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Abstract: This article describes a proposed procedure for multiparametric optimization of the quality
of machined surfaces, including mathematical models that can predict the high quality of a precisely
machined surface and, at the same time, the high productivity of the process in WEDM of tool steels.
The experimental research was carried out using the full DoE factorial design method, which has
four technological parameters. The measured output qualitative parameter Surface Roughness (SR)
and the output quantitative parameter Material Removal Rate (MRR) were evaluated using the Grey
Relational Analysis (GRA) and Analysis of Variance (ANOVA) methods. Multiple Regression Models
(MRM) were developed to represent the multiple responses of the investigated tool steels using a
regression tool set. The results of the multiparametric optimization revealed a correlation between
the input variable parameters of the electrical discharge process, while the favorable results of the
observed output-dependent parameters SR and MRR were coupled to the parameters of low peak
current I, low value of pulse on-time duration ton, low voltage of discharge U, and high value of pulse
off-time duration toff. Based on the multiparametric optimization, key results were obtained that
demonstrated the mutual dependence of the observed output process parameters. An optimum SR
value of 1.50 µm was obtained with L8-level settings for the input variable parameters I, ton, U, and
toff (2 A, 32 µs, 90 V, and 20 µs, respectively) and an MRR value of 12.50 mm3·min−1 was achieved.

Keywords: optimization; precision; surface quality; tool steel; wire electrical discharge machining

1. Introduction

The need to increase the quality of machined surfaces is real issue in almost all
production technologies. Wire Electrical Discharge Machining (WEDM) technology is no
exception. The problem, however, is that increasing the quality of the machined area,
especially in precision WEDM, is associated with deterioration in productivity and overall
process efficiency. In order for this technology to become generally competitive, it must
reflect the high demands of the current state of science and technology, which is oriented
toward achieving high-quality machined surfaces and, at the same time, high productivity
of machining processes [1–3]. Multiparametric optimization appears to be a suitable
solution to this problem. As part of multiparametric optimization, it is necessary to pay
particular attention to qualitative indicators of the machined surface that have a significant
impact on the overall quality of the finished product while significantly affecting the overall
productivity of the electrical discharge process [4–6]. The execution of multiparametric
optimization of the quality of a machined surface is based on the search for a suitable
combination of settings for the main technological parameters. Technological parameters
include peak current I, voltage of discharge U, pulse on-time duration ton, and pulse off-
time duration toff. Process parameters represent the mechanical and physical properties of
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the machined material, the properties of the wire electrode, the tension of the wire electrode,
the diameter of the wire, the properties of the dielectric liquid, and other factors of the
machining process that significantly affect the quality of the machined surface and the
productivity of the electroerosion process. A suitable combination of the settings of the
main technological and process parameters of the electroerosion process is sought with
regard to finding the optimal values of the output indicators MRR and SR [7–10].

On the basis of an analysis of the current state of the given issue, it can be concluded
that several relevant experimental studies have been carried out to date, the aim of which
was to contribute to the improvement of the quality of machined surfaces after EDM with a
wire electrode in terms of dimensional and geometric accuracy and precise surface quality in
terms of roughness parameters from the point of view of low thermal impact on surface and
subsurface layers [11–13]. These experiments were performed from different points of view.
Several experimental investigations were carried out, the aim of which was to contribute to
the reduction of wear of the wire tool electrode (TWR) while increasing the MRR and the
overall productivity of the electrical discharge process. Most of these experimental studies
included new approaches to solving shortcomings in the process of EDM with a wire
electrode, including identification of the morphology of the machined surface, modeling,
optimization, and direct application of the results obtained from experimental research to
applications in science and technology in the field of EDM of selected types of materials [14].
However, very few researchers have devoted themselves to the mutual optimization of the
abovementioned output qualitative and quantitative parameters of the electrical discharge
process. In their work, Kumar et al. [15] claim that a good surface finish and a high
material removal rate cannot be achieved at the same time. This is a long-standing problem
that scientists from different countries are constantly trying to resolve. Most of them
consider a rough cut followed by several finishing (offset) cuts to be the most likely cause.
Singh et al. [16] tried to solve this problem through the design of an empirical cutting speed
model with subsequent optimization of the electrical discharge process. They included
factors such as pulse on-time duration (ton), peak current (I), and voltage of discharge (U)
in the process and predicted the ideal cutting speed setting using a mathematical model
based on RSM. However, during the research, they came to the conclusion that if the
voltage of discharge is too low, the removed material and the tool wire may not be properly
cleaned by the dielectric fluid, which leads to an excessive electric arc and the destruction
of the wire electrode, thereby reducing the productivity of the electrical discharge process.
Vikasa et al. [17], in turn, demonstrated the influence of various input factors during EDM
with a wire electrode on the resulting qualitative indicator of the machined surface of the
EN41 material. They found out that the SR parameter is rather significantly affected by the
peak current I. They considered the influence of other parameters to be negligible. At the
same time, they considered the given process to be stochastic, which requires sufficient
mathematical representation and optimization. Sharma et al. [18], used the Taguchi L9 and
ANOVA methods to solve the given problem, through which they analyzed the response of
the MRR in relation to the peak current I and the machining time of the tool steel D2. In an
experimental study, they found that the pulse off-time duration toff was the most influential
and significant parameter for all responses, followed by the pulse on-time duration ton,
while the effects of peak current and wire electrode tension were negligible. Using response
modeling (RSM), genetic algorithms (GAs), and ANOVA, they optimized the parameters
of the electrical discharge process in the machining of high-strength low-alloy steel (HSLA)
using a brass wire electrode. At the same time, using the Taguchi L9 method, analysis
of variance (ANOVA), and the signal-to-noise ratio (S/N), they determined the optimal
parameters of the electrical discharge process when machining AISI 1045 alloy. To solve the
given problem, the authors recommended the use of experiment-based multiparametric
optimization, which includes multiple responses and variable parameters. Their study
was further developed by Huang et al. [19], who confirmed through Grey Relational
Analysis (GRA) and the S/N ratio that ton has a major effect on both MRR and SR. In a
recent experimental study using similar methods, Kumar et al. [20] reduced the number
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of input parameters used in the electrical discharge process to four. They found that the
optimal setting of the input parameters of the electrical discharge process had the greatest
impact on increasing the MRR when machining D2 steel. Further progress in maximizing
the productivity of the electrical discharge process was made by Zhu et al. [21], who
changed the properties of the dielectric liquid to which they added TiC-based powder.
This allowed them to significantly increase the productivity of the electrical discharge
process. However, it caused the worsening of the total machined surface quality with
regard to the roughness parameters. Many others have tried to observe the effects of
different input factors and their levels on the output quality and performance parameters
of the electroerosion process. However, such research often focused only on certain types of
materials in the context of machining performance parameters with subsequent modeling
of the material properties of the workpiece and the tool electrode. Therefore, a different
approach to resolving the low productivity of the electroerosion process by optimization
was attempted by Pradhan et al. [22]. As part of their research, they applied the approach to
the response of selected input factors to the quality of the machined surface. They identified
the parameters that are crucial in maximizing the productivity of the electroerosion process.
Using ANOVA and the S/N ratio, they obtained the significant process parameters and the
optimal combination of the selected process parameters. They found that the performance
of the electrical discharge process is mainly influenced by the peak current I. At the same
time, they developed mathematical models to determine the relationship between various
important process parameters and performance criteria in the EDM process depending
on the selected input technological and process parameters using the ANOVA method.
Equivalent experimental research in this area was carried out by Somashekhar et al. [23],
who devoted themselves to the optimization of the input parameters of the electrical
discharge process using the artificial neural network (ANN) method. To predict a better
MRR, they developed a neural network model using MATLAB programming and its
subsequent simulation. They then used genetic algorithms (GAs) to determine the optimal
process parameters for the desired output value of the machining characteristics [24–29].
They demonstrated that the proposed neural network model enhanced with optimized
machining parameters is effective in estimating the MRR. The extensive experimental
research carried out, as described in the works of several authors [30–34], demonstrates
that there is a wide range of input parameters for the electrical discharge process, which
significantly affect the output qualitative parameters of machined surfaces in addition to the
quantitative performance parameters of the process. Therefore, researchers [35–42], who
solved the problem of multi-objective optimization of various Non-Traditional Machining
processes (NTM) using an a priori approach, provided a different perspective on the issue.
In the a priori approach, the multi-objective optimization problem is transformed into
a single-objective optimization problem by assigning an appropriate priority weight to
each objective. This eventually leads to a unique optimal solution. However, the solution
obtained via this optimization technique largely depends on the weights assigned to the
different objective functions [43–46]. Therefore, the a posteriori approach is preferable,
which is suitable for solving multifactor optimization problems in NTM processes, where
extreme variability of input parameters leads to significant changes in the order of their
importance [47,48].

