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Abstract

Extreme pantograph–catenary contact force (PCCF) oscillations pose a serious challenge to
the stable coupling between pantograph and catenary in high-speed railway systems. This
paper introduces an active compensation control framework CPO-LQR-BC-SAC, which
combines optimized Linear Quadratic Regulator (LQR) baseline control with behavior
cloning (BC) and Soft Actor-Critic (SAC) deep reinforcement learning. First, the Crowned
Porcupine Optimization algorithm (CPO) is used to offline tune the LQR weighting ma-
trix, producing a high-performance CPO-LQR controller that significantly reduces PCCF
fluctuation. Next, a dual model-based offline control law provides “expert” adjustments
that further suppress extreme contact force values. Observing that superimposing these
offline-tuned actions onto real-time CPO-LQR outputs yields further suppression gains,
we developed the BC-SAC compensatory controller to provide corrective control actions.
In this scheme, expert actions guide the SAC policy via a behavior cloning loss term in its
loss function, and a decaying imitation weight ensures a balance between imitation and
exploration. Simulation results demonstrate that, compared to both CPO-LQR and the
idealized offline control law, the proposed CPO-LQR-BC-SAC framework achieves over
77% reduction in PCCF standard deviation and exhibits the ability to generalize across dif-
ferent pantograph types, confirming its effectiveness and robustness as a practical solution
for mitigating extreme PCCF oscillations.

Keywords: pantograph–catenary system; high-speed railway; active control; crested porcu-
pine optimizer; linear quadratic regulator; soft actor-critic; behavior cloning

1. Introduction
The pantograph–catenary interaction is one of the three main principal dynamic

coupling relationships in high-speed systems [1], with contact behavior between the panto-
graph and the catenary critically influencing operational safety and economic efficiency.
As the current collection apparatus, the pantograph may induce extreme contact force
fluctuations during engagement with the catenary, leading to contact anomalies: excessive
force accelerates wear on the collector head and catenary wire [2–4], potentially causing
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stripping or fractures, whereas insufficient force results in intermittent contact, producing
abrupt voltage differentials that manifest as electrical arcing [5–7]. These adverse contact
phenomena are shown in Figure 1. Traditional passive control approaches primarily focus
on structural parameter optimization, which offers limited effectiveness with high imple-
mentation costs. Active control algorithms mitigate contact force oscillations by applying
external forces to regulate the lift amplitude of the pantograph. This methodology not only
delivers significantly enhanced control performance but also represents a software-driven
solution with significant practical advantages.

Figure 1. Adverse contact phenomena caused by extreme contact forces during pantograph–catenary
interaction.

Academically, research on active pantograph control algorithms mainly focuses on the
improvement of traditional control methods. Al-Awad et al. [8] employed a genetic algo-
rithm to optimize PID parameters on a reduced-order model, achieving smaller overshoot
and a faster response. Still, the model is overly idealized and fails to capture the contact
force dynamic characteristics arising from the real pantograph–catenary coupling situa-
tion. Farhan et al. [9] proposed a simplified fuzzy controller to reduce design complexity,
demonstrating effective suppression of contact force oscillations; however, the simplified
fuzzy rule set offers limited adaptability and lacks robustness guarantees against unknown
disturbances. Song et al. [10] introduced a mechanical impedance-based PD sliding-mode
surface design, theoretically reducing system impedance in the dominant contact-force
frequency band, yet the switching gain depends on manual tuning without algorithmic
optimization. Wang et al. [11] applied fractional-order modeling to the pantograph base
air spring and used LQR via feedback linearization to handle time-varying stiffness in
the pantograph–catenary coupling; nevertheless, the Q and R weight matrices remain
empirically set up, without further validation of optimal performance. The foregoing
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studies reveal a common drawback of conventional active control algorithms, which all
depend on experience-driven tuning of controller parameters.

