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Abstract: This paper explores the integration of intelligent digital twin technology with PID regulators
in industrial process control utilizing smart meter data. It presents a novel approach involving the
creation of mathematical models to simulate real-time system behavior, thereby enhancing the
PID control loop. The focus is on the development of specialized IT infrastructure to support this
integration, which includes data acquisition, processing, and control optimization. This integration
aims to not only improve control system efficiency but also introduce a robust predictive maintenance
framework, offering significant benefits across a wide range of industrial applications.

Keywords: digital twin; intelligent digital twin; PID control optimization; state estimator; biomass
boiler; process control

1. Introduction

In the relentless pursuit of efficiency, industrial systems are increasingly required to
tackle challenges such as aging components, production variability, and the management
of nonlinear dynamics. The paramount goal is to ensure the stability and adaptability of
closed-loop systems, particularly in the face of resource scarcity. As mass-produced prod-
ucts inherently undergo aging and transformation, there is a pressing need for methodolo-
gies that dynamically tune controller parameters to accommodate characteristic fluctuations.
Moreover, many industrial systems inherently display nonlinear behavior, complicating
the control process.

In this context, Reinforcement Planned Control (RPC) emerges as a potent solu-
tion for nonlinear systems. It offers an intuitive approach, particularly when applied
to proportional–integral–derivative (PID) controls, known for their low computational de-
mand. Consequently, in the industrial landscape, there is a discernible inclination towards
RPC-augmented PID controls, favored for their ease of implementation in mass-produced
controllers. An integral objective of our research is to innovate in this domain by developing
a method for designing RPC-enhanced PID controls directly.

However, it is crucial to acknowledge that traditional PID controls, despite being a
cornerstone for process control, often falter in dynamically evolving environments. They
may not adequately address unexpected disturbances caused by continuously changing
operational contexts, which often necessitates manual intervention. This is particularly
problematic in scenarios where immediate fluctuations—such as those induced by varying
atmospheric temperatures—can adversely impact industrial processes. This gap under-
scores the significance of our research, aimed at enhancing industrial process control:
integrating intelligent digital twin technology with PID regulators. By melding the preci-
sion of intelligent digital twin technology with the robustness of PID controls, we envision
a transformative leap in industrial process management.

Additionally, our exploration delves into data-based control, leveraging input/output
datasets to compute optimal parameters. Nonetheless, this approach is not devoid of
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challenges; a limited dataset can precipitate overfitting, thereby jeopardizing the stability of
closed systems—a predicament reminiscent of the hurdles faced in machine learning, par-
ticularly in the development of nonlinear controllers for nonlinear systems. To navigate this
complexity, we propose an adaptive, learning-based PID model, integrating the foresight of
intelligent digital twin technology to refine its learning process. The implementation of this
adaptive, learning PID, fortified with digital twin insights, constitutes a pivotal objective of
our research, aiming to bring forth a new paradigm in industrial process control.

This article introduces EA-SAS, a newly developed intelligent digital twin platform,
and presents a systematic exploration of the integration of intelligent digital twin technology
with PID regulators in industrial process control, utilizing smart meter data. It begins with a
literature analysis, situating our research within the broader academic context. Subsequent
sections discuss the intelligent digital twin and PID technology integration IT infrastructure,
including our developed Data Collector, Data Reader, Data Writer subsystems and PID
loop integration approach. We present a high-level architecture overview, which addresses
the complex demands of data processing within digital twins, a cornerstone for achieving
operational efficiency and adaptability in contemporary industrial settings. Then, we
describe the basics of the intelligent digital twin computational methodology for biomass
boiler modeling and the state estimator technique.

These optimizations, facilitated by the integration of intelligent digital twin tech-
nology with the PID control loop, significantly enhance the system’s adaptability and
operational efficiency.

2. Related Work
2.1. Autonomous Manufacturing

In the literature review, a few real-world examples of autonomous management in
manufacturing processes were identified. One of the cases involved an experimental
solution deployed by Yokogawa Electric Corporation and JSR Corporation, detailed in
the article from 22 March 2022, titled “In a World First, Yokogawa and JSR Use AI to
Autonomously Control a Chemical Plant for 35 Consecutive Days” [1]. This study reported
a successful field trial where artificial intelligence was utilized for the autonomous control
of a chemical plant process, a claimed global first. In this instance, artificial intelligence
(AI) autonomously managed distillation column valves at ENEOS Materials Corporation’s
chemical plant in Japan for 35 days.

