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Abstract: The encased differential planetary gear system (EDPGS) allows power to be distributed
among multiple output paths, enhancing efficiency and reducing weight. Uniform load distribution
ensures stable system operation and prolongs service life. However, stochastic manufacturing
errors leading to uneven load distribution pose challenges in engineering practice. To investigate
the impact of floating support parameters on the load-sharing performance within an acceptable
tolerance band, a dynamic model of the EDPGS considering time-varying meshing stiffness and
random errors is established using the Monte Carlo method. This study employs the orthogonal
experimental design method to analyze the effects of floating support stiffness and clearance on the
load-sharing characteristics. The findings indicate that a larger sample size leads to a probability
distribution of load-sharing coefficients closer to the Gaussian distribution, with minimal influence
on the expectation and variance. Furthermore, this study highlights the significant influence of
floating structure parameters on load-sharing characteristics in the encased stage systems compared
to the differential stage. Decreasing floating support stiffness or increasing floating clearance proves
beneficial in enhancing the load-sharing performance of the system.

Keywords: EDPGS; load-sharing performance; floating support stiffness; floating clearance; Monte
Carlo method; orthogonal experimental design

1. Introduction

EDPGSs exhibit exceptional characteristics, such as high efficiency and power density,
and are widely used in various fields, including ships, mining machinery, and helicopter
transmission systems. The load-sharing performance plays a pivotal role in assessing the
overall effectiveness of encased differential planetary gear trains, which hold immense
significance in ensuring the efficient, reliable, and stable operation of mechanical systems.
By achieving uniform load distribution, these gear trains can not only minimize energy loss
and enhance transmission efficiency but also mitigate fatigue damage to crucial components,
ultimately extending the service life of the system. Therefore, it is of great significance to
study the load-sharing performance of EDPGSs.

There are many scholars that have carried out research on encased differential plan-
etary gear systems. Wang [1] analyzed the effect of a planetary gear/star gear on the
transmission efficiency of a closed differential double gear train. Kuznetsova et al. [2]
investigated the influence of the parameters on eigenfrequencies of the oscillations of the
dynamic model of differential closed planetary gearing. Zhu et al. [3–5] analyzed the
dynamic floating displacement of center gear and meshing stiffness variation instabilities
in an encased differential planetary gear train and studied the nonlinear dynamic behavior.
Zhang et al. [6–8] studied the dynamic characteristic of a coaxial contrarotating encased
differential gear train. Yang et al. [9] investigated the dynamic characteristic of an encased
differential gear train with journal bearing. Despite the considerable research conducted
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by scholars on the dynamic characteristics of encased differential planetary gear systems,
there remains a lack of in-depth investigation into the floating support structures and their
load-sharing characteristics.

Although there is not extensive research on the load-sharing characteristics of
encased differential planetary gear systems, many studies have been carried out on the
load-sharing behavior of planetary gear systems. Yang et al. [10] discussed the effects
of operating parameters and structural parameters on the load-sharing characteristic
of planetary gear systems. Ryali et al. [11] built a hybrid planetary dynamic load
distribution model and studied the effects of planet carrier flexibility on both the quasi-
static and dynamic response of planetary gear sets. Che et al. [12] investigated the
influence of the bolt constraint parameters on the dynamic characteristic of the planetary
gear transmission system. Zhang et al. [13] studied the load-sharing performance of
the prototype through a scale model of PGTS, and the model was verified by physical
experiments. Yoo et al. [14] investigated the effect of flexible pins on the improvement of
tooth load sharing and distribution in the planetary gear set of a wind turbine gearbox.
Xu et al. [15] conducted research on the effects of positioning errors of the mesh position
and the corner contact on the load-sharing characteristics of a planetary gear set. Zhang
et al. [16] built a lumped parameter dynamic model of a compound planetary gear
set and investigated the influence of floating support from different components on
loading-sharing behavior and periodic motion. The studies conducted by these scholars
provide guidance for the research presented in this paper.

Further, some scholars apply mathematical statistical methods to the dynamic research
of gear systems. Fang et al. [17] presented a stochastic nonlinear gear dynamic model
considering the stochastic external excitations, and the effects of the stochastic driving
speed and external load on gear dynamic characteristics were investigated by Monte Carlo
simulation. Diez et al. [18] evaluated the impact of the planetary gears manufacturing pro-
cesses’ uncertainties on the transmission performance based on the Monte Carlo method
and Taguchi’s method. Zhang et al. [19] carried out a reliability sensitivity analysis to
demonstrate the effects of the tooth modification parameters on the dynamic transmission
error fluctuations of the helical planetary gear train based on the Monte Carlo method. Ali
et al. [20] proposed a new approach to determining the effect of random manufacturing
errors on the vibrations measured on the bearings of mating gears, and different levels
of random manufacturing error are investigated based on the Monte Carlo method. Jin
et al. [21] analyzed the influence of backlash and center distance error on the load-sharing
characteristics based on orthogonal test method. Hu et al. [22] investigated error random-
ness in dynamic load-sharing behavior on the closed differential planetary transmission
system based on the Monte Carlo method.

Currently, there have been numerous studies investigating the dynamic load-sharing
characteristics of EDPGSs. However, no research paper has been identified to date that
specifically addresses the load-sharing characteristics of single-input and dual-output
EDPGSs. Additionally, the gear processing errors fall within the specified tolerance band
range. Consequently, there is a need to employ statistical methods to investigate the
load-sharing characteristics of enclosed differential planetary gear trains, which has been
a relatively underexplored area in the literature. Therefore, it is essential to conduct a
study on the load-sharing behavior of single-input and double-output closed differential
planetary system structures using mathematical statistical methods.