In recent years, the deep reinforcement learning (DRL) algorithm, as a decision-making
algorithm, has gained extensive application in control engineering [12–14]. Building on
this approach, numerous studies have also emerged in the field of train control [15,16].
Wang et al. [17,18] pioneered the application of DRL to active pantograph control. Their
work focuses on modifying DRL algorithms to accommodate the dynamic characteristics of
pantograph–catenary systems, validating the method’s effectiveness in mitigating extreme
oscillations of PCCF by training agents in simulation environments constructed with
real-world railway-line parameters. Wang et al. [19] conducted further research on the
feasibility of improved DRL algorithms for pantograph active control, based on the Deep
Deterministic Policy Gradient (DDPG) framework. Sharma et al. [20], despite the “deep
reinforcement learning” label, actually combined deep learning and traditional control:
a Bi-LSTM network predicts contact force fluctuations to drive a fuzzy fractional PID
controller, with Aquila optimization tuning parameters, offering a novel perspective for
pantograph control. However, their deep-learning application centers on prediction and
parameter optimization rather than genuine reinforcement learning. Leveraging its trial-
and-error decision making, a DRL agent can function as a self-contained controller that
autonomously learns corrective control forces to suppress extreme PCCF oscillations,
thereby complementing and enhancing conventional control strategies.

Given that the pantograph can be modeled as a spring–damper system [21–23], its
control strategy can draw on active suspension control methods used for similarly mod-
eled vehicle suspensions, where LQR has been widely applied in automotive suspension
and railway bogie control [24–27]. Accordingly, by introducing the Crowned Porcupine
Optimization algorithm (CPO) to optimize the Q-weight matrix coefficients, optimal LQR
feedback control actions are achieved. However, due to the coupled dynamics of the
pantograph–catenary interaction, the PCCF still oscillates and remains significantly de-
viated from the target contact force [28,29] even under the LQR control situation. To
address this issue, we designed an offline dual-model-based control law for secondary
tuning of the LQR output, generating an ideal action distribution that brings the actual
contact force closer to the target. However, since the dual-model strategy requires two
controlled pantograph instances and cannot be directly deployed in a real-time system—
and simply implementing the control law on a single-model pantograph would disrupt
real-time LQR computation—we treat the tuned actions as “expert actions” and employ a
combined imitation learning (IL) and DRL approach to learn the expert action distribution
and online compensate the real-time CPO-LQR controller output. This enables, within
a single-model framework, significant suppression of extreme contact force oscillations
beyond the theoretical baseline.

Specifically, the main contributions of this paper are as follows:

1 A CPO-LQR baseline controller is developed by optimizing the Q-weight matrix
via the CPO algorithm, achieving strong PCCF suppression; its control outputs are
further refined using an offline control law based on the dual pantograph–catenary
model structure, resulting in expert actions that outperform the baseline and provide
theoretically optimal control performance.

2 To enhance practical applicability, a compensation control strategy is proposed by su-
perimposing the offline expert force as well as the compensation force ucomp onto
real-time CPO-LQR output uCPO−LQR, enabling an active controller based on a
single pantograph–catenary model structure and yielding superior suppression of
extreme oscillations.
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3 The compensatory action ucomp is trained using the BC-SAC algorithm, which embeds
behavioral cloning loss into SAC to allow partial expert imitation while preserving
the environment-driven interaction capabilities; an attenuation mechanism further
balances exploration and imitation, leading to better performance than pure expert-
based compensation.

This article is organized as follows: Section 2 establishes the pantograph–catenary cou-
pling dynamic model and defines the control objectives; Section 3 presents the core control
framework proposed herein; Section 4 provides simulation experiments and validations;
and Section 5 lists the conclusion.

2. Preliminaries and Problem Formulation
To elucidate the dynamic characteristics of contact force during pantograph–catenary

coupling and provide a basis for subsequent active control strategy design, this section
first establishes a mathematical model of the pantograph–catenary interaction to accu-
rately describe the system’s dynamic response under operating conditions. The model is
then embedded in a Markov decision process (MDP) framework, defining the state and
action spaces for the active pantograph control task and laying a formal foundation for
compensatory controller design and training based on the DRL algorithm. To ensure that
the control objectives are scientifically sound and comparable, this section also quantifies
the target contact force and several performance metrics by standards [28,29], and designs
corresponding objective and reward functions, providing quantitative criteria for training
and simulation validation of the control strategies.