In the article “AI used to control process manufacturing operations,” [2] the creator
of the control solution, PhD. Hiroaki Kanokogi, noted that AI management in industrial
process plants is not as advanced as AI technology used in predictive maintenance. External
atmospheric temperature changes can significantly impact many processes, necessitating
complex control of temperature, pressure, and flow rate to avoid potential undesirable
chemical or physical reactions. Typically, a proportional–integral–derivative (PID) control
mathematical algorithm is used for process control. However, it may not adequately
handle unexpected disturbances caused by continually changing environmental models,
often requiring human intervention in situations where short-term changes due to varying
atmospheric temperatures could negatively impact processes.

In this experiment, Yokogawa utilized artificial intelligence—the Factorial Kernel Dy-
namic Policy Programming (FKDPP) protocol, co-developed in 2018 by Yokogawa and Nara
Institute of Science and Technology (NAIST). The experiment confirmed that reinforced
learning AI could be safely applied in a real production environment and demonstrated
that AI could independently manage complex processes previously controlled manually
based on operator experience. During the field trial, the AI solution successfully dealt with
the complex conditions required to maintain consistent product quality and the appropriate
liquid level in the distillation column, maximizing the use of waste heat as a heat source.
This led to stabilized quality, high product yield, and energy savings.

The article “Online Exclusive Technical Q&A: AI’s use in chemical plant operations” [3]
discussed the advantages of the next-generation Factorial Kernel Dynamic Policy Program-
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ming (FKDPP) control technology. In the industrial sector, a significant portion of AI
technologies is made up of “problem analysis AI.” This type of AI analyzes the presented
data to detect predictive maintenance anomalies, forecast quality, or determine the cause
of problems, typically supporting human decision-making. FKDPP represents a type of
autonomous control AI, which seeks the optimal control model and then implements it.
This uniqueness is highly beneficial, as this next-generation control technology can manage
operations where existing methods (PID/APC) are insufficient, requiring manual control
based on the qualifications of the plant personnel.

Recent advancements in autonomous manufacturing have extensively utilized digital
twin technologies to enhance operational efficiencies and facilitate real-time decision-
making. Specifically, studies have demonstrated various facets of digital twin applications:
The authors of [4] presented methodologies for deriving project-specific digital twins tai-
lored to industrial automation needs, focusing on modular integration and technology
adaptability. An early implementation of digital twin technology was showcased in [5],
where educational setups leveraged cloud computing and 5G networks for process au-
tomation. The authors of [6] analyzed digital twins for improving manufacturing systems’
reconfiguration efficiencies, showing significant enhancements in setup time reductions.
The authors of [7] explored deep reinforcement learning for optimizing manufacturing
processes, contributing robust solutions to dynamic production challenges. Additionally,
the authors of [8] discussed the implementation of flexible manufacturing cells under
the ISO 23247 standard [9–12], emphasizing resilience and adaptability in production
environments. The study by [13] also addressed safety and reliability in human–robot
collaborations through advanced digital twin frameworks, which thus improved the pre-
dictive maintenance and interaction dynamics. Moreover, the authors of [14] focused on
data-driven approaches to optimize control processes in manufacturing systems, integrat-
ing continuous feedback mechanisms for system enhancements. Lastly, the authors of [15]
provided insights into AI-enhanced industrial automation systems using intelligent digital
twins, showcasing the scalability and effectiveness of AI implementations in complex
industrial settings.

2.2. Data-Driven Control

The article “Direct Data-Driven Control for Cascade Control System” [16] proposed
a fresh perspective on cascade control systems, focusing on a direct synthesis method
that eliminates the need for explicit plant modeling. The approach utilizes a direct data-
driven PID design, extracting system dynamics directly from operational data, which is
particularly advantageous in systems where mathematical models are difficult to obtain or
are unreliable.

