with unmapped objects.

Table 3. Compilation of results obtained in simulations.

Scenario Mean Time Cost (min) Mean Path
Deviation (m) Success Rate

Battery scarcity 28 2 98%

unmapped objects 29 10 (for two
unmapped objects) 96%

Communication loss Varies depending on
communications return 1 100%

4.4.5. Testing Other CPP into the Architecture

Performing a CPP mission is not a simple task. As discussed in Section 1, the envi-
ronment plays a crucial role in the decision of which strategy would be used. Not only
that, but computational time and path quality are also important. To show the modular
characteristics and versatility of the proposed architecture, the authors decided to recreate
the same simulations in the substation world, but this time with different coverage path
planning strategies. It is important to say that the results only reflect the algorithm’s
characteristics, i.e., the Dijkstra algorithm returns the best possible path but with high
computational cost, and A* returns a fast path, but has no guarantee to explore all the
environment, or even Boustrophedon cellular decomposition, a classic CPP strategy, may
also return a path with many overlaps. Some results applying these algorithms during the
simulation in the substation world are shown in Table 4. As expected, Dijkstra’s algorithm
suffers from computational cost when facing the substation environment. Like Dijkstra, A*
takes a long time to return a path and only covers 87% of the map. Indeed, this number can
be increased by raising the exploration ratio, but it would also increase time. Wavefront
and Boustrophedon have similar results during the simulations, with just a 4% difference
in overlapping.

Table 4. Simulation with diferent coverage path planning algorithms.

Algorithm Time (s) Overlap (% of Path) Covered Area (%)

Wavefront 5.4 20 100

Dijkstra 2470.25 10 100

A* 1250.71 5 87

Boustrophedon 4.3 24 100

4.5. Discussion

From the results, it is possible to verify that the planned paths for the UAVs and
UGV demonstrate the proposed methodology’s efficacy in guiding the robots through the
inspection environment. The generated paths effectively balance coverage of the area of
interest while minimizing traversal distance and avoiding obstacles.

The developed methodology exhibits scalability as it allows for deploying this frame-
work in other inspection scenarios with different environmental conditions, mission re-
quirements, and number of robots. The modular design and the flexibility of ROS-based
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communication enable the easy integration of additional sensors, platforms, or functionali-
ties to accommodate evolving mission needs.

It is important to highlight that a safety point is configured for all robots in case of
communication loss. As described before, this safety point is called Return To Home,
or RTH. This procedure was chosen due to the peculiarities of the electrical substation
scenario. Many commercial robots can automatically return to their starting point (RTH)
when they lose communication with the remote control. This standard safety measure
prevents the robotic system from navigating away and getting lost. The system can record
communication loss (such as a ROSbag file) as a significant event and notify relevant
human-in-the-loop process operators so they can take appropriate action. Furthermore, to
minimize system downtime during the exchange of UAVs, that is, when one UAV continues
the mission and the other proceeds to land onto the UGV, there is a synchronization to
continue the mission.

5. Conclusions and Future Work

This research proposed a strategy to assist the cooperation of heterogeneous robot
teams that comprise two UAVs and one UGV. These robots cooperate in an inspection
mission of an electrical substation, which is considered a dynamic environment once it has
obstacles such as conduits, pipes, structural components, and operators that circulate in
this field. The robots have partial knowledge of the environment. The main contributions
included the introduction of a novel cooperation path planning framework with a robust
CPP algorithm and adaptive path planning for obstacle avoidance. The proposed coop-
eration strategy gives more capabilities for the UAVs to perform aerial inspections and
continuous map updates, while UGV contributes to ground-level inspections and assists
the UAVs. Simulations were conducted using ROS and the Gazebo platform. The outcomes
demonstrated the functionality of the proposed approach in a semi-realistic environment
simulation as proof of concept to demonstrate the robot team’s adaptability through the
proposed strategy.

This research presents a potential real-world application. Cooperative robotic systems
can be applied in critical infrastructure inspections like industrial plants, network trans-
portation, and promising responses to environmental monitoring, precision agriculture,
search and rescue, and urban surveillance. In order to advance from simulated environ-
ments to real-world testing, it is important to ensure that the robotic hardware and software
systems are robust and reliable for deployment in dynamic, real-world settings. Our robotic
system is already simulated in SITL with Ardupilot firmware to minimize discrepancies
between simulation and reality. Using Ardupilot firmware in simulation offers several
advantages, including simulating real-world scenarios and validating our strategies in
a controlled environment. However, extensive testing and validation in controlled envi-
ronments, such as test facilities or controlled outdoor spaces, are crucial for assessing the
system’s functionality, reliability, and safety. In this sense, the authors intend to use real
robots in a real-world scenario.

Other future works include the development of strategies for team reconfiguration
and collaboration between robots to improve the overall efficiency and adaptability of
the system. Investigating methods for efficient information sharing, coordination, and
decentralized decision making could lead to more intelligence behaviors among the hetero-
geneous robot team.
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