2.1. Mathematical Modeling of the Pantograph–Catenary Coupling System

The pantograph–catenary coupling model comprises two subsystems, which are the
catenary system and the pantograph system. In this work, MATLAB/Simulink R2021b
is used to model both the pantograph and the catenary system as the controlled plant for
offline training and online validation of the control strategy.

The catenary is a complex, nonlinear structure that must be simplified for practical
modeling. Following the approach in [30], we apply the following simplifications:

• Lateral vibration effects of the catenary are omitted. Although studies [31,32] have
employed aerodynamic simulations and finite-element analyses to examine catenary
lateral dynamics under abnormal conditions, our work focuses on vertical current
collection and control algorithm design, since under normal operating conditions
lateral contact-wire vibration is not a primary driver of current collection performance.

• The contact wire and messenger wire are modeled as Euler–Bernoulli beams with
constant stiffness and tension.

• Adjacent anchor sections of the catenary are treated as independent subsystems.
• The mid-span of each dropper is represented by a spring element, as illustrated in

Figure 2.

Figure 2. Sketch of catenary system.
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Thus, the simplified stiffness expression is derived by fitting the actual stiffness curve
obtained from finite element analysis using least squares, from which the expression [30]
can be written as follows:

k(t) = k0

[
1 + α1 cos

(
2πv

L
t
)
+ α2 cos

(
2πv
L1

t
)
+ α3 cos2

(
2πv

L
t
)
+ α4 cos2

(πv
L

t
)
+ α5 cos2

(
πv
L1

t
)]

(1)

where v is the operating speed of the train in units of m/s; L is the span of the contact wire;
L1 is the distance between adjacent dropper lines; k0 is the average stiffness of the catenary
system; and αi( i = 1 ∼ 5) are the stiffness coefficients of the catenary system, for which
the values are α1 = 0.4665, α2 = 0.0832, α3 = 0.2603, α4 = −0.2801, and α5 = −0.3364.
L and L1 are set to 50 m and 8 m, respectively, and k0 is equal to 3694.5 N·m−1.

Numerous pantograph models have been developed for specific research objec-
tives [33,34]. However, simpler approaches—such as the two-mass model in [8,11]—cannot
fully capture the pantograph’s overall structural response. Therefore, we adopt a more
comprehensive three-mass model to represent the pantograph’s three main components—
the collector head, the upper frame, and the lower frame—as illustrated in Figure 3. The
three-mass model is sufficient to characterize the pantograph’s dynamic behavior and has
been validated in [22].

Figure 3. Three-mass pantograph model.

Based on the three-mass pantograph model, force analysis is performed, and for each
mass, the dynamic differential equation is derived as follows:

m1
..
x1 + c1

( .
x1 −

.
x2
)
+ k1(x1 − x2) = Fpc = k(t)x1

m2
..
x2 + c1

( .
x2 −

.
x1
)
+ c2

( .
x2 −

.
x3
)
+ k1(x2 − x1) + k2(x2 − x3) = 0

m3
..
x3 + c2

( .
x3 −

.
x2
)
+ c3

( .
x3 −

.
zd
)
+ k2(x3 − x2) + k3(x3 − zd) = FL + u(t)

(2)

The above expressions can be arranged into the state-space function as follows:{ .
x = A(t)x + Bu + G1FL + G2wz

y = Cx + Du
(3)

where x =
[
x1,

.
x1, x2,

.
x2, x3,

.
x3
]T ; u = u(t); xi(i = 1, 2, 3) represents the oscillatory displace-

ment of the collector head, upper frame and lower frame of the pantograph, respectively;
FL denotes the static uplift force; and zd is the disturbance transmitted from carriage
oscillations to the pantograph base.

In this paper, we adopt the parameters of the high-speed pantograph type DSA380,
where mi(i = 1, 2, 3) are 7.12 kg, 6 kg, and 5.8 kg, respectively; ki(i = 1, 2, 3) are 9430 N·m−1,
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14,100 N·m−1, and 0.1 N·m−1, respectively; and ci(i = 1, 2, 3) are 0 N·s·m−1, 0 N·s·m−1,
and 70 N·s·m−1, respectively.