In “Designing Experiments for Data-Driven Control of Nonlinear Systems” [17], the
authors delved into data-driven control solutions for complex systems. They highlighted
the potential for such methods to adaptively learn and predict system behavior, thereby
enabling more effective control strategies compared to traditional model-based approaches.
The study demonstrated the viability of these methods through simulation and application
in various control scenarios.

“Data-Driven Control in Autonomous Energy Systems” [18] focused on the theoretical
aspects of data-driven control. The paper analyzed the stability and robustness of control
systems that rely on data-driven techniques, providing a critical evaluation of their effi-
cacy in real-world applications. The authors underscored the importance of robust data
collection and processing methods to ensure the reliability of the control system.

These studies collectively underscore the shift towards leveraging real-time data for
control purposes, reflecting a broader trend in automation and control engineering. Other
papers in the field [19–26] corroborated these findings, showcasing data-driven control’s
adaptability to different system types and its capability to enhance system responsiveness
and efficiency.



Machines 2024, 12, 319 4 of 16

Multivariable data analysis, a cornerstone of statistical analysis, intricately explores the
relationships and patterns among multiple variables. This foundational approach, detailed
in “Multivariate Data Analysis” [27], is crucial for understanding complex data structures
and making informed decisions. It employs a range of techniques, from exploratory factor
analysis to structural equation modeling, offering insights into the interplay of variables
and the underlying structure of data. These methods are invaluable across various domains,
enabling a deeper comprehension and effective handling of multifaceted datasets.

2.3. Decision-Making Algorithms

By examining digital twin technology, our research emphasizes the utility of Markov
Decision Processes (MDPs) and Dynamic Policy Programming (DPP) for enhancing decision-
making in simulated environments. The literature highlights the importance of MDPs and
DPP in complex decision-making frameworks [28,29], integrating these algorithms with
digital twins to navigate intricate system dynamics effectively, thereby elevating process
control and management in industrial settings.

MDPs facilitate the modeling of multi-state systems to determine optimal transitions,
aiming for energy-efficient outcomes. This aligns with our goal to develop an intuitive
platform for users to generate technological process states and associated rewards, like
energy savings, showcasing MDP’s role in energy optimization as a novel contribution.

Similarly, DPP tackles objectives akin to MDP but through the decomposition of
problems into manageable sub-tasks, solved recursively. This method suits scenarios with
overlapping tasks, enhancing problem-solving efficiency.

MDPs provide a solid structure for sequential decision-making under uncertainty,
useful for various processes, from operations to AI. The adaptation of MDPs in Approx-
imate Dynamic Programming (ADP) reflects their evolving frameworks for more stable,
efficient learning processes in complex decision environments [30]. Policy iteration meth-
ods, promoting iterative policy refinement for optimal solutions, are gaining interest for
their contribution to decision-making enhancement [31].

Garrett Thomas [32] explored MDPs’ mathematical basis, crucial for discrete-time
decision modeling, including state/action spaces and reward dynamics. The analysis
stresses the discount factor’s role in valuing future rewards and the policy’s impact on
decision-making, underlining policy optimization and convergence.

Rolf Iserman’s contributions, particularly through his books “Fault-Diagnosis Sys-
tems” [33] and “Identification of Dynamic Systems” [34], provide foundational insights
into process control and fault diagnosis integral to digital twin technology. Ref. [33] delved
into fault detection and tolerance using statistical models and AI, which are crucial for
enhancing system reliability—a key component of digital twins. Ref. [34], co-authored by
Münchhof, focused on modeling dynamic systems, offering essential methodologies for
accurate digital replication. While offering extensive theoretical and practical knowledge on
system reliability and identification, Iserman’s research could further benefit from address-
ing integration with newer technologies such as IoT and advanced predictive analytics,
which are vital for modern digital twins’ adaptability and efficiency.

To summarize, MDP focuses on current state-dependent future modeling, contrasting
with DPP’s broader application for scenarios where outcomes hinge on both current and
historical states. MDPs excel in rapid decision scenarios like control theory and machine
learning, whereas dynamic programming suits information-rich decision contexts, enabling
more informed choices based on past influences.