For today’s modern industry, the influence of machining factors on overall perfor-
mance is important, especially in terms of achieving a higher MRR, good dimensional
accuracy, and excellent SR [49–52]. At the same time, the problems of low productivity
in precision WEDM continue to persist. For this reason, multiparametric optimization
with multiple responses in the machining of tool steels appears to be a highly topical issue.
Therefore, the aim of the performed experimental research was to achieve a significant
step in the optimization of the quality of machined surfaces while maintaining high pro-
ductivity of the electrical discharge process. The research also contributed to the database
of existing knowledge through clear formulation of individual laws in connection with
the events that take place during the electrical discharge process with respect to the MRR
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and SR. Accordingly, an experimental study was carried out to investigate the influence of
the input parameters of the process on the selected output qualitative parameters of the
machined surface of tool steels and the output quantitative parameters of the electrical
discharge process. On the basis of the experimental results, multiparametric optimization
of the selected qualitative indicator of the machined surface was performed to maximize
the productivity of the electrical discharge process. Through the performed prediction
of specific settings of the main input factors, the productivity of the electrical discharge
process was maximized with regard to the optimal qualitative level of the machined surface.
Thus, the main contribution of the experimental research was obtaining Multiple Regres-
sion Models (MRM) to predict the setting of selected input technological parameters with
regard to maximizing the productivity of the electrical discharge process while achieving a
high-quality machined surface.

2. Materials and Methods
2.1. Material and Technological Equipment Used in the Performed Experimental Research

During the experimental research, three tool steels were used to make the samples: a
low-alloy tool steel with the designation EN X37CrMoV5-1 (W.-Nr. 1.2343); a medium-alloy
tool steel with the designation EN 35CrMo8 (W.-Nr. 1.2311); and a high-alloy tool steel
with the designation EN X210Cr12 (W.-Nr. 1.2080). EN X37CrMoV5-1 is a chromium–
molybdenum–silicon–vanadium tool steel, which is suitable for hardening in oil and air,
with very good hardenability, high heat strength, and tempering resistance. It has good
toughness and plastic properties at normal and elevated temperatures, with resistance
to cracking. It is suitable for heat treatment to a strength of Rm ≥ 1800 N·mm−2. It is
well machinable and hot-formable. It is used for the production of die-casting molds for
aluminum, zinc, and magnesium alloys and their fixed and movable parts, hot forming
tools (die and die liners), and water-cooled tools such as dies, mandrels, jaws, punches,
shears etc. EN 35CrMo8 is a chromium–molybdenum tool steel characterized by very good
hardenability and good heat strength. It is suitable for nitriding, cementing, and hardening,
with a strength of Rm ≥ 2000 N·mm−2. It has good machinability in an annealed state;
therefore, it is used for parts of molds and tools for hot forming and for thermally stressed
tools. It is also suitable for large injection molds for plastic materials and die-casting
molds. EN X210Cr12 is a chrome ledeburite tool steel with a content of alloying elements of
1.80–2.05% C and 11.0–12.5% Cr and is characterized by high resistance to wear by abrasion,
while it can withstand dimensional changes even in elevated temperatures. It is suitable
for hardening in oil and air to a strength of Rm ≥ 2300 N·mm−2. It has good cutting
properties, very high compressive strength, and very low toughness. These properties
make it optimal for the production of highly stressed and complex-shaped cold shearing
tools. It is also suitable for simple and symmetrical tools for pressing and tools for hot
rolling. It is also used for the production of small molds with a long service life for forming
plastic and powder materials, glass, porcelain, ceramic materials, etc. The basic mechanical
and physical properties of tool steels EN X37CrMoV5-1, EN 35CrMo8, and EN X210Cr12,
including their chemical compositions, are shown in Tables 1 and 2.

Table 1. Chemical composition of tool steels EN X37CrMoV5-1, EN 35CrMo8, and EN X210Cr12.

Designation of
Tool Steel

Chemical Composition of Tool Steels (wt%)

C Mn Si Cr Mo Ni V Pmax Smax

EN X37CrMoV5-1 0.32–0.42 0.20–0.50 0.80–1.20 4.50–5.50 1.10–1.50 – 0.30–0.50 0.03 0.030
EN 35CrMo8 0.30–0.40 0.50–1.50 0.30–0.80 1.50–2.20 0.40–0.60 – – 0.03 0.030
EN X210Cr12 1.80–2.05 0.20–0.45 0.02–0.45 11.0–12.5 – 0.5 – 0.03 0.035
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Table 2. Mechanical and physical properties of tool steels EN X37CrMoV5-1, EN 35CrMo8 and
EN X210Cr12.