2.2. Markov Decision Process Modeling

When formulating the active pantograph control problem as a Markov Decision
Process, the state space and action space must be explicitly defined to enable the agent
to make decisions based on current observations at each timestep while dynamically
interacting with the environment, as illustrated in Figure 4. This section details the state
space and control actions required for implementing the deep reinforcement learning-based
active pantograph control algorithm.

 

Figure 4. Schematic diagram of the interaction between the active control agent and the pantograph environment.

2.2.1. State Space

The state should include sufficient information to characterize the current system
dynamics and environmental disturbances, enabling the control policy to compensate for
oscillations or deviations promptly. Assuming control is executed at discrete time steps
t = 0 s, t = 1 s, t = 2 s, . . ., the evolution of the pantograph–catenary coupling system state
over each sampling period can be approximated as a Markov transition, where the next
state depends only on the current state and the applied action. Therefore, the state space is
defined as follows:

St =
{

s
∣∣st =

(
Fpc,t, Fpc,t−1, Fpc,t−2, . . .., Fpc,t−n+1

)}
(4)

where Fpc,t denotes the pantograph–catenary contact force. According to the first mass
equation in (2), the contact force equals the variable stiffness coefficient of the catenary
multiplied by the displacement of the collector head. Therefore, we directly focus on the
state information of Fpc rather than using x1, adopting Fpc as the primary controlled state
variable to enable the agent to make more accurate control decisions.

2.2.2. Action Space

The agent’s action corresponds to the compensation force applied to the output of the
real-time LQR controller by the proposed framework, denoted as ucomp. Considering the
actuator’s physical capabilities and safety limits, the compensation force must be restricted
to the interval

[
ucomp,max, ucomp,min

]
, and the agent selects actions within this range based

on the observed state. To facilitate network training and output, we typically normalize
the policy network’s raw output to [−1, 1], then use a linear mapping to obtain the actual
compensation force value as follows:

ucomp,t = 100× at, Aucomp,t = {a|at = [−1, 1]} ⇒ ucomp,t ∈ [−100, 100] (5)

At each discrete-time period Ts, the agent observes the system state and outputs
a normalized action. This action is mapped to a compensatory force ucomp,t, which is
superimposed on the baseline LQR controller output to form the composite control input.
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Within our framework, a one-dimensional continuous compensatory force suffices to
suppress catenary force oscillations while reducing policy learning complexity.

2.3. Definition of the Objective Function and the Reward Function

In this subsection, the desired contact force state for the pantograph active control task
is specified in detail based on international standards. On this basis, an objective function
is designed for optimizing the Q-weight matrix coefficients of the LQR primary controller
via the CPO algorithm, and the reward function is defined to guide policy learning for the
compensatory controller trained by the DRL algorithm.

2.3.1. Specification of Performance Metrics

According to the Reference [17] and Standards [28,29], the target value of the desired
contact force varies with train operating speed, as expressed by the following equation:

Fpc,Trgt = 0.00097×V2 + 70 (6)

where Fpc,Trgt denotes the target contact force, in the unit of N, and V is the operating speed
of the train, in the unit of km/h.

We define the control error Epc as the deviation between the controlled contact force
Fpc,Ctrl and the target contact force Fpc,Trgt, serving to assess how closely the controller drives
the contact force toward its target value. Ideally, a smaller error indicates more effective
suppression of extreme contact force fluctuations. The control error Epc is expressed as:

Epc =
∣∣∣Fpc,Ctrl − Fpc,Trgt

∣∣∣ (7)

The standard deviation of the contact force is a key performance metric, as higher
standard deviations reflect more extreme fluctuations. Ideally, this metric should be mini-
mized. The acceptable range of the statistical contact force Fpc,Std is calculated based on the
standard deviation, which is defined as:

Fpc,Std = [Fm − 3δSTD, Fm + 3δSTD] (8)

where Fm is the mean contact force and δSTD is the standard deviation value as specified by
standards [28,29].