2.4. PID Regulation and Auto-Tuning

For proportional–integral–derivative (PID) regulation and auto-tuning, the literature
presents a multifaceted picture, showcasing various approaches and methodologies. The
seminal work by Åström [35] outlines the ubiquity of PID controllers in industry, emphasiz-
ing their adaptability and the evolution of their tuning mechanisms due to advancements
like microprocessors.
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Furthermore, Liao and Zhao’s research [36] presented an auto-tuning method for rotorcraft,
integrating system identification procedures and a neural network to map controller parameters
to performance, highlighting a novel approach to tuning cascade PID controllers.

“Multivariable Controller Tuning” by Johansson et al. [37] delved into the complexities
of tuning individual loops in multivariable controllers. It explored the relation between a
loop’s performance and a specific row in the controller matrix, offering various interpre-
tations and an algorithm for model estimation through relay feedback experiments. This
process does not require prior system or controller knowledge, marking a significant stride
in the tuning of interconnected control systems, especially where traditional models are
not readily available or feasible to develop.

2.5. Digital Twin and Intelligent Digital Twin

With the advent of Industry 4.0, digital twin technology has become integral to en-
hancing both energy efficiency and process optimization. It necessitates comprehensive
data analysis, including the mathematical modeling of physical systems and processes,
forecasting, and applying statistical algorithms. Digital twin uses fresh monitoring data
to represent the real-time state of the system and to estimate the future state [38]. For
instance, the integration of digital twins across various industries has demonstrated signifi-
cant benefits, including reduced operational costs, enhanced productivity, and superior
decision-making capabilities [39]. Moreover, a review of Industry 4.0 from the perspective
of automation and supervision systems identified digital twins as pivotal in the evolving
architectures and functionalities of modern industrial systems, particularly in enhancing
connectivity and intelligent automation [40].

An intelligent digital twin (IDT) is an extension of this definition, enhanced by the
ability to observe its physical environment and to analyze and learn from it, so that existing
models can be adapted or a real asset can interact with the resultant environment [15].

Traditional DTs do not anticipate future events or adjust actions to meet future
goals. An IDT provides active assistance by working with and providing information
as needed [41]. In our case here, we create an IDT that actively searches for the optimal
conditions to achieve future goals and performs PID control corrections.

3. Intelligent Digital Twin Computational Methodology

Within this section, we describe the integration of combustion physics and state
estimation algorithms to solve the equation system for biomass boiler operations. By
applying decision-making algorithms, we define the optimal set points and PID coefficients
to automate tuning and directly adjust the control system for enhanced regulation.

3.1. Biomass Boiler Modeling

The EA-SAS boiler intelligent digital twin uses continuous real-time data collection and
cloud-based processing for mathematical modeling. This enables a real-time assessment
of boiler efficiency, calculated using the ratio of produced heat (Qproduced) and the heat
generated from fuel consumption (Qfuel):

ηk =
Qproduced + Qeconomizer

Qfuel(actual)
. (1)

The fuel calorific value is calculated as follows:

Qfuel(actual) = Qfuel(LHV)·mefficient − 0.02443·M, (2)

Here, Qfuel(LHV) is the net calorific value (MJ/kg); mefficient is the efficient burnable mass;
0.02443 is the correction factor of the enthalpy of vaporization (constant pressure) for water
(moisture) at 25 ◦C (MJ/kg per 1 w% of moisture); and M is the moisture content (w%).
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The efficiently combusted biomass fuel mass is calculated as follows:

mefficient = mburnable·
(

1 − A
100

)
=

(
1 − M

100

)
·
(

1 − M
100

)
, (3)

Here, A is the ash content (w%).
The net calorific value can be calculated in two ways. If fuel composition is known,

empirical equations may be used. The Mendeleev empirical equation used for determining
the lower value is as follows:

Qfuel(LHV) = 339C + 1035H − 109(O − S)− 25M, (4)

Here, C is the carbon content (w%); H is the hydrogen content (w%); O is the oxygen
content (w%); and S is the sulfur content (w%).

As it is problematic to determine the fuel composition, a lower heat value may be calculated:

Qfuel(LHV) = qV, gr, d − 212.2·H − 0.8(O − N), (5)

Here, qV, gr, d is a gross calorific value of fuel as determined by the biomass fuel sample.
The specific heat of biomass changes during devolatilization, and the particle tempera-

ture increases. The value of the raw biomass specific heat varies not only with temperature
but also with water content [42].