Designation of Tool Steel
Basic Properties of Tool Steels

EN X37CrMoV5-1 EN 35CrMo8 EN X210Cr12

Tensile strength in natural, Rm (MPa) 750 780 796
Yield strength in natural, Rp0.2 (MPa) 600 675 735
Specific heat capacity (J·kg−1·K−1) 460 460 460
Thermal expansion coefficient at 20 ◦C (10−6 m·m−1·K−1) 11.5 11.0 10.8
Thermal conductivity at 20 ◦C (W·m−1·K−1) 25 24 21
Electrical conductivity (Siemens·m·mm−2) 1.92 1.84 1.54
Specific electric resist. (Ω·mm2·m−1) 0.52 0.57 0.60
Density (kg·dm−3) 7.8 7.9 7.9
Hardness in the annealed state HBmax 225 240 250
Achievable hardness after refining HRC 56 58 64

All these tool steels are difficult to machine using classic technologies. However,
progressive WEDM technology is suitable for their machining. The experimental samples
were prepared on an AgieCharmilles CUT E 350 (GF Machining Solutions—Headquarters,
Biel, Switzerland) electrical discharge machine (Figure 1). The basic technical parameters
of the AgieCharmilles CUT E 350 wire electrical discharge equipment are listed in Table 3.
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Table 3. Basic parameters of the AgieCharmilles CUT E 350.

Parameter Value

Portal X/Y/Z 350 × 250 × 250 mm
Workpiece size X/Y/Z 820 × 680 × 245 mm
Workpiece weight 400 kg
Wire diameter range 0.10–0.30
Angle and bevel height ±30◦/38 mm
Wire feed rate 3000 mm·min−1

Dielectric volume max. 760 L
Rated power 9 kW
Machine weight 2525 kg

The AgieCharmilles CUT E 350 wire electrical discharge equipment is a modern,
compact, and autonomous electroerosion device by the Swiss manufacturer GF, which
is used for cutting metallic electrically conductive materials using a wire tool electrode.
This electroerosion device has a number of unique systems and functions, such as the
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ergonomic AC CUT HMI interface with 19” touch screen, a wire preparation system using
the Thermocut module, automatic wire threading, the possibility of bevel cutting, and
many others.

Electrical discharge machining (EDM) of the experimental samples was performed
in the presence of a liquid dielectric based on demineralized water with an electrical
conductivity of less than 10 µS·cm−1. A wire electrode ∅ 0.25 mm marked AC Brass LP
1000 was used as a tool. The electrode is a multi-purpose brass electrode that is designed
for a wide range of operations performed on modern electrical discharge devices. It is
especially suitable for precise machining, taking into account the economic efficiency of the
electrical discharge process, so it is categorized as a universal wire electrode. The stability of
the performance of the electrical discharge process is ensured by the material composition
of the wire electrode in the ratio of Cu 63%/Zn 37%. The process of experimental sample
production from the tool steels is shown in Figure 2.
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Figure 2. The process of production of experimental samples from the tool steels.

As already mentioned in the introduction, the quality of the machined surface and
the performance of the electrical discharge process in WEDM of tool steels are largely
dependent on the combination of settings of the main input technological parameters. At
the same time, based on the performed analysis, it can be assumed that the peak current
I (A), the pulse on-time duration ton (µs), the pulse off-time duration toff (µs), and the
discharge voltage U (V) have a significant influence on the assessed output parameters SR
and MRR of the electrical discharge process.

Table 4 shows the Low Value (LV) and High Value (HV) of settings of the input inde-
pendent Main Technological Parameters (MTPs) for WEDM of tool steels EN X37CrMoV5-1,
(W.-Nr. 1.2343), EN 35CrMo8 (W.-Nr. 1.2311), and EN X210Cr12 (W.-Nr. 1.2080) using a
∅ 0.25 mm AC Brass wire electrode LP 1000.

Table 4. The LV and HV settings of MTPs for WEDM of tool steels using a brass wire electrode.

MTP
Setting Range

LV HV

Peak current I (A) 2 19
Pulse on-time duration ton (µs) 8 32
Pulse off-time duration toff (µs) 1 20
Voltage of discharge U (V) 70 90

The above ranges of LV and HV settings of the input-independent MTPs were chosen
to ensure the stability of the electroerosion process during WEDM of tool steels. In doing
so, the LV setting of the input-independent process parameters I and ton allowed the lowest
value of the output-dependent quality indicator of the machined surface SR to be obtained.
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In contrast, the HV settings of the input-independent parameters I and ton made it possible
to achieve the highest value of the output-dependent performance parameter MRR during
the electroerosion process. The stability of the electrical discharge process was maintained
using a combination of the input-independent parameters toff and U.

2.2. Analysis of Aspects of Multiparametric Optimization of the Output Parameters MRR and SR
of the Electrical Discharge Process

Properly performed multiparametric optimization of the output parameters SR and
MRR of the electrical discharge process is subject to several considerations. The key step
in achieving a relevant multiparametric optimization of the output qualitative parameter
SR of the machined surface and the output quantitative performance parameter MRR
of the electrical discharge process is the careful design of Multiple Regression Models
(MRMs). Therefore, deterministic methods were applied in the design, which, unlike classic
optimization methods, are not subject to such strict mathematical logic [53,54]. However,
classical methods based on gradient are not always suitable for modeling because it is
sometimes difficult to obtain relevant gradient data, thereby making it impossible to
obtain objective functions [55–57]. Stochastic and metaheuristic approaches, relative to
classical approaches, provide an advantage in that no additional data are required for their
introduction [58–61]. In addition, these approaches introduce a random step size within
the calculation-based numerical iteration. This means that, in many cases, algorithms in
this category do not require any initial guess values owing to random initialization [62,63].
Nevertheless, multi-parametric optimization must be preceded by preparation of the
experiment plan DoE, including the analysis of the influence of selected input factors on
the quality of the machined surface and the performance of the electroerosion process
in the machining of high-speed steels [64]. In doing so, evaluating the effect of each
input technology parameter of the electrical discharge process on the multiple responses
using ANOVA is useful to find the percentage contribution and to identify the effects.
At the same time, it is possible to exclude factors from the MRR without any adverse
effect on the output monitored indicators SR and MRR. The performed analysis allowed
separation of the total response variability (the sum of the squared deviations around
the grand mean) into the contributions of each parameter and the error. The p-value
(probability of significance) is generally calculated based on the F-value or Fisher’s F-ratio
to obtain information about the significance of the selected response. A p-value was used
to determine the significance, with a p-value < 0.05 representing significant input factors
that affect the response variable. Conversely, a value of p > 0.05 represented input factors
that do not affect the response variable and, therefore, could be removed from the MRR
without any adverse impact. To evaluate the Mean Square (MS), degrees of freedom (DF)
and determination of the availability of independent information are needed to evaluate
the Sum of Squares (SS). In ANOVA analysis, Mean Square Deviation (MSD) and F-values
are calculated as MS = SS/DF and F = MS for Source Parameter/MS for error.

