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Abstract: New trends in maintenance techniques are oriented to digitization and prognosis. The
new electronic devices based on IoT (Internet of Things) technology among others that support
the industry 4.0 paradigm let enhance the traditional condition monitoring techniques to better
understand and predict the state of a machine in service. Related to maintenance applications, one of
the important steps in condition monitoring tasks for fault diagnosis is the selection of the optimal
pattern to provide accurate results (avoiding fault positives/negatives) with adequate computation
time. When implementing this, the selection of optimal parameters and thresholds for setting
alarms are important to detect problems in the machine before the failure occurs. Vibratory signals
have been proved to be a good variable to determine their mechanical behavior. Nevertheless,
parameters obtained from time domain measurements are not computationally efficient nor good
patterns to compare different machine conditions. In this sense, tools that represent the frequency
domain or time–frequency domain have been useful to detect defects in rotating elements such as
bearings. In this work, defects in ball bearings are studied using wavelet packet transform. For this,
a methodology will be developed for the optimal selection of the mother wavelet, incorporating
intelligent classification systems, and using a medium Gaussian support vector machine model. In
this way, it will be verified that the correct selection of this function influences both the results and
the ease and reliability of detection. The results using the selected mother wavelet will be compared
to those using Daubechies 6, since it is the mother wavelet that has been used in previous works and
which was selected based on experience. For it, vibratory signals are obtained from a testbench with
different bearing conditions: healthy bearings and defective bearings (inner and outer race).

Keywords: mother wavelet; wavelet packet transform; vibration analysis; condition monitoring;
diagnosis; maintenance 4.0; bearing defects; pattern optimization

1. Introduction

Nowadays, the performance of a good predictive maintenance procedure is one of
the most important tasks in the industry, since it can avoid accidents and can maximize
the life of components before they break, which significantly reduces costs and time, and
maximizes production. The new challenges in maintenance are oriented to predictive
maintenance, particularly in condition monitoring (CM), prognosis, and the digitalization
of the full process of maintenance tasks (from the element to executive managers).

In order to implement a CM system to detect failures in mechanical elements, it is
important to select and study a set of behavior patterns of the most common defects
that may exist in a machine/element, since that pattern can be monitored during the
machine’s operation, so the machine’s status is always known without us having to stop
and disassemble it. Therefore, this was studied in some works, such as [1,2]. In the
literature, there are some interesting works developed to take measures and to process
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them to extract representative patterns to evaluate the condition of rotatory elements.
To carry this out, it is common to analyze the vibrations that are produced during the
operation of the components, since it is possible to detect a wide variety of defects [3].
It is really important to detect defects before failure occurs, since the breakage of these
components could cause catastrophic and irreversible failures [4]. In a machine, the first
elements that usually fail are bearings; thus, their failure is critical. Rolling bearings are
mechanical components commonly installed in shaft and axle supports. Their primary
function is to transfer loads from moving to stationary machine parts, facilitating relative
motion of rotating components. The most common cause of rolling bearing failure is wear.
Operational conditions, aggressive environments, and temperature are some of the factors
influencing wear [5–7]. This is why early detection of defects in these components is of
vital importance.

To study the behavior of these components, the analysis of the envelope signal facili-
tates this study since it allows to obtain the fault frequencies in a clearer way and because
low frequency modulating events are amplified and represented by more energy than
in the original signal spectrum, which improves the interpretation of results. It is very
common in the industry to apply methods based on the Hilbert transform (HT) to vibratory
signals [5–7], since it is a way to estimate the amplitude modulation of that signal. Power
spectral density (PSD) is also used [8]. Other studies apply variational mode decomposition
(VMD) [9,10], and works like [11] combine the HT and wavelet transform (WT). Work [12]
proposes a method based on WT and convolutional neural networks. Moreover, some
studies use continuous wavelet transform (CWT) or discrete wavelet transform (DWT) [13],
although there are several techniques to diagnose these defects [14]. Recent studies propose
new methods to detect them [15]. Nevertheless, many works agree that the fault frequencies
of a ball bearing are known and can be obtained using mathematical formulas that depend
on the characteristics of the bearing [16–18] and the rotation frequency. When a ball bearing
has a defect, a peak of high amplitude appears in the spectrum at the fault frequency.