This paper presents a dynamic model that considers floating support parameters
under random error conditions for an EDPGS. The model incorporates the effects of time-
varying mesh stiffness, manufacturing errors, and installation errors. The Monte Carlo
method and orthogonal experimental design are utilized in the analysis. Moreover, this
study investigates the influence of floating support stiffness and floating clearance on the
load-sharing performance of the gear system. These findings offer valuable guidance and
references for the design of floating structures.
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2. The Physical Model of the EDPGS

The EDPGS in this paper is a single-input and dual-output configuration, and constant
velocity reverse rotation of the internal and external rotor shafts can be achieved through
structural parameter design. The system consists of the encased stage and the differential
stage, as shown in Figure 1. The encased stage system is composed of sun gear s1, star gear
ai, bi(i = 1, 2, . . ., M), and inner ring gear r1, and the differential stage system is composed of
sun gear s2, planetary gear pj(j = 1, 2, . . ., N), and inner ring gear r2. When the load torque
of the internal and external rotor shafts is equal, the power transmission of the system
can be divided into three paths. The path 1 route is s1-ai-bi-r1-r2-Tr, the path 2 route is
s1-s2-pj-r2-Tr, and the path 3 route is s1-s2-pj-c-Tc.
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Figure 1. The diagram of the EDPGS.

3. Dynamic Model of the EDPGS Based on the Monte Carlo Method
3.1. Time-Varying Meshing Stiffness

Since the coincidence of spur gears is generally not an integer and is less than two,
there exists alternating meshing of single and double teeth, resulting in periodic fluctua-
tions in gear meshing stiffness. The time-varying meshing stiffness can be calculated by
Equation (1) [12]:

km(t) = ka
m + 2kv

m

∞

∑
n=1

(an cos nωt + bn sin nωt) (1)

where ka
m represents the comprehensive meshing stiffness of the gear pair m, 2kv

m is the
stiffness fluctuation value, an and bn are the Fourier transform coefficient, and ω is the
meshing period of the gear pair. The calculation of stiffness parameter values can be
referred to in Equations (2) and (3):{

an = sin(2nπεm)
nπ

bn = 2[sin(nπεm)]2

nπ

(2)

{
ka

m = (εm − 1)kmax
m + (2 − εm)kmin

m
kv

m = (kmax
m − kmin

m )/2
(3)

where kmin
m denotes the single contact stiffness, kmax

m denotes the comprehensive meshing
stiffness, which can refer to the ISO 6336-1 [23], and εm denotes the contact ratio of the
gear pair.

The meshing damping [24] of the gear pair can be expressed as the following:

cm = 2ξm

√
Im1·Im2

Im1·r2
bm2 + Im2·r2

bm1
ka

m (4)
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where ξm is the meshing damping ratio of the gear, the value ranges from 0.03 to 0.17, Im is
the moment of inertia (1 corresponds to the driving gear, 2 corresponds to the driven gear),
and rm is the radius of the base circle of the gear.

The contact stiffness of the rolling bearing is equal to the tandem of the inner and
outer raceway stiffness, which can be expressed as the following:

kc =
(

k−1
ci + k−1

co

)−1
(5)

where the contact stiffness between the rolling element and the inner and outer raceways
kci and kco are shown as follows: {

kci = ∆Fr/∆δi
kco = ∆Fr/∆δo

(6)

where ∆Fr is the variation in radial load, ∆δi is the contact deformation between the rolling
element and the inner raceway under ∆Fr, and ∆δo is the contact deformation between the
rolling element and the outer raceway under ∆Fr.

Rolling bearing oil film stiffness can be calculated by the following:

ke = lim
∆Fr → 0
∆h′ → 0

∆Fr

∆h′
=

(
dh′

dFr

)−1

(7)

where h′ is the thickness of the oil film between the rolling element and the inner and
outer raceways.

Considering the elastic deformation of the bearing and the lubricating oil film, the
comprehensive radial stiffness of the bearing can be obtained as the following [25]:

k =
(

k−1
c + k−1

e

)−1
(8)

3.2. Stochastic Equivalent Meshing Error Based on the Monte Carlo Method

The gear transmission error is a significant parameter in the dynamic model, exerting
substantial influence on dynamic behavior [26]. It is typically regarded as a constant
value [27]. However, the error is random in the actual machining process as long as the error
is within the required tolerance range and can be regarded as meeting the requirements
of machining accuracy. In order to consider the influence of the tolerance band on the
load-sharing performance, this paper adopts the following assumptions:

(1) The influence of the eccentricity error and installation error is mainly considered, and
the error schematic diagram of the sun gear and planetary gear is shown in Figure 2.

(2) The Monte Carlo method is used to simulate random eccentricity error and installation
error. Assuming that the error machining accuracy in this paper is grade 5, the range
of the tolerance band is considered to be between grade 4 and grade 6.