However, as mentioned above, the productivity MRR of the electroerosion process,
and also the final quality of the machined surface SR, are determined by a mutual com-
bination of the input MTP settings. Thus, in the process of multiparametric optimization
of machined surface quality and the maximization of productivity during WEDM of tool
steels by mathematical modeling, it is inevitable to approach these two output indicators of
the electroerosion process in a complex way. The traditional Taguchi method can optimize
only one objective, and it cannot resolve multiple parameters at the same time. This means
that the SR and MRR parameters can only be optimized separately by this method, while
the optimal setting of one response parameter does not ensure that the other parameters are
also optimal within the same limit. Therefore, it is better to apply a method that provides
the optimal settings of the input parameters while optimizing all objectives. For this reason,
the Grey Relational Analysis (GRA) method was applied, which enables analysis of the
correlation between several response parameters in the process of multiparametric opti-
mization [65,66]. This method also includes the normalization of the response parameters
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and calculation of the Grey Relation Coefficient (GRC). The overall relational degree is
then determined by averaging the GRC relational coefficient for each selected response,
which can be used to evaluate the performance of the electrical discharge process with
multiple responses. Subsequently, the optimal parametric combination represents the
transformation of the multi-response problem to a single-response optimization situation,
resulting in the highest degree Grey Relation. The optimal parametric combination is then
the one that achieves the highest Grey Relation class.

When generating the relation for the SR parameter, the minimization of the given out-
put qualitative parameter can be considered as a corresponding criterion in the optimization
process in accordance with the relation

x∗i (k) =
maxx0

i (k)− x0
i (k)

max x0
i (k)− min x0

i (k)
. (1)

When generating the relation for the MRR, it is true that the maximization of the
given output performance parameter in accordance with the relation is considered as the
corresponding criterion in the optimization process:

x∗i (k) =
x0

i (k)− min x0
i (k)

max x0
i (k)− min x0

i (k)
, (2)

where x∗i (k) is the sequence after data preprocessing, x0
i (k) is the original sequence,

max x0
i (k) is the largest value of x0

i (k), and min x0
i (k) is the smallest value of x0

i (k).
If a certain target value (TV) is to be achieved, then the original sequence must be

normalized in the form

x∗i (k) = 1 −
∣∣x0

i (k)− x0
i

∣∣
max x0

i (k)− x0
i

. (3)

Alternatively, the natural order can be normalized by deriving the original sequence
from the first value of the sequence according to the following relation:

xi(k) =
yi(k)
yi(1)

. (4)

where xi(k) is the value after Grey Relation generation (data processing), and yi(k) is the
original sequence.

Here, yi(k) (k = 1, 2, 3, . . ., m) is an ideal sequence of answers. In addition, the
GRC needs to be determined in order to establish a relationship for the actual and ideal
normalized experimental results by preprocessing the data in the form

ξi(k) =
∆min + ξ · ∆max
∆0i(k) + ξ · ∆max

, (5)

where ξi(k) is the Grey Relation Coefficient, ∆max = 1.0, ∆min = 0.0, and ∆0i(k) =∣∣x∗0(k)− x∗i (k)
∣∣, whereas ∆0i(k) denotes sequences of deviations of the reference sequence

x∗i (k), and ξ is the distinguishing coefficient between 0 and 1.
The mean of the GRC is then defined using the GRC parameter γ according to the

following relation:

γi =
1
n

n

∑
k=1

ϖkξi(k), (6)

where γi = 1, 2, 3, . . . 16 (L16), ξi(k) is the Grey Relation Coefficient of the k-th response in
the i-th experiment, and n is the number of process responses.

The optimal levels of the input MTPs of the electrical discharge process are then
defined by the level with the highest Grey Relational Grade (GRG) value. Subsequently, the
optimal levels of the input MTPs of the electrical discharge process are determined using
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the highest GRG, which indicates a better quality of the machined surface in terms of the
output parameter SR and the highest value of the MRR productivity parameter in WEDM
of tool steels.

3. Results and Discussion
3.1. Design of Experimental Plan Using the DoE Method

The design of the experimental plan was based on the DoE method. In this method, a
4-factor analysis was applied at two levels of MTP-dependent input settings. In doing so,
the peak current I, the pulse on-time duration ton, the pulse off-time duration toff, and the
discharge voltage U were considered, resulting in 16 experimental samples for each tool
steel. This amounted to a total of 48 experimental samples. Figure 3 shows the experimental
samples made from the EN X37CrMoV5-1, EN 35CrMo8, and EN X210Cr12 tool steels
using WEDM technology. The individual surfaces with dimensions of 30 mm × 15 mm
were made at the L1 level of the MTP setup.
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Figure 3. Experimental samples of tool steels EN X37CrMoV5-1, EN 35CrMo8, and EN X210Cr12
made using WEDM technology at the L1 level of the MTP settings.

The setting of the input-independent MTPs was carried out at two levels, Low Value
(LV) and High Value (HV), in the specified order of parameters I, ton, toff a, and U (LV- 2 A,
8 µs, 1 µs, and 70 V; HV- 19 A, 32 µs, 20 µs, and 90 V) from Table 4. The experimental
results for the quality of the machined surface SR and the performance of the electrical
discharge process given by the MRR parameter during WEDM of tool steels No. 1 (EN
X37CrMoV5-1), No. 2 (EN 35CrMo8), and No. 3 (EN X210Cr12) with a wire electrode are
shown in Table 5.

Based on the results of the experimental measurements listed in Table 5, it can be
concluded that a lowest value of SR = 0.18 µm was recorded for tool steel No. 3 (EN
X210Cr12) with the input-independent MTPs of the electrical discharge process being set to
level L3 (I = 2 A, ton = 8 µs, toff = 20 µs, and U = 70 V). The highest value of SR = 3.98 µm
was recorded for tool steel No. 1 (EN X37CrMoV5-1), with the input-independent MTPs of
the electrical discharge process set to level L14 (I = 19 A, ton = 32 µs, toff = 1 µs, and U = 90 V).
The highest value of MRR = 26.87 mm3·min−1 was recorded for tool steel No. 1, with the
input-independent MTPs set to level L14. The lowest value of MRR = 3.21 mm3·min−1 was
recorded for tool steel No. 3, with the input-independent MTPs set to level L3. Based on
the results of the experimental measurements, it can be concluded that the required values
of the output parameters (minimum value of Ra and maximum MRR) of the electroerosion
process are inconsistent with each other. At the same time, it can be observed that at identi-
cal settings of the input-independent MTPs, the lowest values of both output-dependent
parameters were recorded for tool steel No. 3. However, the highest values were recorded
for tool steel No. 1. This implies that the properties of the machined material contribute to
the deviation of the resulting output parameters of the electroerosion process, even when
the input-independent MTPs are the same. This deviation during WEDM of tool steels
No.1, No.2, and No.3 ranged from 0.02 to 0.07 µm for the output quality parameter SR of
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the machined surface and from 0.02 to 0.07 mm3·min−1 for the output performance param-
eter MRR of the electroerosion process. For the following analysis and multiparametric
optimization, the mean value of the output-dependent parameters SR and MRR were taken
into account. Based on the recorded data, DoE factor analysis was subsequently performed
to determine the main influence of the selected process input-independent parameter MTPs
on the machined surface quality parameter SR (Figure 4) and the performance parameter
MRR of the electroerosion process (Figure 5) during WEDM machining of tool steels.