Regardless of the processing technique and the type of signal used, it is common to
try to analyze, from the frequency domain, the fault frequencies of bearing failure [16].
However, these frequencies do not appear clearly differentiated when real systems are
monitored. This issue can be due to the frequency resolution, which divides the amplitude
of the fault frequency into the closest frequencies. To avoid this, an analysis using the
wavelet packet transform (WPT) is proposed in this work to know the energy of a range
of frequency that includes the fault frequency. The energy of this packet should increase
when a bearing has a defect and has been proved to be a good pattern to detect changes in
the dynamical behavior of the system [19–21]. To sum up, tools that work in the frequency
domain have a great disadvantage compared to other tools that work in the time and
frequency domain. The first reason is that the time information is lost. Another reason is
that the fault frequency may not exactly match with the represented frequencies due to the
frequency resolution or noise.

However, although many works have traditionally used WPT and showed good results
for diagnosing defects in bearings, even incorporating intelligent classification systems [22],
the real challenge in applying this technique is to use a suitable mother wavelet for each case.
Many works choose the best mother wavelet based on the experience of achieving good
results with it. For example, similar works [19–21] used the Daubechies 6 mother wavelet
for this reason. Other works focus on comparing several mother wavelets and choosing
the one that offers the best results. For example, work [23] compared the results using
Daubechies 1 to 4, obtaining similar results. Works like [24] proposed to select the mother
wavelet based on finding a compromise between good results and computational cost.
Work [25] determined that the Daubechies 44 function is the most similar to a measured
vibration signal. Other works like [26] used Daubechies 2 and 10, and work [27] used
Daubechies 2. In general, the Daubechies family seems to be the most common to perform
a WPT analysis for bearing fault detection, but there is no fact that guarantees it, or any
consensus on which is better for each case. Moreover, it was shown in a previous work [28]
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that the impulse generated in the signal due to the existence of a defect is visually very
similar to the analyzed mother wavelet functions (Figure 1), and this is one of the reasons
why many studies use these tools [29].
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Figure 1. Example of mother wavelet (Daubechies 4).

Therefore, in this work, a study of the optimal mother wavelet is carried out. To carry
this out, a methodology that considers the success rate results of an intelligent classification
system (using medium Gaussian SVM model), the computational cost, and the variation of
results between healthy and defective conditions is proposed. The SVM proved to work
well for bearing fault detection [30–32]. The results obtained using the selected mother
wavelet are compared to the results using the Daubechies 6, which has been traditionally
used in similar works [19–21]. Moreover, the decomposition level will also be analyzed.

This work aims to demonstrate that the correct selection of the mother wavelet influ-
ences both the results and the ease and reliability of detection. For which, the proposed
methodology can yield the optimal function to detect defects in a clearer way and guaran-
tees that the maintenance task is done in the most satisfactory way possible.

2. Experimental Measurements

A set of tests was performed on a machinery fault simulator (obtained from Spec-
traQuest Inc., Richmond, VA, USA) in which different fault types can be tested (Figure 2).
The machine has two ball bearings (number 3 in Figure 2) and a shaft (number 2 in Figure 2).
The energy is provided by a 750 W motor. Vibration signals are obtained thanks to an
acquisition chain formed by an accelerometer (Brüel & Kjaer 4383) (number 1 in Figure 2), a
Nexus signal conditioner (Brüel & Kjaer 2693), a data acquisition card (Keithley KUSB-3100),
and a computer.
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The tests carried out in the laboratory include different configurations (a bearing
with inner-race defect, a bearing with outer-race defect, and a healthy bearing). Each type
of defect was tested at 60 Hz. The type of the bearing was ER10K (Rexnord), and the
characteristics are shown in Table 1. In this way, first, two healthy bearings were tested to
have a healthy reference condition and in order to compare it with the defective condition.
Afterwards, the bearing closest to the motor was replaced with a defective bearing in the
inner race and the test was repeated. Finally, the same procedure was performed but for a
defective bearing on the outer race. Regarding data acquisition, a sampling frequency of
6000 Hz was used. An example of a measured signal (outer-race defect) is represented in
Figure 3.

Table 1. Characteristics of an ER10K bearing.