Taking the differential stage system as an example, the eccentricity and installation
errors of the external meshing pair are shown as Equation (9):

eEsi = [Es0 + rand(0, 1)·(Es1 − Es0)]sin[(ωs − ωc)t + βs + αw − φi]
eAsi = [As0 + rand(0, 1)·(As1 − As0)]sin[−ωct + γs + αw − φi]
eEspi = [Ep0 + rand(0, 1)·(Ep1 − Ep0)]sin[(ωp − ωc) + βpi + αw]
eAspi = [Ap0 + rand(0, 1)·(Ap1 − Ap0)]sin(γpi + αw)

(9)

where Es0, As0, Ep0, and Ap0 are the eccentricity error amplitude and the installation error
amplitude of the sun gear and planetary gear under grade 4, respectively, and Es1, As1, Ep1,
and Ap1 are the eccentricity error amplitude and the installation error amplitude of the
sun gear and planetary gear under grade 6, respectively. rand (0,1) represents a random
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number taken in the interval range [0, 1]. ωs and ωc are the angular velocity of the sun
gear and the planetary carrier, respectively, and when the system is a fixed shaft gear
train, ωc = 0. αw is the meshing angle of the external meshing gear pair, φi is the position
angle of the ith planetary gear relative to the initial position, which can be expressed as
φi = 2π(i − 1)/Np + φ0, φ0 is the initial position angle, and Np is the number of planetary
gears. βs and γs are the initial phase of manufacturing and installation errors of the sun
gear, respectively. βpi and γpi are the initial phase of manufacturing and installation errors
of the planetary gears.
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Figure 2. Schematic diagram of eccentricity error and installation error of the sun gear and the
planetary gear.

The eccentricity and installation errors of the internal meshing pair are shown as
Equation (10):

eEri = [Er0 + rand(0, 1)·(Er1 − Er0)]sin[−ωct + βr − αn − φi]
eAri = [Ar0 + rand(0, 1)·(Ar1 − Ar0)]sin[−ωct + γr − αn − φi]
eErpi = [Ep0 + rand(0, 1)·(Ep1 − Ep0)]sin[(ωp − ωc)t + βpi − αn]
eArpi = [Ap0 + rand(0, 1)·(Ap1 − Ap0)]sin(γpi − αn)

(10)

where αn is the meshing angle of the inner meshing pair, and βr and γr are the initial phases
of the eccentricity error and the installation error of the internal ring gear, respectively.

The equivalent meshing error [28] of the gear pair is as follows:{
espi = eEsi + eAsi + eEspi + eAspi
erpi = eEri + eAri + eErpi + eErpi

(11)

3.3. Dynamic Modeling of Support Reaction Forces in Floating Structures

The floating structure refers to the central components floating freely with no radial
support within a certain floating range. It can adjust the radial displacement to improve
the load-sharing performance automatically, and the essence is to increase the degree
of freedom of the components and eliminating or reducing virtual constraints through
the floating of the basic component to achieve the purpose of load sharing. The central
components can be floated by mechanisms such as cross sliders, couplings, etc.

The reaction force of the floating sun gear is shown in Figure 3, which can refer to
Equations (12) and (13) [29]. When −Rs1 ≤ xs ≤ Rs1, the sun gear is in an unconstrained
state which can float freely in the x direction; when xs > Rs1 or xs < −Rs1, the vibration
displacement of the sun gear reaches the maximum allowable floating amount, and the
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reaction force is provided by the bending deformation of the gear shaft. The supporting
forces along the y-axis are similar to those in the x-axis direction.

Fbsx =


ks(xs − Rs1)xs > Rs1
0 − Rs1 ≤ xs < Rs1
ks(xs + Rs1)xs < −Rs1

(12)

Fbsy =


ks(ys − Rs1)ys > Rs1
0 − Rs1 ≤ ys < Rs1
ks(ys + Rs1)ys < −Rs1

(13)
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3.4. Overall System Dynamic Model

Since the gears in this paper are all spur gears, the degrees of freedom in the axial and
oscillating directions can be ignored, and the degrees of freedom in the bending and torsion
directions can be considered. The EDPGS has (15 + 6M + 3N) DOFs, and its generalized
coordinates are as follows:

X = (xr1, yr1, ϕr1, xs1, ys1, ϕs1, ζai, ηai, ϕai, ζbi, ηbi, ϕbi, xr2, yr2, ϕr2, xs2, ys2, ϕs2, xc, yc, ϕc, ζpj, ηpj, ϕpj)T

(i = 1, 2, . . ., M, j = 1, 2, . . ., N)

where r1, s1, ai, and bi represent the internal gear, sun gear, first stage star gear, and second
stage star gear of the encased stage system. r2, s2, c, and pj represent the internal gear, sun
gear, carrier, and planetary gear of the differential stage system. M and N represent the
number of star gears and planetary gears, which are both taken as 3 in this paper. x, y, and
ϕ represent the horizontal displacement, vertical displacement, and torsional displacement
of the components. ζ and η are the radial and tangential displacements of the star gear or
planetary gear.

The relative meshing displacement of the star gear train or planetary gear train mesh-
ing pair along the direction of the meshing line can be expressed as follows:

δmn = Vmnqmn − emn(t) (14)

where Vmn represents the meshing vector, with the external meshing shown in Equation (15)
and the internal meshing shown in Equation (16). qmn represents the degree of freedom
involved in meshing, as shown in Equation (17). emn represents the equivalent meshing
error of the meshing pair mn, which can refer to Equation (12). When the system is a star
gear train, m = s1, r1, n = ai, bi (i = 1, 2, . . ., M). When the system is a planetary gear system,
m = s2, r2, n = pj (j = 1, 2, . . ., N).