Figure 5 delineates the variation trend of target contact force when train speeds exceed
300 km/h, while contrastingly presenting the statistically derived contact force ranges
under passive control at different velocities (computed per (8)). Crucially, as velocity
increases, the fluctuation range of contact forces exhibits notable expansion, indicating
significant amplification of contact force oscillations.

Figure 5. Target contact force values and the statistical contact force ranges under passive control for
speeds from 300 km/h to 400 km/h.
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2.3.2. Objective Function

The objective function drives the offline CPO algorithm’s search for optimal LQR
solutions. Its design principles encompass a dynamic target contact force, permissible
standard deviation ranges with safety thresholds, and a penalty mechanism for constraint
violations. The objective of overarching is to minimize the standard deviation of the
contact force as much as possible while satisfying safety and convergence requirements; if
significant deviations from the target contact force or potentially unsafe force levels arise,
penalty terms steer the optimization process away from suboptimal solutions. The specific
formulation is as follows:

f =


Fpc,Std_act

Fpc,Std_pass︸ ︷︷ ︸
fa

+

∣∣0.97Fpc, Trgt − Fpc, Mean
∣∣

0.03Fpc, Trgt︸ ︷︷ ︸
fb

+ 10︸︷︷︸
fc

, if
Fpc,Std_act > Fpc,Std_pass

∥∥∥Fpc,Std_act > Fpc, Saftey

∥∥∥
Fpc, Mean > Fpc, Trgt ∥Fpc, Mean < 0.97Fpc, Trgt

Fpc,Std_act
Fpc,Std_pass

, else

(9)

where Fpc,Mean denotes the mean contact force; Fpc,Std_act is the contact force standard
deviation under active control; Fpc,Std_pass is the contact force standard deviation under
passive control; and Fpc,Sa f tety is the safety threshold for the contact force standard deviation,
set to 30% of the mean contact force. The first term fa reflects the degree to which the
fluctuations’ amplitude exceeds acceptable levels. The second term fb quantifies the
deviation of the mean contact force from the target value, using an absolute value to
capture deviations when the mean is above the target or below the lower bound. The
third term fc is a fixed penalty: a constant +10 is added to assign a large fitness value to
severe violations, guiding the optimization algorithm to avoid such solutions. When all
constraints are satisfied, the fitness value is determined solely by the first term fa. The
optimization objective is thus reduced to minimizing this standard deviation to suppress
contact force fluctuations while maintaining the mean contact force around the target value.

2.3.3. Reward Function

The reward function serves as the quantitative evaluation mechanism bridging agent–
environment interactions, directly governing the convergence quality and ultimate perfor-
mance of learned policies. Given that the primary objective of active pantograph control is
to regulate uncontrolled contact force fluctuations around the target value, we consider the
error metric as the absolute deviation between actual and target states to guide the policy
exploration, formally expressed as:

Rt = −
ε

100
(

Fpc,t − Fpc,Trgt
)2 (10)

where Fpc,t ∈ St denotes the environmental state variable; Fpc,Trgt denotes the target contact
force value; and ε serves as the weighting coefficient, equal to 0.5.

By penalizing the absolute error—whether the contact force overshoots or undershoots
the target—with a negative reward, the agent is compelled to drive this error toward zero.
Maximizing the cumulative reward thus directly corresponds to minimizing the contact
force deviation. In the ideal scenario, when the measured force exactly equals the target,
the absolute error vanishes and the total reward achieves its theoretical maximum of zero,
indicating perfect fulfillment of the control objective.

3. CPO-LQR-BC-SAC Based Active Control Strategy
This section details the CPO-optimized LQR baseline controller and the correspond-

ing offline control law for secondary tuning of the control actions, elaborates the ra-
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tionale for behavioral cloning-based expert action imitation, and ultimately constructs
a synergistic architecture between the CPO-LQR primary controller and the BC-SAC
compensatory controller.

3.1. Overall Framework and Design Rationale

The design and implementation of the proposed control strategy consist of three main
stages, as shown in Figure 6.