Parameter Value

Inside diameter (mm) 15.875
External diameter (mm) 46.990

Pitch diameter (mm) 33.490
Number of balls 8

Ball diameter (mm) 7.940
Contact angle (◦) 0
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Once the bearing characteristics are known, the fault frequencies (Table 2) can be
calculated.

Table 2. Fault frequencies for each bearing defect.

Defect Equation Fault Frequency (Hz)

Inner-race f r n
2

(
1 + d

D cos α
)

296.90

Outer-race f r n
2

(
1 − d

D cos α
)

183.10

Here, fr is the rotation frequency of the shaft, n is the number of balls, d is the diameter
of the ball, α is the contact angle, and D is the pitch diameter (distance between the centers
of two opposite balls).

After the tests, a post-processing of the signals was required. For this, the software
MATLAB R2022b was used. Specifically, the wavelet packet transform (WPT) was applied,
and the MATLAB application ‘classification learner’ was used to perform an intelligent
classification of the signals using a medium Gaussian support vector machine model.
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3. Wavelet Packet Transform

The wavelet transform (WT) offers information both in time and frequency domain.
To apply this tool, it is necessary to choose a function called mother wavelet Ψs, τ(t), which
is described by Equation (1). This function is compared to the study signals by calculating
the correlation coefficients which depend on the translation and scale of the wavelet
function [33]. The CWT (continuous wavelet transform) is described by Equation (2),
where the symbol ‘*’ symbolizes a complex conjugation

Ψs, τ(t) =
1√

s
Ψ
(

1 − τ

s

)
(1)

CWT(s, τ) =
1√

s

∫ ∞

−∞
x(t)ψ∗

(
t − τ

s

)
dt (2)

The DWT (discrete wavelet transform) allows the application of the WT discretely
via filters [33]. The signal (with N samples and in the frequency domain f) is decomposed
by a low-pass filter (obtaining approximation information (A)) and by a high-pass filter
(obtaining the detail information (D)) (Figure 4).
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The tool used in this work, the wavelet packet transform (WPT), is based on applying
the DWT recursively up to a decomposition level k chosen by the user (Figure 5).
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In this way, the analyzed frequency range is divided into packets (2k). W (k,j) represents
the coefficients of the signal of each packet, with j being the position of the packet within
the decomposition level (Equation (3)).

W (k, j) ={w1(k, j), . . . , wN(k, j)} = {wi(k, j)} (3)
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Given the large number of coefficients that are obtained, it is common to calculate the
energy of the packets E(k, j) (Equation (4)) to obtain clearer and more useful information
for interpretation.

E(k, j) = ∑
i

{
wi(k, j)}2 (4)

The methodology for mother wavelet selection is applied with a decomposition level
of 9, obtaining 512 packets, but only those that include the fault frequencies are considered.
Each packet represents a frequency band of 5.86 Hz.

4. Methodology for the Selection of the Mother Wavelet

Families Daubechies (db), Symlets (sym), and Coiflets (coif) were analyzed from 2 to
10 vanishing moments—order 2–10 for Daubechies and Symlets families, and order 1–5
for Coiflets family. This ensures that the analysis is performed under the same conditions
for each family and it also guarantees an adequate computation time [28,34]. For each
condition, for the inner-race and outer-race defects and mother wavelets, the following
steps are followed:

1. WPT decomposition: The WPT is applied with a decomposition level of 9 to ensure
that there is a narrow band of frequencies that include the fault frequency for each
case. This is applied for each mother wavelet and for all conditions tested.

2. Energy of the packets’ calculation is calculated using Equation (4), but only for the
packet that includes the fault frequency for each case.

3. The energy variation (Ev) calculation: The energy variation of the packet that includes
the fault frequency is calculated with Equation (5), where the energy of the healthy
condition (Eo) and the energy of the defective condition Ed are used. The larger
variation, the better the results. It has been considered that an increase of 50% is
a good value of energy increase for a correct detection of the defect; so, to be less
restrictive, mother wavelets with an energy variation lower than 45% were discarded.