Vmn =
[
sinψmn cosψmn rbm −sinψmn −cosψmn −rbm

]
(15)
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Vmn =
[
−sinψmn cosψmn −rbm sinψmn −cosψmn rbm

]
(16)

qmn =
[
xm ym ϕm ζn ηn ϕn

]T (17)

When the meshing form is external meshing, ψmn = αm − φi, and when the meshing
form is internal meshing, ψmn = αm + φi. αm represents the pressure angle of component m.

Figure 4 shows the dynamic model of the EDPGS. The Lagrange equation is used to
derive the dynamic equation, and the derivation process can be referred to in [30], which is
no longer mentioned in this article. The overall dynamic matrix is the following:

M
{ ..

x
}
+ (C + ωcG)

{ .
x
}
+

(
Kb + Km − ω2

c Kω

)
{x} = Q

where M is the mass matrix, C is the damping matrix, G is the gyroscopic matrix, Kb is the
support stiffness matrix, Km is the meshing stiffness matrix, Kω is the centrifugal stiffness
matrix, and Q is the excitation vector. Figure 5 shows the dynamic matrix assemble rule.
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3.5. Calculation Model of Load-Sharing Coefficient

The load-sharing coefficient (LSC) is used to describe the load distribution of the star
gear system or planetary gear system over a period of time, which can be calculated from
Equations (18) and (19). The smaller the LSC, the better the load-sharing performance of
the system.

bk
s1a = max(M·Fk

s1aj(t)/
M
∑

j=1
Fk

s1aj(t)) (k = 1, 2, . . . , N, j = 1, 2, . . . , M)

bk
r1b = max(M·Fk

r1bj(t)/
M
∑

j=1
Fk

r1bj(t))(k = 1, 2, . . . , N, j = 1, 2, . . . , M)

bk
s2p = max(N·Fk

s2pj(t)/
N
∑

j=1
Fk

s2pj(t)) (k = 1, 2, . . . , N, j = 1, 2, . . . , M)

bk
r2p = max(N·Fk

r2pj(t)/
N
∑

j=1
Fk

r2pj(t)) (k = 1, 2, . . . , N, j = 1, 2, . . . , M)

(18)



LSCk
s1a =

∣∣∣bk
s1a − 1

∣∣∣+ 1

LSCk
r1b =

∣∣∣bk
r1b − 1

∣∣∣+ 1

LSCk
s2p =

∣∣∣bk
s2p − 1

∣∣∣+ 1

LSCk
r2p =

∣∣∣bk
r2p − 1

∣∣∣+ 1

(19)

Here, LSCi
s1a, LSCi

r1b, LSCi
s2p, and LSCi

r2p are the maximum LSCs of the sun gear–star
gear pair, inner ring gear–star gear pair, sun gear–planetary gear pair, and inner ring
gear–planetary gear pair in a meshing cycle in the ith sample trial, respectively. M is
the number of star gears and planetary gears, and N is the number of random samples.
Fi(i = s1a, r1b, s2p, r2p) refers to the dynamic meshing force of ith gear pair.

Load-sharing performance under random samples based on the Monte Carlo method
can be properly estimated by mathematical expectations and variances. The expectation
and variance of the LSC in a single stage can be obtained by Equations (20) and (21):

ELSC =
1
N

N

∑
i=1

LSCi (20)

σLSC =

√√√√ 1
N

N

∑
i=1

(LSCi − ELSC)
2 (21)

4. The Analysis of the Load-Sharing Characteristics of the EDPGS
4.1. Dynamic Parameter of the Encased Differential Planetary System

In order to conduct a dynamic analysis of the encased differential planetary system,
structural and dynamic parameters are needed. Table 1 shows the structural parameters of
the EDPGS, Table 2 shows the dynamic parameters of the EDPGS, Table 3 shows the error
parameters of the EDPGS, and the gear error is given according to the four-grade machining
accuracy [31]. This paper assumes that the input speed of the system is 1500 r/min and
that the input torque is 12,000 Nm.

Table 1. Structural parameters of EDPGS.

Component Tooth Number Module/mm Pressure Angle/◦ Modification
Coefficient

s1 57 2.75 20 0.4618
a 54 2.75 20 0.45
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Table 1. Cont.

Component Tooth Number Module/mm Pressure Angle/◦ Modification
Coefficient

b 18 3.5 20 0.5038
r1 107 3.5 20 0.2935
s2 38 4 20 0
p 25 4 20 0
r2 88 4 20 0

Table 2. Dynamic parameters of EDPGS.

Dynamic Parameter Value

Support stiffness (N/m)
ks = 3.5 × 108, ka = 2.6 × 108, kb = 3.5 × 108, kp = 5.2 × 108,

kr = 6.2 × 108

Torsional stiffness (Nm/rad) kts12 = 2.4 × 106, ktab = 8.5 × 105,
ktr12 = 5.7 × 108

Radial coupling stiffness (N/m) krs12 = 2.1 × 108, krab = 1.8 × 109,
krr12 = 6.2 × 1010

Table 3. Error parameters of EDPGS under grades 4 and 6.