Figure 6. Schematic of the core controller architecture and control system block diagram of the
proposed active pantograph control strategy.

• Baseline Controller Construction—Part I:
Use the CPO algorithm to offline-tune the LQR weight matrix, obtaining high-
performance baseline control actions.

• Expert Action Refinement—Part II:
Based on the dual pantograph–catenary model, design an offline control law (CPO-
LQR-CtrlLaw) to perform a secondary optimization of the baseline actions, producing
ideal control actions that surpass the baseline performance—these are treated as expert
actions for the agent’s policy to imitate.

• Compensator Deployment—Part III:
Given that standalone imitation learning or reinforcement learning controls cannot
fully outperform the baseline controller, and that the dual-model approach faces
practical deployment constraints, we conducted experiments that show superimposing
real-time CPO-LQR outputs with the secondarily optimized control actions more
effectively suppress extreme oscillations. Accordingly, a DRL compensator integrating
imitation learning was constructed to replace the secondary optimization control
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actions. In the online test, the trained BC-SAC compensatory controller works in
parallel with the baseline LQR; their outputs are weighted and combined to act on
the pantograph–catenary system, enhancing fluctuation suppression and contact force
dynamic performance.

The final execution mode of this framework operates via the closed-loop synergistic
control architecture (Figure 6-Part III): Contact force states are synchronously input to
both the CPO-LQR baseline controller and BC-SAC compensator through dual feedback
pathways. Here, the baseline controller will be regarded as the primary controller. The
BC-SAC algorithm generates compensatory actions ucomp based on real-time states, which
are synthesized with the primary controller output uprimary to form the composite control
input as utotal = uprimary + βucomp. Meanwhile, the feedback variables fed into the CPO-
LQR dynamically incorporate the contact-force response after compensation, forming a
dynamically optimized closed loop together with the BC-SAC compensator.

3.2. Design of the Primary Controller Based on CPO-LQR
3.2.1. LQR Controller Baseline

According to the performance metrices described in Section 2.3, the LQR objective
function is defined as follows:

J =
1
2

∫ ∞

0

[
xT(t)Qx(t) + uT(t)Ru(t)

]
(11)

where Q ∈ Rn×n is a semi-positive definite matrix, representing the impact of state devi-
ation on the performance index; R ∈ Rm×m is a positive definite matrix representing the
impact of control inputs on the system’s energy consumption; and x(t) = x and u(t) = u,
which are determined based on the state-space function of the pantograph–catenary cou-
pling system given in (3) of Section 2.1.

To achieve optimal control performance in the pantograph–catenary system, it is
essential to simultaneously minimize control energy expenditure and state deviation.
Consequently, an optimal state-feedback control law is derived as follows:

u = −Kx(t) (12)

where u is the control input, specifically the active control force applied within the
pantograph–catenary system; and x(t) is the state vector. By optimal control theory, the
feedback gain K is given by the following equation:

K = −R−1BT P (13)

where P is the symmetric matrix that satisfies the differential Riccati equation (DRE)—i.e.,
it is the solution corresponding to the state variable x—based on which the state feedback
gain K is obtained. The DRE is written as follows:

P(t)A(t) + A(t)T P(t)− P(t)BR−1BT P(t) + Q = −
.
P(t) (14)

In which A(t) and B are the state and input matrices of the pantograph–catenary
coupled system defined in (3) of Section 2.1.

3.2.2. Optimization Method for the Q-Weight Matrix

The CPO algorithm was proposed by Abdel-Basset et al. [35] in 2024 as a swarm
intelligence algorithm inspired by the defensive behavior of crowned porcupines. Compar-
ative experiments on the CEC2017 benchmark show that CPO significantly outperforms
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various classical metaheuristic algorithms. Based on this, we employed CPO to optimize
the Q-weight matrix of the LQR controller.