Ev =
Ed − Eo

Eo
·100 (5)

4. Reliability analysis: Energy values of the packet that include the fault frequency
and that, by using each preselected mother wavelet, are entered into an intelligent
classification system in which defective and healthy conditions are distinguished in
two different classes; thus, the output would yield a value if an energy value belonged
to the healthy or defective condition. This procedure will be performed for each defect
(inner and outer race) separately. The model used for this is a medium Gaussian SVM,
as SVM is proven to be fast, reliable, and very useful for these procedures [28]. Within
the type of SVM, the medium Gaussian is the one that yields the highest success rate in
this case. This was checked with a MATLAB® application called ‘classification learner’,
where different models can be trained. This model was also selected in bearing works,
such as [35]. The hyperplane that best separates the classes or conditions is calculated
with a kernel function, in this case, medium Gaussian [36]. The model is trained with
cross-validation, which protects against overfitting by partitioning the data set into
folds (in this case, the maximum possible, 50), and estimates the accuracy on each fold.
The mother wavelet with the highest success rate is selected, which means that data
using that mother wavelet can be better separated in classes or conditions (healthy or
defective), offering better defect detection ability.

5. Selection of the Mother Wavelet

First, the methodology will be applied to the inner-race defect data. Once the energy of
the packet that includes the fault frequency is obtained for healthy and defective conditions,
the energy variation (Ev) is calculated with Equation (5) for each mother wavelet. Those
that meet the criterion of the 45% variation will be preselected.
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For the chosen mother wavelets, the success rate of the reliability analysis using a
medium Gaussian SVM model is calculated. The mother wavelet with the highest success
rate is selected. This means that the results using that mother wavelet differentiates the
healthy and defective conditions better.

In Table 3, the energy values and the classification results of the inner-race defect
are shown for mother wavelets that meet the 45% criterion. The success rate is observed
when conducting the reliability analysis for each one. The mother wavelet with the highest
success rate is Daubechies 4, which is the optimal for the inner-race defect data. It is
observed that the success rates are high; this is because it is known that the defect is not
incipient, and it is well differentiated from the healthy condition.

Table 3. Results of the inner-race defect for mother wavelet selection.

Mother Wavelet Packet Energy
(Healthy)

Packet Energy
(Defective)

Energy
Variation (%)

Success Rate
(Medium

Gaussian SVM)

Db2 0.43996569 0.80853792 83.7729477 95.5
Db4 0.44766094 0.66096363 47.648 97
Db5 0.50546822 0.85437674 69.0267975 94
Db7 0.71454683 1.05436438 47.5570715 94.5

Coif1 0.44742314 0.84940592 89.8439841 94
Coif2 0.47662413 0.69887133 46.6294465 94
Coif5 0.70220691 1.04223496 48.4227731 95.5
Sym2 0.43996569 0.80853792 83.7729477 95.5
Sym10 0.60534282 0.90802633 50.0019986 94.5

Following the same steps as for the outer-race defect, the results of energy and success
rate are shown in Table 4 for mother wavelets that meet the 45% criterion. The mother
wavelet with the highest success rate is Symlet 6; thus, it is the optimal mother wavelet to
detect the outer-race defect of a bearing.

Table 4. Results of the outer-race defect for mother wavelet selection.

Mother Wavelet Packet Energy
(Healthy)

Packet Energy
(Defective)

Energy
Variation (%)

Success Rate
(Medium

Gaussian SVM)

Db2 0.49198327 0.789115 60.3946819 71
Db3 0.50836819 0.81486114 60.2895611 70
Db4 0.53372075 0.85502631 60.2010631 71.5
Db6 0.59761903 0.92234262 54.3362186 68
Db7 0.57977949 0.85406113 47.3079253 68
Db8 0.60210136 0.93850256 55.8711909 68.5
Db9 0.79225172 1.21221911 53.0093376 69