Grade 4 Grade 6

E/mm A/mm E/mm A/mm

Sun gear 8 8 16 19
Star gear/planetary gear 8 8 16 19

Inner ring gear 10 8 21 19

4.2. Orthogonal Experimental Design Based on Floating Support Stiffness and Clearance

Due to the diversity of parameter combinations, it is difficult to consider the load-
sharing performance of the EDPGS under all combinations under a large sample number.
Therefore, the orthogonal experimental design method can be used to investigate the influ-
ence of floating support stiffness and floating clearance on the load-sharing characteristics
of the system. An orthogonal experimental design method is a mathematical statistical
method that uses an “orthogonal table” to arrange and analyze multi-factor experiments,
which can obtain as much information as possible through effective data combination,
and has the characteristics of fewer tests and high efficiency. The experimental steps of
orthogonal experimental design are as follows:

(1) Determine the experimental factors and levels.
(2) Build the experimental matrix X, ensuring that each level of each experimental factor

appears exactly once and that every pair of columns in the experimental matrix is
orthogonal. The building method can refer to a Latin hypercube, orthogonal fractional
array, etc.

(3) Conduct experiments according to the design in the experimental matrix and record
the resulting data.

The floating support stiffness considers four parameters, namely encased stage sun
gear support stiffness, encased stage inner ring gear support stiffness, differential stage
sun gear support stiffness, and differential stage inner ring gear support stiffness, and
each parameter is divided into five levels, namely 1 × 107 Nm, 5 × 107 Nm, 1 × 108 Nm,
5 × 108 Nm, and 1 × 109 Nm. Hence, a four-factor, five-level orthogonal test table is
adopted which can be generated by SPSS software, as shown in Table 4. Among them, A,
B, C, and D represent the four factors that need to be studied, and 1~5 represents the five
levels corresponding to each factor. The rule of variation in LSCs with the changing of
support stiffness can be evaluated through 25 trials.
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Table 4. Four-factor, five-level orthogonal test table.

Number A B C D

1 1 1 1 1
2 1 2 3 4
3 1 3 5 2
4 1 4 2 5
5 1 5 4 3
6 2 1 5 4
7 2 2 2 2
8 2 3 4 5
9 2 4 1 3
10 2 5 3 1
11 3 1 4 2
12 3 2 1 5
13 3 3 3 3
14 3 4 5 1
15 3 5 2 4
16 4 1 3 5
17 4 2 5 3
18 4 3 2 1
19 4 4 4 4
20 4 5 1 2
21 5 1 2 3
22 5 2 4 1
23 5 3 1 4
24 5 4 3 2
25 5 5 5 5

Since the ring gear adopts the dual structure and is directly connected to the external
rotor shaft, it is not easy to use floating structure. In addition, the large mass of the double
inner ring gear results in the small floating amount of the ring gear. Therefore, this paper
only considers the influence of the floating clearance of the sun gear of the encased stage
and the differential stage on the load-sharing performance of the system. The clearance
is divided into four levels, namely 10 µm, 20 µm, 30 µm, and 40 µm. So, a two-factor,
five-level orthogonal test table is adopted, as shown in Table 5. The rule of variation in
LSCs with the changing of floating clearance can be evaluated through 16 trials.

Table 5. Two-factor, four-level orthogonal test table.

Number A B

1 1 1
2 1 2
3 1 3
4 1 4
5 2 1
6 2 2
7 2 3
8 2 4
9 3 1
10 3 2
11 3 3
12 3 4
13 4 1
14 4 2
15 4 3
16 4 4
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4.3. Analysis Process of EDPGS Based on Mathematical Statistical Methods

Figure 6 shows the flowchart of the analysis process of the EDPGS based on math-
ematical statistical methods. The parameter allocation values obtained according to the
orthogonal experimental design table were substituted, and then the random error exci-
tation ek

s(r)pi was generated according to the Monte Carlo method, which was substituted

into the dynamic model, and LSCk was obtained by the Newmark method. When the
number of iterations k reaches the expected value N, the statistic load-sharing coefficient
and floating displacement of the sun gear—including the expectation, standard deviation,
and probability distribution—can be obtained. Moreover, the analysis of load-sharing
performance of the EDPGS can be conducted.
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4.4. Analysis of Load-Sharing Performance of EDPGS Based on the Monte Carlo Method

The load-sharing performance of the EDPGS can be obtained through the analysis of
a large number of random samples based on the Monte Carlo method. The results of the
analysis are more accurate when the number of samples tends to infinity under theoretical
conditions. However, due to the limitation of calculation conditions, it is necessary to obtain
an appropriate sample size for subsequent analysis. Hence, the probability distribution of
LSC under the sample sizes of N = 100, N = 300, and N = 500 are compared.