Specifically, CPO proceeds through global exploration and local exploitation phases.
In the global exploration phase, quill-raising and acoustic-deterrence strategies enable
broad sampling of the search space to prevent premature convergence. The local exploita-
tion phase then uses odor-induced long jumps, along with leader-based mutation and
crossover, to refine promising candidates and accelerate convergence. The two update rules
correspond to (15) and (16), respectively:

x(t+1)
i = x∗t + a0

(
r1x(t)i − r2x(t)p

)
+ χ0N(0, 1) (15)

v(t)i = x(t)r1 + Fd

(
x(t)r2 − x(t)r3

)
, u(t)

i =

v(t)i,j , i f randj < Cr or j = jrand

x(t)i,j , else
(16)

where i = 1, . . . , Np, Np denotes the population size. In Equation (15), x∗t and x(t)p denote
the current global best and predator positions, while r1, r2 ∼ U(0, 1). In Equation (16), the
index j refers to the jth dimension, corresponding to the six weighting coefficients of the
Q-matrix. The remaining hyperparameter definitions and values are listed in Table 1.

Table 1. Hyperparameters of the CPO-LQR.

Description of Parameters Symbols Values

Population size Np 200
Maximum number of iterations T 30

Cycle reduction period Scycle 5
Minimum population size Npmin 20

Initial visual deterrence factor a0 2
Acoustic deterrence factor χ0 0.1

Differential evolution mutation factor Fd 0.5
Crossover probability Cr 0.8

Lévy flight distribution exponent βlevy 1.5
Upper bounds of the Q-weight matrix coefficients Ub 30
Lower bounds of the Q-weight matrix coefficients Lb 0

CPO’s strength lies in its superior global search capability, which allows it to thor-
oughly explore large solution spaces and avoid local optima. Leveraging this advantage,
the algorithm performs deep optimization of the Q-matrix’s six weighting coefficients
corresponding to the system’s state variables, identifying the optimal combination to maxi-
mize the suppression of pantograph–catenary contact force fluctuations and significantly
enhance the overall control performance. Following the objective function designed in
Section 2.3.2, the corresponding optimization mechanism is illustrated in Figure 7.

In summary, with the Q-matrix set to QCPO obtained by CPO optimization and the R
matrix fixed as RCPO = diag

[
1e−5], the baseline control action ubaseline is computed as:

ubaseline = −RCPO
−1BT PCPOx(t) (17)
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Figure 7. Flowchart for optimizing the Q-weight matrix weight coefficients using the CPO algorithm.

3.2.3. The Offline Control Law

The experimental results indicate that the LQR control actions designed above exhibit
the following characteristics: assuming a train speed of 320 km/h, the target contact force
is 169.328 N as calculated in (6). At randomly selected instants t = ta(a = 1, 2, 3, . . .), the
uncontrolled contact force may reach 250 N; applying an active control force of −40 N to
the pantograph system can reduce the contact force to about 180 N, driving it closer to the
target. Similarly, at instants t = tb(b = 1, 2, 3, . . .), the uncontrolled contact force may be
80 N; applying an active control force of +40 N can raise the contact force to about 150 N,
also steering it toward the target. The control principle is illustrated in Figure 8.

Figure 8. Conceptual basis for the design of the offline control law.

Given the known distribution of effective CPO-LQR control actions, we designed
a secondary control law to fine-tune these actions by applying incremental additions or
subtractions, thereby achieving theoretically superior pantograph–catenary suppression
performance compared to the baseline CPO-LQR controller. The offline control law is
mathematically expressed as follows:

uCPO−LQR−CtrlLaw =

{
ubaseline + ∆u, i f ubaseline > 0&&Fpc,t < Fpc,Trgt

ubaseline − ∆u, i f ubaseline < 0&&Fpc,t > Fpc,Trgt
(18)

where Fpc,Trgt denotes the target contact force under the current speed condition and ∆u
is the increment value. ∆u should not be too large or too small; if it is too large, it may
undermine the stability of the LQR controller, causing the control action to fail and the
contact force to potentially diverge. If it is too small, it yields no additional effect and
becomes indistinguishable from the baseline action. Based on experimental validation, we
chose ∆u = 25 N.
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The control system block diagram for the offline control law based on the dual model
is shown in Figure 6 Part II. The effectiveness of this control law in suppressing the contact
force compared to the baseline CPO-LQR will be validated through experimental results in
Section 4.