Table 5. Experimental results for SR and MRR according to 4-factor 2-level DoE.

Level

MTP Experimental Results

I
(I)

ton
(µs)

toff
(µs)

U
(V)

SR (µm) MRR (mm3·min−1)

Tool
Steel
No.1

Tool
Steel
No.2

Tool
Steel
No.3

Standard
Deviation

Average
Value

Tool
Steel
No.1

Tool
Steel
No.2

Tool
Steel
No.3

Standard
Deviation

Average
Value

L1 2 8 1 70 0.41 0.36 0.35 0.03 0.37 4.99 4.93 4.91 0.03 4.94

L2 2 8 1 90 0.46 0.40 0.38 0.03 0.41 5.06 5.01 4.98 0.03 5.02

L3 2 8 20 70 0.22 0.19 0.18 0.02 0.20 3.29 3.24 3.21 0.03 3.25

L4 2 8 20 90 0.24 0.21 0.20 0.02 0.22 3.35 3.29 3.27 0.03 3.30

L5 2 32 1 70 0.96 0.94 0.90 0.02 0.93 9.12 9.06 9.04 0.03 9.07

L6 2 32 1 90 1.03 0.99 0.93 0.04 0.98 9.17 9.13 9.11 0.02 9.14

L7 2 32 20 70 0.84 0.74 0.72 0.05 0.77 7.56 7.53 7.48 0.03 7.52

L8 2 32 20 90 0.87 0.83 0.77 0.04 0.82 7.63 7.59 7.53 0.04 7.58

L9 19 8 1 70 2.29 2.25 2.23 0.02 2.26 17.11 17.09 17.03 0.03 17.08

L10 19 8 1 90 2.37 2.35 2.29 0.03 2.34 17.24 17.18 17.14 0.04 17.19

L11 19 8 20 70 2.11 2.06 2.03 0.03 2.07 14.73 14.69 14.61 0.05 14.68

L12 19 8 20 90 2.22 2.19 2.10 0.05 2.17 14.79 14.74 14.67 0.05 14.73

L13 19 32 1 70 3.93 3.84 3.81 0.05 3.86 26.81 26.79 26.69 0.05 26.76

L14 19 32 1 90 3.98 3.96 3.92 0.02 3.95 26.87 26.82 26.75 0.05 26.81

L15 19 32 20 70 3.32 3.25 3.16 0.07 3.24 23.79 23.72 23.69 0.04 23.73

L16 19 32 20 90 3.37 3.34 3.29 0.03 3.33 23.86 23.80 23.78 0.03 23.81
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From the analysis results of the main effects of the chosen input factors on the quality
of the SR of the machined surface (Figure 4) and the performance of the electrical discharge
process MRR (Figure 5) during WEDM of tool steels, it is apparent that the peak current I
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has the greatest influence on both monitored output parameters. The voltage of discharge
U and the pulse off-time duration toff have the least influence on both considered output
process parameters.

Machines 2024, 12, 248 11 of 23 
 

 

 
Figure 4. Graph of the main effects of input MTPs on the quality of the machined surface SR when 
machining tool steels using WEDM. 

 
Figure 5. Graph of the main effects of selected MPTs on the performance of the electrical discharge 
process MRR when machining tool steels using WEDM. 

From the analysis results of the main effects of the chosen input factors on the quality 
of the SR of the machined surface (Figure 4) and the performance of the electrical dis-
charge process MRR (Figure 5) during WEDM of tool steels, it is apparent that the peak 
current I has the greatest influence on both monitored output parameters. The voltage of 
discharge U and the pulse off-time duration toff have the least influence on both considered 
output process parameters. 

3.2. Analysis of the Output Parameters SR and MRR during Electroerosion of Tool Steels Using 
the GRA Method 

In multi-parametric optimization of the output qualitative parameter SR and the 
quantitative performance parameter MRR of the electroerosion process, it is desirable for 
the SR parameter to reach lower values (SB) and the MRR parameter to reach higher val-
ues (HB). In Table 6, the average values of the output qualitative parameter SR of the ma-
chined surface and the quantitative performance parameter MRR are shown for the EDM 
of tool steels with a wire electrode. 

Figure 5. Graph of the main effects of selected MPTs on the performance of the electrical discharge
process MRR when machining tool steels using WEDM.

3.2. Analysis of the Output Parameters SR and MRR during Electroerosion of Tool Steels Using
the GRA Method

In multi-parametric optimization of the output qualitative parameter SR and the
quantitative performance parameter MRR of the electroerosion process, it is desirable for
the SR parameter to reach lower values (SB) and the MRR parameter to reach higher values
(HB). In Table 6, the average values of the output qualitative parameter SR of the machined
surface and the quantitative performance parameter MRR are shown for the EDM of tool
steels with a wire electrode.

Table 6. Calculated average values of the output parameters SR and MRR during WEDM of tool steels.

Run No.
SR (µm) MRR (mm3·min−1)

Smaller is Better (SB) Higher is Better (HB)

Ideal sequence 1 1

L1 0.37 4.94
L2 0.41 5.02
L3 0.20 3.25
L4 0.22 3.30
L5 0.93 9.07
L6 0.98 9.14
L7 0.77 7.52
L8 0.82 7.58
L9 2.26 17.08

L10 2.34 17.19
L11 2.07 14.68
L12 2.17 14.73
L13 3.86 26.76
L14 3.95 26.81
L15 3.24 23.73
L16 3.33 23.81
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From Table 6, it can be observed that the lowest average value (SB) of the output quality
parameter SR = 0.20 µm for WEDM of tool steels was recorded when the input-independent
MTPs of the electrical discharge process were set at the L3 level. The highest average value
(HB) of the output quantitative performance parameter MRR = 26.81 mm3·min−1 was
recorded when the input-independent MTPs were set at the L14 level. Table 7 shows the
GRC and GRG of the output observed parameters SR and MRR during WEDM of tool
steels, which were obtained during analysis using the GRA method.