Figures 7–9 show the probability statistic histogram of load-sharing behavior in the
EDPGS under N = 100, N = 300, and N = 500, respectively. A Gaussian distribution curve
was fitted to match the statistical distribution. It can be seen from the (a) and (b) from
Figures 7–9 that the interval ranges of LSCs1a are [1.16, 1.31], [1.15, 1.31], and [1.15, 1.32],
the expectations are 1.242, 1.231, and 1.235, and the variances are 0.0013, 0.0012, and 0.0012,
respectively. And the interval ranges of LSCr1b are [1.15, 1.29], [1.14, 1.29], and [1.14, 1.30],
the expectations are 1.225, 1.218, and 1.221, and the variances are 0.0011, 0.0011, and 0.0010,
respectively. It can be drawn that the probability distributions of LSCs1a and LSCr1b are
quite different from the fitted Gaussian distribution when the sample number N = 100,
while when the sample number N = 300 or 500, the distributions of LSCs1a and LSCr1b
are similar to the fitted Gaussian distribution. From the perspective of expectation and
variance, the gap is not very large. From (c) and (d) from Figures 7–9, the interval ranges of
LSCs2p are [1.16, 1.31], [1.15, 1.31], and [1.15, 1.32], the expectations are 1.242, 1.231, and
1.235, and the variances are 0.0013, 0.0012, and 0.0012, respectively. And the interval ranges
of LSCr2p are [1.15, 1.29], [1.14, 1.29], and [1.14, 1.30], the expectations are 1.225, 1.218,
and 1.221, and the variances are 0.0011, 0.0011, and 0.0010, respectively. In summary, the
following four conclusions can be drawn.
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First, the probability distribution of the differential stage system is more similar
to the Gaussian distribution than the encased system under the same sample number.
Second, the higher the sample number, the more similar the probability distribution
is to the Gaussian distribution under the same stage system. Third, the load-sharing
performance of the differential stage system is better than that of the encased stage
system. Forth, sample number has less effect on expectations and variance. Therefore,
the sample number of this paper is taken as 300, and an ideal expectation can be obtained
while the probability distribution is similar to the Gaussian distribution. Moreover, the
calculation time is reduced.

4.5. The Effect of Floating Support Stiffness on the Load-Sharing Performance of EDPGS

The effect of floating support stiffness on the load-sharing characteristics of the
encased differential planetary gear train is studied in this section, in which the floating
clearance of the central components are 0 µm, respectively. The statistics of the floating
support stiffness on the LSC can refer to Appendix A. In Appendix A, the stiffness
orthogonal testing program and results can be found in Table 1, and the analysis results
can be found in Table 2. Figures 10 and 11 can be obtained by collating the data in Table 2
into a bar chart.

Figures 10 and 11 show the effect of the floating support stiffness of the encased
stage system and the differential stage system on the LSC, respectively. It can be drawn
from Figure 10a that LSCs1a and LSCr1b increase as the floating support stiffness of the
encased stage sun gear increases; namely, the load-sharing performance of the encased
stage system becomes unacceptable, and LSCs2p and LSCr2p have no obvious changing
law. From Figure 10b, it can be seen that with the increase in the floating support
stiffness of the inner ring gear in the encased stage, LSCs1a and LSCr1b both show a
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trend of decreasing first and then increasing, and the load-sharing coefficient is the
lowest when kr1 = 5 × 107 N/m, and the variations in LSCs2p and LSCr2p are irregular.
Comparing the value of R, it can be found that the floating support stiffness of the sun
gear has a greater influence on the load-sharing performance of the system under the
encased stage system.
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From Figure 11a, it can be found that with the increase in the floating support stiffness
of the differential stage sun gear, LSCs1a and LSCr1b show fluctuation changes with no
obvious changing law. LSCs2p and LSCr2p show an increasing trend as a whole, but the
change amplitude is small; when ks2 = 1 × 109 N/m, the load-sharing coefficient of the
differential stage shows a slight downward trend, which might result from the influence
of the random error. It can be seen from Figure 11b that the effect of the floating support
stiffness of the differential stage inner ring gear on the LSC of the system is similar to that of
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the encased stage inner ring gear, because of the dual inner ring gear structure. In addition,
it should be mentioned that the load-sharing performance of the differential stage system is
better than that of the encased stage and therefore less affected by changing of the floating
support stiffness.
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4.6. The Effect of Floating Clearance of the Sun Gear on the Load-Sharing Performance of
the EDPGS

The influence of floating clearance of sun gear on the load-sharing characteristics of
the EDPGS is studied in this section, in which the floating support stiffness of the central
components is 3.5 × 108 N/m, respectively. The statistics of the floating clearance on the
LSC can refer to Tables A3 and A4 in Appendix A. Figure 12 can be obtained by collating
the data in Table 4 into a bar chart.
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Figure 12 show the effect of floating clearance of the sun gear of the differential stage
system on the LSC. It can be concluded from Figure 12a that LSCs1a and LSCr1b both show
a decreasing trend as the floating clearance of the encased stage sun gear increases, that
is, the load-sharing performance of the encased stage system is improving. Conversely,
LSCs2p and LSCr2p are increasing. This is because with the increase in the floating clearance
of the encased stage sun gear, the sun gear s1 can adjust the displacement to improve the
load-sharing performance of the encased stage system adaptively, but the sun gear s2 is
affected by the displacement of the sun gear s1, which aggravates the vibration of the sun
gear s2; hence, the load-sharing performance of the differential stage system becomes bad.
It can be drawn from Figure 12b that increasing the floating clearance of the sun gear of the
differential stage system enhances the load-sharing performance of the differential stage
system, while the improvement is not as good as that of the encased stage. Simultaneously,
the load-sharing coefficient of encased stage system shows an increasing trend. It should be
noted that the increase in the floating clearance of the sun gear in a single stage system will
improve the load-sharing performance of the system of that stage, while the load-sharing
performance of the other stage system becomes bad.
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4.7. The Coupling Effect of Floating Sun Gear Parameter on the Load-Sharing Performance of
the EDPGS