The specific heat capacity of chemical species in the volatiles’ non-condensable fraction
is well known, with extensive information available in the literature. The most common
method for approximating the relationship between specific heat and temperature is the
NASA-type polynomial function, with up to seven coefficients, which are usually specified
for two temperature ranges (below and above 1000 K) [42], although the used method
depends on the needed accuracy. Lanzafame and Mesina [43] proposed the following
logarithmic polynomial equation for specific heat at constant pressure:

∼
cp(T∗) = a0 + a1ln(T∗) + a2[ln(T∗)]2 + . . . + a5[ln(T∗)]5, (6)

Here, T∗ is the flue gas temperature and ak is the polynomials provided in Table 1
of [43].

Table 1. EA-SAS Data Hub VM computational requirements.

Operating System Window Server Linux

Version - Ubuntu Server 22 LTS

CPU Dual core processor with
virtualization

Dual core processor with
virtualization

Storage * 70 GB SSD 50 GB SSD
Memory 6 GB 4 GB

* Additional space may be needed according to the amount of collected information.

The enthalpy of the mixture is calculated as follows:

hmix(T∗) =
∑

n.gases
k=1 xk(T∗)

∼
hk(T∗)

∑
n.gases
k=1 xk(T∗)Mk

, (7)

Here, M is molecular weight, x is the molar fraction, and
∼
hk is specific enthalpy.

Then, the isobaric specific heat of a mixture can be calculated as follows:

cp,mix(T∗) =
∑

n.gases
k=1 xk

∼
cp,k(T∗) + ∑

n.gases
k=1

dxk
dT∗

∼
hk(T∗)

∑
n.gases
k=1 xk(T∗)Mk

, (8)
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The amount of heat produced in the economizer by the water content change from d
to dH2O can be calculated as follows:

Qeconomizer = Cpflue gas·Tflue gas +
(

Ltd + CpH2O·Tflue gas

)
d − Cpflue gas_eco −

(
Ltd_eco + CpH2O·Tflue gas_eco

)
dH2O, (9)

Here, Tflue gas is the temperature of the flue from the furnace; Tflue gas_eco is the temper-
ature of the flue gas exhausted from the economizer; Cpflue gas and Cpflue gas_eco are specific
volumetric heat capacities in accordance with the Tflue gas and Tflue gas_eco temperatures;
and Ltd and Ltd_eco are the latent heat of evaporation.

The boiler heat transfer coefficient U is calculated using real-time boiler data according
to Equation (10):

q = U·A·∆TLM, (10)

Here, q is the heat transfer rate (W); U is the overall heat transfer coefficient (W/(m2·K)); A
is the heat transfer surface area (m2); and ∆TLM is the logarithmic mean temperature difference.

3.2. State Estimator

In our research, we deploy an advanced computational framework for determining
the energy balance within complex engineering systems, modeled by our digital twin
technology. EA-SAS Cloud uses the special state estimator technique, which allows for the
set of Functions (1)–(10) to be solved together with the metered value vector z:

z = h(x) + error, (11)

where z represents the vector of measurements, x denotes the true state vector (set of
unknown variables), h(·) signifies the nonlinear vector function relating the measurements
to the states, and e is the measurement error vector with zero mean and a variance denoted
by Rz.

To estimate the state vector x, we solve a minimization problem of the following form:

J(x) =
1
2
(z − h(x))′R−1

z (z − h(x)), (12)

Here, the weighted least-squares problem is framed within an iterative process that
leverages the gradient of J(x), denoted by g(x), and a gain matrix G(x), which varies
depending on whether we employ the Gauss–Newton or Newton–Raphson methods
for minimization.