Table 7. Results of the analysis (GRC and GRG parameters) of output process parameters SR and
MRR during WEDM of tool steels using the GRA method.

Run No.
Evaluation of ∆0i GRC

GRG RankSR MRR
SR MRR

Ideal Sequence 1 1

L1 0.952 0.072 0.912409 0.350178 0.631294 5
L2 0.941 0.075 0.894988 0.350909 0.622948 6
L3 1.000 0.000 1.000000 0.333333 0.666667 1
L4 0.995 0.003 0.989446 0.333900 0.661673 4
L5 0.805 0.247 0.719770 0.399187 0.559478 11
L6 0.792 0.250 0.706215 0.400000 0.553107 12
L7 0.845 0.181 0.763747 0.379144 0.571446 9
L8 0.835 0.184 0.751503 0.379877 0.565690 10
L9 0.451 0.587 0.476493 0.547398 0.511945 13

L10 0.432 0.592 0.468165 0.550467 0.509316 14
L11 0.501 0.485 0.500668 0.492475 0.496571 15
L12 0.477 0.487 0.488918 0.493713 0.491316 16
L13 0.021 0.997 0.338142 0.994932 0.666537 3
L14 0.000 1.000 0.333333 1.000001 0.666667 1
L15 0.189 0.870 0.381485 0.793266 0.587376 7
L16 0.165 0.873 0.374625 0.797563 0.586094 8

It is true that the higher the considered GRG value, the stronger the relational degree
between the ideal sequence x∗0(k) and the given sequence x∗i (k). Therefore, the ideal
sequence x∗0(k) is the best response to the process in the experimental setup. It follows
that the highest GRG corresponds to the combination of process input parameters that
are closest to their optimal setting. In our case, this corresponds to the combination of the
input MTPs of the electrical discharge process, which was applied in experiments L3 and
L14. At the same time, the combination of the settings of the input-independent MTPs
during WEDM of tool steels with the primary emphasis on minimizing the parameter SR
corresponded to the setting at the L3 level, and with the primary emphasis on maximizing
the parameter MRR, the setting of the input parameters corresponded to the L14 level. In
order, the next suitable levels with optimal MTP settings were L13, L4, and L1. Table 8
shows the main effects on the mean value of GRG for the output quality parameter SR
of the machined surface and the output performance parameter MRR during WEDM of
tool steels.

The optimal parametric combination of the input-independent MTPs of the electrical
discharge process was selected based on the highest mean values of GRG from Table 8.
A higher GRG value indicates a stronger correlation with the reference sequence and
better performance, that is, higher mean GRG values indicate minimum SR values and
maximum MRR values. The GRG weight for SR is 0.50895, and the GRG weight for MRR
is 0.49105, which indicates the higher importance of the output quality parameter of the
machined surface during WEDM of tool steels with a wire electrode. The optimal setting
for input technological parameters of multiple responses of SR during WEDM of tool steels
is I1-ton1-toff2-U1, which corresponds to a combination of parameter settings of I = 1 A,
ton = 8 µs, toff = 20 µs, and U = 70 V. The differences in the max and min values of the mean
GRG for SR ranked in sequential order from highest to lowest (0.42203, 0.17028, 0.05011,
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and 0.01069) correspond to the order of the main input technological parameters of the
electrical discharge process I, ton, toff, and U. A higher value represents a higher weight
of the parameter. From this, it is evident that I has the greatest influence on the multiple
responses during WEDM of tool steels. Figure 6 shows plots of the main effects of GRG on
SR during WEDM of tool steels.

Table 8. Main effects on mean GRG.

Factors

SR MRR

Mean GRG
Max − Min Rank

Mean GRG
Max − Min Rank

Level 1 Level 2 Level 1 Level 2

I 0.84226 0.42023 0.42203 1 0.36582 0.70873 0.34291 1
ton 0.71639 0.54610 0.17028 2 0.43155 0.64300 0.21145 2
toff 0.60619 0.65630 0.05011 3 0.57413 0.50041 0.07372 3
U 0.63659 0.62590 0.01069 4 0.53624 0.53830 0.00206 4
Average 0.63124 0.53727
Sum 0.65311 0.63015
Weight 0.50895 0.49105
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The optimal setting of input-independent MTPs of multiple responses for MRR during
WEDM of tool steels is I2-ton2-toff1-U2, which is a combination of input parameter settings
of I = 19 A, ton = 32 µs, toff = 1 µs, and U = 90 V. The differences in the max and min values
of the mean GRG for the MRR sorted in sequential order from highest to lowest (0.34291,
0.21145, 0.07372, and 0.00206) correspond to the order of the input MTPs of the electrical
discharge process I, ton, toff, and U. Figure 7 shows plots of the main effects of GRG on the
MRR during WEDM of tool steels.
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A lower value of the difference between the max and min of the GRG indicator
represents a lower weight of the input MTP. From this, it is evident that U has the least
influence on the multiple responses during WEDM of tool steels.

3.3. Analysis of the Recorded Values of the Input and Output Parameters of the Electroerosion
Process Using the ANOVA Method with Regard to GRG

After determining the optimal combination of input-independent MTP settings during
WEDM of tool steels, the next step was to investigate their influence on the quality of the
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machined surface SR and the performance of the electrical discharge process MRR using the
Analysis of Variance (ANOVA) method. The objective was to assess the effect of significant
input technological parameters affecting the multiple responses at the 95% confidence level,
thereby providing important information about the experimental data.

The results of the analysis of the input MTPs during WEDM of tool steels using the
ANOVA method with respect to GRG are shown in Table 9.

Table 9. The results of data evaluation using the ANOVA method with regard to GRG.

Source DF Adj SS Adj MS F-Value p-Value Remarks

I 1 0.006260 0.006260 1.36 0.0269 Significant
ton 1 0.001695 0.001695 0.37 0.0457 Significant
toff 1 0.000558 0.000558 0.12 0.0495 Significant
U 1 0.000074 0.000074 0.12 0.0901 Insignificant

Error 11 0.050746 0.004613

Total 15 0.059332

The ANOVA table shows that the significant parameters of the electrical discharge
process affecting multiple responses are I, ton, and toff, as their p-values are less than 0.05.

After determining the significance of the influence of individual input parameters of
the electrical discharge process on the output indicators SR and MRR during WEDM of
tool steels, the next step was to improve the GRG indicator by performing a confirmatory
experiment. The predicted value of the GRG indicator for the optimal level can be obtained
by applying the formula

γ̂ = γm +
O

∑
i=1

(γi − γm) (7)

where γm is the overall average GRG, γi is the average GRG at the optimal level of each pa-
rameter, and O is the number of significant process parameters. The results of the performed
validation test of the obtained empirical and experimental values of the improvement of
the GRG indicator are presented in Table 10.