The coupling effect of floating support stiffness and floating clearance of the sun
gear of the encased stage and differential stage on the load-sharing performance of the
system is studied in this section, in which the floating support stiffness of the ring gear
is 3.5 × 108 N/m, and the floating clearance is 0 µm. Figure 13 show the coupling effect
of the floating support stiffness and floating clearance of the encased stage sun gear
s1 on the LSCs1a, LSCr1b, LSCs2p, and LSCr2p of the system, respectively. The following
two rules can be summarized. First, when the floating clearance of the encased stage
sun gear s1 is smaller, the more obvious the influence of the floating support stiffness
on the load-sharing coefficient of the system, and the load-sharing coefficient increases
with the increase in floating support stiffness. Second, the greater the floating support
stiffness of the encased stage sun gear s1, the more obvious the influence of the floating
clearance on the load-sharing coefficient of the system, and the load-sharing coefficient
decreases with the increase in the floating clearance. Figure 14 shows the coupling effect
of the floating support stiffness and floating clearance of the differential stage sun gear
s2 on the LSCs1a, LSCr1b, LSCs2p, and LSCr2p of the system, respectively. It can be found
that the influence of the floating parameters of the differential stage sun gear on the
load-sharing performance of the system is much less obvious than that of the encased
stage system.
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5. Conclusions

In order to investigate the impact of floating support parameters on the dynamic
load-sharing behavior of the EDPGS under random error conditions, the dynamic model of
the system with floating support parameters is established with the consideration of the
influence of time-varying mesh stiffness, and manufacture error and installation error based
on the Monte Carlo method and orthogonal experimental design method. The floating
support stiffness and floating clearance on the load-sharing performance of the EDPGS
were studied, and the following conclusions were obtained:

(a) The probability distribution, expectation, and variance under the sample number with
100, 300, and 500 were compared. When the sample number N = 100, the probability
distribution significantly deviated from the fitted Gaussian distribution, and the fitting
degree improved at N = 300 and 500. However, the expectation and variance were
less affected by the sample number.

(b) The load-sharing coefficient of the encased stage system increases with the increase in
the floating support stiffness, and the load-sharing coefficient of the differential stage
system increases with the increase in the floating support stiffness of s2.

(c) The load-sharing coefficient of the encased stage system decreased with the increase in
the floating clearance of s1. In contrast, the load-sharing coefficient of the differential
stage system increased with the increase in the floating clearance of s1 and decreased
with the increase in the floating clearance of s2.

(d) The impact of floating support stiffness on load-sharing performance was more
pronounced when the floating clearance of s1 was smaller, leading to an increase in
the load-sharing coefficient as the floating support stiffness increased. Conversely, a
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higher floating support stiffness of s1 amplified the influence of floating clearance on
load-sharing performance, causing the load-sharing coefficient to decrease with the
increase in the floating clearance.

In summary, this study provides valuable insights into the dynamic load-sharing
behavior of the EDPGS under various floating support parameters. The findings contribute
to a better understanding of gear system performance and can guide the optimization of
such systems for practical applications.
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Appendix A

Table A1. Stiffness orthogonal testing program and results.

Number ks1 (N/m) ks2 (N/m) kr1 (N/m) kr2 (N/m) LSCs1a LSCr1b LSCs2p LSCr2p

1 1 × 107 1 × 107 1 × 107 1 × 107 1.0669 1.0590 1.0186 1.0192
2 1 × 107 5 × 107 1 × 108 5 × 108 1.1146 1.1085 1.0271 1.0276
3 1 × 107 1 × 108 1 × 109 5 × 107 1.1163 1.1152 1.0319 1.0328
4 1 × 107 5 × 108 5 × 107 1 × 109 1.1183 1.1154 1.0412 1.0420
5 1 × 107 1 × 109 5 × 108 1 × 108 1.1149 1.1099 1.0402 1.0409
6 5 × 107 1 × 107 1 × 109 5 × 108 1.1812 1.1638 1.0205 1.0204
7 5 × 107 5 × 107 5 × 107 5 × 107 1.1104 1.1000 1.0277 1.0281
8 5 × 107 1 × 108 5 × 108 1 × 109 1.1782 1.1632 1.0336 1.0335
9 5 × 107 5 × 108 1 × 107 1 × 108 1.1240 1.1131 1.0436 1.0425

10 5 × 107 1 × 109 1 × 108 1 × 107 1.1249 1.1128 1.0414 1.0413
11 1 × 108 1 × 107 5 × 108 5 × 107 1.1794 1.1665 1.0179 1.0182
12 1 × 108 5 × 107 1 × 107 1 × 109 1.1877 1.1769 1.0266 1.0269
13 1 × 108 1 × 108 1 × 108 1 × 108 1.1451 1.1315 1.0327 1.0333
14 1 × 108 5 × 108 1 × 109 1 × 107 1.1968 1.1828 1.0413 1.0422
15 1 × 108 1 × 109 5 × 107 5 × 108 1.1779 1.1658 1.0417 1.0423
16 5 × 108 1 × 107 1 × 108 1 × 109 1.2332 1.2174 1.0180 1.0178
17 5 × 108 5 × 107 1 × 109 1 × 108 1.2379 1.2211 1.0265 1.0263
18 5 × 108 1 × 108 5 × 107 1 × 107 1.1152 1.1054 1.0341 1.0345
19 5 × 108 5 × 108 5 × 108 5 × 108 1.2377 1.2192 1.0413 1.0422
20 5 × 108 1 × 109 1 × 107 5 × 107 1.1350 1.1218 1.0446 1.0441
21 1 × 109 1 × 107 5 × 107 1 × 108 1.1572 1.1317 1.0191 1.0197
22 1 × 109 5 × 107 5 × 108 1 × 107 1.2534 1.2142 1.0289 1.0287
23 1 × 109 1 × 108 1 × 107 5 × 108 1.2465 1.2116 1.0351 1.0348
24 1 × 109 5 × 108 1 × 108 5 × 107 1.1808 1.1521 1.0486 1.0470
25 1 × 109 1 × 109 1 × 109 1 × 109 1.2743 1.2462 1.0431 1.0429
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Table A2. Results of stiffness orthogonal test analysis.