Db10 1.34578002 2.24824047 67.0585406 65.5
Coif1 0.6097671 1.12022517 83.7136115 73
Coif2 0.47797477 0.7754434 62.2352168 73.5
Coif3 0.51382459 0.75850003 47.618476 71.5
Coif5 0.66420104 0.98927322 48.9418358 75.5
Sym2 0.49198327 0.789115 60.3946819 71
Sym3 0.50836819 0.81486114 60.2895611 70
Sym4 0.45582653 0.73745731 61.7846387 74.5
Sym6 0.43257976 0.69043591 59.6089279 77
Sym7 0.44147311 0.64677369 46.503528 69
Sym8 0.42405694 0.66162416 56.0224809 74.5
Sym9 0.43521722 0.63831325 46.6654397 66
Sym10 0.42586168 0.64213376 50.7845827 73
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However, with the intention of automating the maintenance process, it is more inter-
esting to select a single mother wavelet for both defects. To do this, the mother wavelets
that meet the 45% criterion in both types of defects are selected, that is, the common ones.
Afterwards, the energy values of the packet that includes the fault frequency of each condi-
tion are introduced in a new intelligent classification system, using a medium Gaussian
SVM model, and by differentiating the three conditions (healthy, inner-race defect, and
outer-race defect). Afterwards, the one with the highest success rate is chosen (Table 5).

Table 5. Results of the classification system for the selection of the common MW for the two types of
defects.

Mother Wavelet Success Rate (Medium Gaussian SVM) (%)

Db2 77.6
Db4 80.3
Db7 67.2

Coif1 78.3
Coif2 76.3
Coif5 76.3
Sym2 76.6

Sym10 65.6

The selected mother wavelet is Daubechies 4 since it has the highest success rate when
introducing both defects in the classification system.

6. Comparative Study

To show the importance of good selection, results using the selected mother wavelet
(Daubechies 4) will be compared with Daubechies 6, which has been commonly used in
previous works. In Figure 6a, the mean energy and standard deviation values of the packet
corresponding to the fault frequency of an inner-race defect are shown. In Figure 6b, the
same results are shown for an outer-race defect.

Machines 2024, 12, x FOR PEER REVIEW 9 of 13 
 

 

  
(a) (b) 

Figure 6. Comparison between db6 and db4: (a) inner-race defect; (b) outer-race defect. 

For the inner-race defect, it can be observed that the energy increase is a little larger 
using the db4 than the db6. Also, the standard deviation values are lower using db4. 
Moreover, the success rate of the reliability analysis using a medium Gaussian SVM model 
is 97% using db4 and 93% using db6, with which it is verified that the selected mother 
wavelet with the proposed methodology offers better results. The same is observed for the 
outer-race defect. The success rate for each defect, by applying the proposed 
methodology, is 71.5% using Daubechies 4 compared to 68% with the Daubechies 6, 
respectively. To sum up, although the energy increments are greater using the selected 
WM, the difference is small, but the standard deviation is clearly smaller. 

If the success rates of the classification system used for the selection of the common 
mother wavelet for both defects are compared, Daubechies 4 offers an 80.3% and 
Daubechies 6 offers a 76.6% success rate. 

Another comparison between both mother wavelets is also proposed, which is to 
perform an energy analysis of the entire signal, that is, of all packets and using different 
decomposition levels. In this way, it will also be possible to determine the optimal 
decomposition level for the detection of these defects by considering the entire frequency 
range. To do this, a linear SVM model is used, since it is based on calculating the line that 
separates the different conditions (healthy, inner-race, and outer-race defects), which 
makes it easier to determine a threshold to set alarms. In Figure 7, the success rates of each 
mother wavelet and for different decomposition levels are shown. 
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For the inner-race defect, it can be observed that the energy increase is a little larger
using the db4 than the db6. Also, the standard deviation values are lower using db4.
Moreover, the success rate of the reliability analysis using a medium Gaussian SVM model
is 97% using db4 and 93% using db6, with which it is verified that the selected mother
wavelet with the proposed methodology offers better results. The same is observed for the
outer-race defect. The success rate for each defect, by applying the proposed methodology,
is 71.5% using Daubechies 4 compared to 68% with the Daubechies 6, respectively. To sum
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up, although the energy increments are greater using the selected WM, the difference is
small, but the standard deviation is clearly smaller.

If the success rates of the classification system used for the selection of the com-
mon mother wavelet for both defects are compared, Daubechies 4 offers an 80.3% and
Daubechies 6 offers a 76.6% success rate.