In employing the Gauss–Newton method, we linearize the nonlinear function h(x)
through a Taylor expansion, leading to the following:

h = (x + ∆x)\R−1
z H(x))−1H(x)′R−1

z ∆z, (13)

Here, ∆z = z − h(x) and H(x) represents the Jacobian matrix of h(x).
Alternatively, the Newton–Raphson method introduces second-order derivatives into

the equation, adjusting the state vector correction as follows:

∆x =

(
H(x)′R−1

z H(x)− ∑m
j=1γj∆zj

δ2h
δx2

)−1

H(x)′R−1
z ∆z (14)

The correction to the state vector (∆x) is critical, ensuring that our digital twin’s
estimation aligns closely with the real-world energy flows at each node within the system.
It is noteworthy to mention that the inclusion of second-order derivatives tends to have a
negligible effect on the convergence of our state estimation models, as the term involving
these derivatives can often be omitted without significant loss of accuracy.
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Employing combustion equations and state estimators, our digital twin precisely
calculates the system’s energy equilibrium. This method improves the model accuracy and
optimizes the operations via exact energy flow measurements. Subsequently, we discuss
the specialized IT infrastructure designed to facilitate PID auto-tuning.

4. Intelligent Digital Twin PID Control IT Infrastructure
4.1. Data Hub

Data Hub is a program specially designed for data collection and writing to a client’s
control system or directly into equipment. Data Hub consists of Data Collector and Data
Writer. Data Collector is an application responsible for collecting measurement data from
configured Data Readers and for transferring data readings to the main EA-SAS Cloud
server. Data Collector can be installed and configured on the premises of the customer IT
infrastructure (when most of the data are collected via the local server) or in the Cloud (if
the data can be accessed from an external network). The Data Collector configuration allows
IT admin to change the frequency of the data collection from configured Data Readers.
Data Collector serves as a data pusher via the REST API to periodically transfer data to
the EA-SAS Cloud server. The monitoring server is then dedicated to monitoring the VM
server resources.

Data Reader is a service that is the part of Data Collector. It is responsible for collecting
data from the source (measurement device or server). Data Reader configurations (data
update frequency, etc.) are performed in the Data Collector interface.

Data writing into the control system is executed via the Data Writer program. Data
Writer is also a part of the EA-SAS Data Hub. The Data Writer program was designed for
data writing from the main server to the required equipment (usually the control system).
Data Writer configurations (setting the data writing frequency, etc.) are performed in the
Data Collector environment. Data Writing sequences are depicted in Figure 1.
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Figure 1. Example of a data writing sequence.

The startup sequence initiates the configuration by reading task parameters and
preparing the scheduler for operation, while the data write task sequence involves regularly
fetching, processing, and mapping data to the Programmable Logic Controllers (PLCs) for
the execution of control tasks. The startup sequence (above) can be described as follows:

• Local Configuration MySQL (SQL-Structured Query Language) Database: The startup
sequence commences with reading the task configuration from the local configuration
MySQL database.

• Local Scheduler: A local scheduler then schedules the data write task based on the
configuration it has read.

Data write task sequence (below):
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• Local Configuration MySQL Database: Parallel to the startup sequence, during the
data write task sequence, the system again reads the task configuration from the local
MySQL database. The choice of MySQL, an open-source database, aligns with the
principles of Industry 4.0, which emphasizes transparency, interoperability, and the
strategic use of open-source technologies.

• Local Scheduler: The local scheduler operates as part of this sequence as well, although
the specific action it takes in this phase is not detailed in the diagram.

• Main EA-SAS Server: The main EA-SAS server retrieves the latest dataset via a
REST service.

• Python Script Execution: With the latest data acquired, a Python script is executed
to process the dataset and apply the necessary logic. This script, which is defined
within the local task configuration, is written in Python due to its open-source nature
and its status as a standard programming language widely adopted across various
industries. The choice of Python not only ensures flexible and robust data handling
but also aligns with industry best practices in software development, enhancing the
system’s interoperability and adaptability.

• Mapping to PLC Addresses: In this example, processed data are mapped to PLC
addresses following the guidelines specified in the task configuration. It is essential to
recognize that the communication options within automation systems extend beyond
PLCs, offering broad possibilities for integration. Available protocols include BACnet,
HTTP, M-Bus, Modbus, OPC Data Access, MQTT, SQL, S7, and Wonderware, each
providing unique features and capabilities for versatile system integration. Most of
the PLCs have external communication capabilities. The implementation depends on
the manufacturer, model, and series of the PLC and sometimes requires additional
communication modules or protocol converters installed. The communication protocol
also depends on the manufacturer, but newer models tend to support open-source
industrial protocols and can be directly connected to the internet network.