Table 10. Results of the verification test of the obtained empirical and experimental values of SR
and MRR.

Setting Level SR (µm) MRR
(mm3·min−1) GRG Improvement

in GRG

Initial controllabe parameters I1-ton1-toff1-U1 0.38 4.95 0.63129
I2-ton2-toff2-U2 0.33 23.82 0.58609

Optimal controllabe
parameters

Prediction
I1-ton1-toff2-U1 0.20 3.25 0.66667 0.03541
I2-ton2-toff1-U2 3.95 26.75 0.66667 0.08058

Experiment I1-ton1-toff2-U1 0.18 3.52 0.69751 0.06622
I2-ton2-toff1-U2 3.84 26.41 0.69751 0.11142

Deviation of values 2.8% 1.6%

By performing a verification test of the obtained empirical and experimental values
of SR and MRR during WEDM of tool steels with respect to GRG, improvements in both
responses of the output-dependent parameters was found, with improvements of 2.8% for
the SR parameter and 1.6% for the MRR parameter. The improvement of the GRG indicator
for SR was identified at the level of 0.03514 for the predicted input parameters of the
electrical discharge process and 0.06622 for the experimental ones. The improvement of the
GRG indicator for the MRR was at the level of 0.08058 for the predicted input parameters
of the electrical discharge process and 0.11142 for the experimental ones.
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3.4. Proposal of MRM for the Prediction of SR and MRR Output Parameters during WEDM of
Tool Steels

For the purposes of multiparametric optimization of the output dependent qualitative
indicator SR of the machined surface and the quantitative performance indicator MRR
of the electrical discharge process in the machining of tool steels using a wire electrode,
Multiple Regression Models (MRMs) were compiled at the 95% confidence level. Peak
current I, pulse on-time duration ton, and pulse off-time duration toff were considered as
MRM input parameters for prediction of the SR and MRR parameters. The input parameter
voltage of discharge U was not taken into account during the design of MRM because,
based on the performed analysis (Table 9), it appears to be insignificant. The validity of
the proposed MRM was evaluated using the values of determination coefficients (R2). The
higher the value of the determination coefficient R2 approaching the value of 1, the greater
the validity of the compiled MRM. The following MRM Equation (8) was compiled based
on experimental results with regard to the minimization of the SR parameter.

SR = −0.0912+ 0.10316 · I + 0.02455 · ton + 0.00134 · to f f + 0.002010 · I · ton − 0.000712 · I · to f f − 0.000450 · ton · to f f (8)

The accuracy of the determined MRM is indicated by the determination coefficient
R2, which for the output quality parameter SR takes a value of 0.9972. This represents a
deviation of experimentally measured values from empirically determined values at the
level of 0.28%.

Figure 8 shows the prediction and optimization report for Multiple Regression of the
output quality parameter SR during WEDM of tool steels.
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Based on the results of Multiple Regression for SR presented in Figure 8, it is possible
to observe the prediction of the influence of the individual input factors I, ton, and toff on the
output qualitative parameter SR of the machined surface during WEDM of tool steels with
regard to its minimization. At the same time, the predicted combination of five settings of
the given input factors with regard to the minimization of the achieved parameter SR in
the range of 0.34 to 2.355 µm is presented.

The following MRM Equation (9) was compiled based on the experimental results
with regard to the maximization of the MRR parameter:

MRR = 2.382 + 0.62695 · I + 0.14956 · ton + 0.07922 · to f f + 0.012665 · I · ton − 0.003351 · I · to f f (9)

The value of the determination coefficient R2 for the determined MRM of the output
performance parameter MRR takes a value of 0.9987, which represents a deviation of
experimentally measured values from empirically determined values at the level of 0.13%.

Figure 9 shows the prediction and optimization report for Multiple Regression of the
output quantitative performance parameter MRR during WEDM of tool steels.
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The results of Multiple Regression for MRR presented in the report in Figure 9 predict
the influence of the individual input factors I, ton, and toff on the output quantitative
performance parameter of the electrical discharge process in the machining of tool steels
with regard to its maximization. At the same time, the predicted combination of five settings
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of the mentioned input factors is given with regard to the maximization of the achieved
MRR parameter in the range of 23.9225 to 7.51375 mm3·min−1.

Based on the Multiple Regression reports obtained for the prediction and optimization
of the output dependent quality parameter SR of the machined surface and the performance
parameter MRR during WEDM of tool steels, several facts can be observed. First, it can be
observed that with decreasing values of the parameters I and ton and an increasing value of
the toff parameter during WEDM of tool steels, there is a significant increase in the output
quality parameter SR, which with the combination of I = 2 A, ton = 23 µs, and toff = 20 µs,
yields value of 0.74 µm. However, with the given combination of input-independent
MTPs, the MRR productivity value of the electrical discharge process is at a low level of
7.51375 mm3·min−1. Conversely, with increasing values of the I and ton parameters and
a decreasing value of the toff parameter during WEDM of tool steels, there is a significant
increase in the output quantitative parameter MRR, which with the combination of I = 19 A,
ton = 8 µs and toff = 1 µs, yields a value of 17.2725 mm3·min−1. With the given combination
of input MTPs, the value of the output qualitative parameter of the machined surface is
SR = 2.355 µm.

3.5. Optimization of the Quality Parameter SR of the Machined Surface with Regard to the
Maximization of MRR Productivity during WEDM of Tool Steels

On the basis of the obtained data, a mutual optimization of the output qualitative
indicator of the machined surface SR was subsequently carried out with regard to the
maximization of the productivity of the electrical discharge process MRR during WEDM
of tool steels. Figure 10 shows the graphic optimization of the output parameter SR with
regard to the maximization of the MRR parameter, performed on the basis of their predicted
values, which were obtained through the MRM defined by Formulas (8) and (9).
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maximization of the quantitative performance parameter MRR during WEDM of tool steels based on
the values predicted through MRM.

From the graphical dependencies shown in Figure 10, it can be observed that with the
increasing value of the output quantitative parameter of the electrical discharge process
MRR during WEDM of tool steels, the predicted value of the output qualitative parameter of
the machined surface SR also increases. When setting the input technological parameters at
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the L1 level, the predicted value of SR = 0.05 µm and the MRR = 5.05 mm3·min−1. When the
input technological parameters are set at the L16 level, the predicted value of SR = 3.75 µm
and the MRR = 29.5 mm3·min−1. Based on the performed optimization, during WEDM of
tool steels, the most suitable combination of input technological parameter settings appears
to be at the L13 level, with a combination of I = 19 A, ton = 32 µs, and toff = 1 µs. At this
setting level, the predicted value of SR = 2.75 µm and the value of MRR = 22.50 mm3·min−1.
A suitable optimization extent is in the range of settings at levels L11 to L15. The predicted
value of SR for the given settings ranges from 2.25 to 3.50 µm, and the MRR ranges from
18.0 to 27.50 mm3·min−1.