Another comparison between both mother wavelets is also proposed, which is to
perform an energy analysis of the entire signal, that is, of all packets and using different
decomposition levels. In this way, it will also be possible to determine the optimal decom-
position level for the detection of these defects by considering the entire frequency range.
To do this, a linear SVM model is used, since it is based on calculating the line that separates
the different conditions (healthy, inner-race, and outer-race defects), which makes it easier
to determine a threshold to set alarms. In Figure 7, the success rates of each mother wavelet
and for different decomposition levels are shown.
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Figure 7. Success rates using db4 and db6 for different decomposition levels.

It is observed that, although for a decomposition level of 3, Daubechies 6 has higher
success rate than Daubechies 4; however, for the other levels, Daubechies 4 is better.
Moreover, the highest success rate is reached for a decomposition level of 5, which would
be the optimal level to carry out a WPT analysis to detect bearing defects considering the
energy of the entire signal.

In any case, Daubechies 4 shows better results than Daubechies 6; therefore, the
methodology works, and the objective is fulfilled.

7. Discussion

In this work, a methodology to select the optimal mother wavelet to detect bearing
defects (inner- and outer-race defects) was proposed. This methodology considered only
the packet that included the fault frequency for each case, and the selection criteria were
the energy variations between healthy and defective bearings, and the success rates of an
intelligent classification system using medium Gaussian SVM and its computation time. In
this way, in addition to the selection of the optimal mother wavelet for each case, the packets
that include the fault frequencies are confirmed as good patterns for defect detection. The
vibratory signals, obtained from a machinery fault simulator on which defective bearings
were tested, were analyzed using WPT energy. This analysis was performed for three
different mother wavelet families, Daubechies, Symlets, and Coiflets, for a decomposition
level of 9 and at a 60 Hz rotating frequency.
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First, the relative energy increase between healthy and defective conditions of the
analyzed packet was checked. The mother wavelets that have shown a variation of less
than 45% were discarded.

It was observed that a higher energy increase generally yields a higher classification
system success rate, which is the last criterion. For this, a reliability analysis using a
medium Gaussian SVM model was conducted to determine which mother wavelet offered
the highest success rate, i.e., whether it differentiates the healthy or defective conditions
better. If, in any case, there are several wavelets with the same success rate, the one that
requires less computation time is chosen.

With all this, it was proved that a different mother wavelet was obtained for each type
of defect. This reaffirms the importance of characterizing any type of defect to guarantee
the most reliable monitoring. For the data set of the bearing with the inner-race defect,
mother wavelet Symlet 6 was selected, while mother wavelet Daubechies 4 was obtained
and for the outer-race defect.

However, as the real interest is to obtain a single mother wavelet for both defects,
Daubechies 4 was selected, which met the criteria for both conditions. It was proven that
better results are obtained with this mother wavelet than with the Daubechies 6, both in
energy increase and in standard deviation as well as regarding the success rates of the
classification system. This comparison was completed by only considering fault frequencies,
so another comparison was made considering the energy of the entire signal in addition to
the influence of the level of decomposition. To do this, the success rates were calculated
with a medium Gaussian SVM model. In this way, it was determined that Daubechies 4
was also better and is the one with the highest success rate.

It should be noted that these results were obtained in tests carried out on a specific
machine and with no incipient defects. What can be extrapolated to a real condition
monitoring or maintenance task is the methodology to determine the most appropriate
tools and parameters, and it is necessary to apply this methodology to characterize each
machine with the most common defects.

The success rate obtained in the results (80.3% using Daubechies 4) may appear to be
low, but it is still higher than those obtained with the function previously used (Daubechies
6), which is what was intended in this study. It should be emphasized that the importance
of this study is not to detect defects with a high success rate of defect detection, but
to demonstrate that using one function or another changes the results and could be a
crucial issue when applying the methodology to more real machines and cases, where the
maintenance task is of vital importance and should be definitely considered.

8. Conclusions

This work aimed to demonstrate that it is not only important to determine the correct
tool for each case to process the signals, but it is even more important to determine the
optimal parameters of these tools, since they can change for each case and condition of the
machine or component used. This is why this proposed methodology should be applied
and tested on different machines and with the most critical or most common defects.

In conclusion, with these results, it is possible to create an algorithm for the automatic
detection of consistent failures. Selecting the mother wavelet that best differentiates a
healthy from a defective condition for each case facilitates the diagnostic task, as the results
are clearer.
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