• PLC: Finally, in the PLC, the mapped data are utilized as per the control logic requirements.

4.2. Computational Requirements for the EA-SAS Data Hub VM

The local server must have access to the same network as the object (boiler, cool-
ing, drying, or other) control system and or any other measurement devices that can be
connected. There must also be a constant internet connection to non-local IP addresses.

Usually, a virtual machine is created, but dedicated hardware is also acceptable. This
server will be used for EA-SAS Data Hub installation. This software manages to read data
from the control system and to then send it to the main EA-SAS Cloud. The requirements
are presented at Table 1.

There are no particular requirements for VM IP address assignment. It can be static or
dynamic. VM must have network access to the control system equipment that the data will
be collected from.

The VM access requirements are listed here:

• EA-SAS Cloud, TCP, used for sending read data;
• EA-VPN, UDP, used for managing VM and accessing internal resources.
• EA-Docker register, TCP, used for installing/updating the EA-SAS Data Hub.
• APT registry. Official repositories are used for installing the packages required for

the software;
• Additional network firewall requirements (which network ports will be used) depend

on the protocol that EA-SAS Data Hub will use to read data from the control system.
The protocol depends on the used control system implementation.

4.3. Intelligent Digital Twin PID Loop Integration

Referencing Figure 2, the system architecture integrates a digital twin within the PID
control loop to refine the control strategy for a given process. The digital twin receives input
data streams, which include measured data, set points, and additional system information.
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This data assimilation enables the digital twin to create an accurate representation of the
process, taking into account current conditions and desired outcomes.
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Upon receiving the data, the digital twin performs real-time analyses and computes
the necessary adjustments to the control set points. These computations are facilitated
by the digital twin’s capabilities to handle multiple parameters, represented by Pk, Ik,
and Dk gains within the PID algorithm. Adjustments are made based on the process
feedback and limits, ensuring that the PID controller’s outputs are continuously tuned for
system equilibrium.

The PID controller, equipped with the refined set points and limits provided by the
digital twin, generates control outputs that drive the actual process towards the desired
state. This closed-loop system is further fine-tuned through feedback loops, where the
process outputs are continuously monitored and fed back into the digital twin, fostering an
adaptive control environment.

The efficacy of this integrated approach lies in its ability to synthesize a high volume
of data and translate it into actionable control strategies. By doing so, the PID loop, aug-
mented with the digital twin’s computational intelligence, offers a robust and responsive
control mechanism, ensuring process stability and efficiency. This fusion of technologies
underpins the contemporary drive towards smarter, data-driven process management
within industrial systems.

4.4. High-Level Architecture Overview

The International Standardization Organization issued a series of standards (ISO
23247 [9–12],) that suggest a generic framework for digital twins for manufacturing. The EA-
SAS intelligent digital twin architecture aligns with contemporary standards in digital twin
technology, echoing the guidelines of ISO/IEC AWI Standard 30172 [44] and ISO/IEC AWI
Standard 30173 [45]. The framework consists of the user entity for hosting software systems
and interfaces, the digital twin entity for the digital representation and synchronization of
observable manufacturing elements (OMEs), and the device communication entity for data
interaction and device control. Each entity is further divided into sub-entities and functional
entities, such as the data collection sub-entity for data acquisition and pre-processing and
the device control sub-entity for actuation and operational control [38].
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Within the high-level system architecture, depicted in Figure 3, the Energy Advice
virtual machine (VM) hosts a specialized Data Hub, which comprises distinct Data Collector
and Data Writer programs. These programs are fundamental to the execution of our
methodological framework, executing two primary functions: the collection of process data
and writing control data.
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The Data Collector program is tasked with interfacing with the process control net-
work, utilizing various protocols to gather real-time operational data. These data are
collected in a read-only mode, precluding any direct control interactions that could po-
tentially affect process integrity. The VM operates within a VLAN specifically allocated
for supervisory process control, which is segregated from the standard office VLANs to
mitigate any cross-traffic interference, enhancing data security and system reliability.

Concurrently, the Data Writer program within the Data Hub processes the collected
data, employing the established PID loop control methodology to ascertain the appropriate
control set points. These set points are computed based on the analysis of live process data,
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reflecting the current state of the system. Once determined, the set points are communicated
to the PLCs. The PLCs, in turn, implement these set points to adjust operational parameters
in alignment with the desired control objectives.