Subsequently, on the basis of the experimentally obtained values, a graphical optimiza-
tion of the output parameter SR was performed without emphasizing the maximization of
the MRR parameter, as shown in Figure 11.
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Figure 11. Optimization of the qualitative parameter SR of the machined surface without emphasis
on the maximization of the quantitative performance parameter MRR during WEDM of tool steels,
performed on the basis of experimentally obtained values.

Based on the performed graphical optimization of the real values of the quality param-
eter SR of the machined surface without emphasis on the maximization of the quantitative
performance parameter MRR during WEDM of tool steels shown in Figure 11, the same
trend as in the predicted values can be observed. This means that with the increasing
value of the output quantitative parameter of the electrical discharge process MRR dur-
ing WEDM of tool steels, the real value of the output qualitative parameter SR of the
machined area also increases. When setting the input MTP at the L1 level, the real value
of SR = 0.18 µm and the MRR = 4.95 mm3·min−1. When setting the input MTPs at the
L16 level, the real value of SR = 3.95 µm and the MRR = 26.75 mm3·min−1. Based on the
performed graphical optimization, the most suitable combination of input MTP settings
appears to be at the L8 level during WEDM of tool steels, which comprises a combination
of I = 2 A, ton = 32 µs, and toff = 20 µs. At this setting level, the real value of SR = 1.50 µm
and the MRR = 12.50 mm3·min−1. A suitable optimization extent is in the range of settings
at levels L6 to L10. The real SR value for the given range of settings occurs from 0.98 to
2.33 µm, and the MRR occurs from 9.14 to 17.19 mm3·min−1.
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4. Conclusions

The goal of the experimental research was the prediction and multiparametric opti-
mization of the output-dependent parameters SR and MRR during WEDM of tool steels
with a brass wire electrode of 0.25 mm diameter. Prediction and multiparametric opti-
mization of the SR and MRR parameters was performed in relation to MTP settings. From
the perspective of MTPs, four input variables (I, ton, toff, and U) were assessed, of which
discharge current I was identified as the most influential parameter during WEDM with
respect to SR and MRR, followed by ton and toff. On the basis of the Mean GRG values, a
suitable combination (I1-ton1-toff2-U1) of settings for the input MTPs of multiple responses
for SR during WEDM of tool steels was identified (I = 1 A, ton = 8 µs, toff = 20 µs, and
U = 70 V). It was found that the output-dependent responses SR and MRR had a non-linear
nature during WEDM of tool steels and are suitable for modeling using regression models.
Despite the fact that the WEDM process has a phase dependence on the MTPs, the devel-
oped MRMs generated for the selected output response variables represent experimental
results with small negligible errors that support the optimization of the models. For the
MRR parameter, the deviation of values is 0.13%, and for SR, the deviation of values is
0.28%, which confirms their excellent predictability. The findings were analyzed using
GRA to determine maximum MRR and minimum SR. A higher value of the weighted
Mean GRG = 0.50895 for SR compared with the weighted GRG = 0.49105 for MRR indicates
higher importance of the output qualitative parameter of the machined surface during
WEDM of tool steels. By performing a verification test to improve the GRG indicator at
settings of I1-ton1-toff2-U1 and I2-ton2-toff1-U2 of the input (predicted/experimental) tech-
nological parameters during WEDM of tool steels with respect to their initial setting at
levels of I1-ton1-toff1-U1 and I2-ton2-toff2-U2, an improvement of the GRG indicator for SR
was found at 0.03514/0.06622, and an improvement of the GRG indicator for the MRR
was found at the level of 0.08058/0.11142. The deviations between the confirmation ex-
periment and the values obtained by graphic optimization are 2.8% for SR and 1.6% for
the MRR. Within the experimental research, it was found that the results of the performed
multiparametric optimization with respect to the optimal value of the output-dependent
parameter SR reflect the combination of the predicted settings of the input-independent
MTPs during WEDM of tool steels at the L13 level. The optimal value of 2.75 µm identified
for the SR parameter reflects the maximization of the output power parameter MRR. The
optimum value of the qualitative parameter SR of the machined area without emphasizing
the maximization of the quantitative performance parameter MRR during WEDM of tool
steels determined using experimentally obtained values was 1.50 µm at the L8 level of
the MTP settings. Within the framework of the experimental research, a wider spectrum
of tool steels covering low-, medium-, and high-alloy steels was applied. Therefore, the
experimental results obtained by multi-parametric optimization can be applied to the entire
class of alloy tool steels.
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Nomenclature

ANOVA Analysis of Variance
ANN Artificial Neural Network
DoE Design of Experiments
GA Genetic Algorithm
GRA Grey Relational Analysis
GRC Grey Relation Coefficient
GRG Grey Relational Grade
HB Higher is Better
HV High Value
LV Lower Value
MRM Multiple Regression Models
MRR Material Removal Rate
MS Mean Square
MSD Mean Square Deviation
NTM Non-Traditional Machining
SB Smaller is Better
SR Surface Roughness
TV Target Value
TWR Tool Wear Rate
WEDM Wire Electrical Discharge Machining
I Peak Current (A)
ton Pulse On-time Duration (µs)
toff Pulse Off-time Duration (µs)
U Voltage of Discharge (V)
R2 Determination Coefficient
x∗i (k) Sequence After Data Preprocessing,
x0

i (k) Original Sequence
min x0

i (k) Largest Value of x0
i (k)

min x0
i (k) Simply the Smallest Value of x0

i (k)
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57. Oniszczuk-Świercz, D.; Świercz, R.; Michna, Š. Evaluation of prediction models of the microwire EDM process of Inconel 718
using ANN and RSM methods. Materials 2022, 15, 8317. [CrossRef]

58. Mouralova, K.; Benes, L.; Prokes, T.; Zahradnicek, R.; Fries, J.; Plichta, T. Analysis of the machinability of different types of
sintered carbides with WEDM in both water and oil baths. Int. J. Adv. Manuf. Technol. 2023, 125, 2705–2715. [CrossRef]

59. Židek, K.; Pitel’, J.; Adámek, M.; Lazorík, P.; Hošovský, A. Digital Twin of Experimental Smart Manufacturing Assembly System
for Industry 4.0 Concept. Sustainability 2020, 12, 3658. [CrossRef]

60. Hašová, S.; Straka, L’. Design and verification of software for simulation of selected quality indicators of machined surface after
WEDM. Acad. J. Manuf. Eng. 2016, 14, 13–20.
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