ks1 (N/m) ks2 (N/m) kr1 (N/m) kr2 (N/m)

k1 (LSCs1a) 1.1062 1.1636 1.1520 1.1514
k2 (LSCs1a) 1.1437 1.1808 1.1358 1.1444
k3 (LSCs1a) 1.1774 1.1603 1.1597 1.1558
k4 (LSCs1a) 1.1918 1.1715 1.1927 1.1916
k5 (LSCs1a) 1.2224 1.1654 1.2013 1.1983
R (LSCs1a) 0.1162 0.0205 0.0655 0.0539
k1 (LSCr1b) 1.1016 1.1477 1.1365 1.1348
k2 (LSCr1b) 1.1306 1.1641 1.1237 1.1311
k3 (LSCr1b) 1.1647 1.1454 1.1445 1.1415
k4 (LSCr1b) 1.1770 1.1565 1.1746 1.1738
k5 (LSCr1b) 1.1912 1.1513 1.1858 1.1838
R (LSCr1b) 0.0896 0.0059 0.0621 0.0527
k1 (LSCs2p) 1.0318 1.0188 1.0337 1.0329
k2 (LSCs2p) 1.0334 1.0274 1.0328 1.0341
k3 (LSCs2p) 1.0320 1.0335 1.0336 1.0324
k4 (LSCs2p) 1.0329 1.0432 1.0324 1.0331
k5 (LSCs2p) 1.0350 1.0422 1.0327 1.0325
R (LSCs2p) 0.0032 0.0244 0.0013 0.0017
k1 (LSCr2p) 1.0325 1.0191 1.0335 1.0332
k2 (LSCr2p) 1.0332 1.0275 1.0333 1.0340
k3 (LSCr2p) 1.0326 1.0338 1.0334 1.0325
k4 (LSCr2p) 1.0330 1.0432 1.0327 1.0335
k5 (LSCr2p) 1.0346 1.0423 1.0329 1.0326
R (LSCr2p) 0.0021 0.0241 0.0008 0.0015

k1, k2, k3, k4, and k5 are the comprehensive averages of the corresponding index values of levels 1, 2, 3, 4, and
5, respectively. R is the difference between the maximum and minimum values in k1, k2, k3, k4, and k5, and the
definitions of k1, k2, k3, k4, k5, and R are suitable for Table 4 in the Appendix A.

Table A3. Clearance orthogonal testing program and results.

Number Rs1 (µm) Rs2 (µm) LSCs1a LSCr1b LSCs2p LSCr2p

1 10 10 1.1747 1.1660 1.0325 1.0330
2 10 20 1.1714 1.1627 1.0254 1.0260
3 10 30 1.1710 1.1615 1.0192 1.0196
4 10 40 1.1747 1.1639 1.0156 1.0159
5 20 10 1.1420 1.1350 1.0323 1.0330
6 20 20 1.1417 1.1355 1.0254 1.0260
7 20 30 1.1414 1.1352 1.0196 1.0200
8 20 40 1.1438 1.1376 1.0172 1.0176
9 30 10 1.1186 1.1135 1.0323 1.0331

10 30 20 1.1205 1.1157 1.0255 1.0260
11 30 30 1.1199 1.1162 1.0201 1.0205
12 30 40 1.1213 1.1182 1.0179 1.0184
13 40 10 1.1044 1.0989 1.0324 1.0331
14 40 20 1.1080 1.1043 1.0256 1.0262
15 40 30 1.1084 1.1057 1.0204 1.0209
16 40 40 1.1097 1.1080 1.0181 1.0186

Table A4. Results of clearance orthogonal test analysis.

Rs1 (µm) Rs2 (µm)

k1 (LSCs1a) 1.1730 1.1349
k2 (LSCs1a) 1.1422 1.1354
k3 (LSCs1a) 1.1201 1.1352
k4 (LSCs1a) 1.1076 1.1374
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Table A4. Cont.

Rs1 (µm) Rs2 (µm)

R (LSCs1a) 0.0654 0.0025
k1 (LSCr1b) 1.1635 1.1284
k2 (LSCr1b) 1.1358 1.1296
k3 (LSCr1b) 1.1159 1.1297
k4 (LSCr1b) 1.1042 1.1319
R (LSCr1b) 0.0593 0.0035
k1 (LSCs2p) 1.0232 1.0324
k2 (LSCs2p) 1.0236 1.0255
k3 (LSCs2p) 1.0240 1.0198
k4 (LSCs2p) 1.0241 1.0172
R (LSCs2p) 0.0009 0.0152
k1 (LSCr2p) 1.0236 1.0331
k2 (LSCr2p) 1.0242 1.0261
k3 (LSCr2p) 1.0245 1.0203
k4 (LSCr2p) 1.0247 1.0176
R (LSCr2p) 0.0011 0.0155
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