Overall, the VM’s operations within the control system are methodically structured
to support the PID loop control approach, adhering to the scientific principles of data
collection, process control theory, and network design, as detailed throughout our article.
The VM’s function is critical in synthesizing the diverse streams of process data into
coherent control actions, embodying the core of our data-driven control methodology.

5. System Performance and Efficiency Insights

In this study, we demonstrated the successful deployment and operational efficacy
of our digital twin of the biomass boiler within a dual-boiler system, comprising boilers
K3 and K2, with only K3 currently operational. Illustrated in Figure 4, the application
results validate our theoretical approach described in Section 3.1. ‘Biomass Boiler Mod-
eling,’ revealing the system’s operational dynamics. Through the EA-SAS platform, we
achieved the autonomous adjustment of critical parameters like hot water temperature
control for district heating, optimizing the fan efficiencies and fuel combustion rates. These
results underscore the practicality and effectiveness of integrating digital twin technol-
ogy with PID control loops, reflecting significant advancements in system control and
operational precision.
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Figure 4. Visual representation of the calculation results on the EA-SAS intelligent digital twin system
interface system.

The parameters automatically controlled without human intervention are listed in
Table 2. All listed parameters are calculated in real time by the intelligent digital twin,
considering the calculated calorific value of the fuel burned and the forecasted demand for
thermal power. The calculated control commands are sent directly to the control system.

Undoubtedly, all parameters are closely related, and the created model of the boiler
house and heat network is complex and comprehensive. It evaluates the influence of
different components on the overall boiler house operation.

One of the main parameters that we aimed to stabilize in the biomass boiler operation
is boiler output temperature. Stabilizing the biomass boiler water output temperature is
critical for maintaining the efficiency of heat production. Figure 5 Illustrates the impact
of control using the intelligent digital twin: post-implementation, temperature stability is
significantly improved, reducing energy losses.
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Table 2. Comparative analysis of ETL scheduling tools.

Equipment EA-SAS Automatically
Controlled Parameters Description

Three-way valve Temperature set point for the three-way
valve, ◦C

Optimized temperature of the hot water
supplied to the city heat network to minimize
heat losses in the network while maintaining
technological requirements.

Primary air fans

Fans’ efficiency, %

Optimizing the performance of primary,
secondary, and tertiary air fans to ensure efficient
fuel combustion.

Secondary air fans
Tertiary air fans

Flue gas draft fans
Optimizing fan performance for optimal draft
and combustion processes at the current boiler
operation mode.

Flue gas recirculation fans Optimizing fan performance to stabilize
temperatures.

Fuel feeders Feeder pause, s Optimizing fuel layer and grate speed for
efficient fuel combustion.

Grate
I grate speed,
sII grate speed,
sIII grate speed, s
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Figure 5. Boiler output water temperature stabilization.

By facilitating optimal remote control and proactive operational set point adjustments,
the PID with intelligent digital twin in loop technology ensures precise temperature reg-
ulation. This results in increased energy efficiency, decreased fuel consumption, lower
emissions, and improved longevity and reliability of the biomass power plant.

6. Conclusions

Our investigation into the integration of digital twin technology with PID control
loops for biomass boiler operations demonstrates both methodological deployment and
operational viability. This practical application, notably within a dual-boiler system where
only K3 was in operation, highlights the real-world applicability and effectiveness of
our approach. Recognizing the potential limitations such as data dependency and the
continuous need for algorithmic refinement, we propose several avenues for future research.

First, further enhancements to the digital twin model should focus on increasing its
predictive capabilities. This could involve incorporating more sophisticated machine learn-
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ing algorithms to predict system behaviors and failures before they occur, thus improving
the system’s operational efficiency and reducing downtime.

Second, addressing the adaptability of the digital twin and PID control loops to manage
and optimize operations in real-time across these varied settings will be essential. This
could involve developing adaptive algorithms that can learn from the system’s performance
over time and adjust control strategies dynamically.

These research directions will not only push the boundaries of control technologies
but also significantly contribute to the field of industrial process optimization, supporting
a wider adoption and technological evolution in various sectors.
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