3.3. Design of the Compensatory Controller Based on BC-SAC

Although CPO-LQR suppresses contact force significantly, it still deviates from the
target, and the offline control law, despite its theoretical superiority, is impractical due to
its reliance on the dual model. Therefore, a compensation control method is proposed to
further enhance the control performance.

3.3.1. Soft Actor-Critic Algorithm

The core idea of the SAC algorithm is to maximize the cumulative reward while
balancing exploration and exploitation by maximizing policy entropy. The inclusion of
an entropy term gives it stronger exploration capabilities than other DRL algorithms in
complex environments and prevents premature convergence to poor local optima, making
it an excellent candidate for the MDP environment of this task. Its policy objective function
can be expressed as follows:

J(π) = argmax
π

∑T
t=0 E(st ,at)∼π [r(st, at) + αH(π(·|st))] (19)

where H(π(·|st)) = −Ea∼π [log π(a|st)] represents the entropy of the policy at state st, and
α is the temperature coefficient that controls the trade-off between reward and entropy.

Accordingly, the update objective for the Actor network parameters θ is to produce
actions that yield high Q-values while maintaining high entropy in the current state. Its
loss function is expressed as follows:

Lπ(θ) = Est∼D

[
Eat∼πθ(·|st)

(
α log πθ(at|st)−Qψ(st, at)

)]
(20)

where D denotes the replay buffer and Qψ(st, at) is taken as the minimum of the two Critic
network outputs to reduce overestimation. During updates, states st are sampled from the
buffer, actions at are sampled from the current Actor, and the gradient of L with respect to
θ is computed for gradient descent, so that the policy improves in a direction that achieves
both high value and sufficient randomness.

SAC employs two Q-networks
(
Qψ1, Qψ2

)
to reduce estimation bias. The Critic is

updated based on the entropy-augmented Bellman target [36]:

y = r + γEa′∼π(·|s′t)

[
min
j=1,2

Qψj,target
(
s′t, a′t

)
− α log π

(
a′t
∣∣s′t)] (21)

And then minimizes the mean squared error:

LQ(ψi) = E(st ,at ,rt ,s′t)∼D
[
Qψi(st, at)− y

]2, i = 1, 2 (22)

where γ is the discount factor and the target Q-network parameters are slowly updated
toward the main network via a soft-update mechanism:

ψtarget1,2 ← τψ1,2 + (1− τ)ψtarget1,2 (23)
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The Critic update makes the Q-value estimates more accurate, providing a reliable
evaluation signal for the Actor. After updating Actor and Critic, the temperature coefficient
α is adjusted by minimizing L as follows:

L(α) = Est∼D

[
Eat∼πθ(·|st)(−α log πθ(at|st)− αH)

]
(24)

where H is the desired minimum expected entropy.

3.3.2. Actor Network Integrated with Behavior Cloning

The behavior cloning method, first proposed by [37], is based on the core principle of
constructing the loss between policy actions and expert actions and continuously minimiz-
ing it to approach zero, thereby guiding the policy network to generate outputs consistent
with expert actions. In this study, the expert action uexpert being mimicked corresponds to
the uCPO−LQR−CtrlLaw refined in Section 3.2.3.

However, the behavior cloning method relies solely on a single policy network and, un-
like deep reinforcement learning algorithms, lacks a value network to evaluate the current
policy. This limitation results in insufficient generalization to unseen states. Furthermore,
during online testing, if the policy outputs deviations in unseen states, it may cause a
shift in the state distribution. In continuous active control tasks for pantograph–catenary
systems, this can lead to accumulated errors, potentially resulting in control failure.

To address this issue, we integrated the concept of behavior cloning into the update
process of the deep reinforcement learning policy network by redesigning the loss function
of the Actor network, which is expressed as follows:

L′π(θ) = Est∼D

[
Eat∼πθ(·|st)

(
α log πθ(at|st)−Qψ(st, at)

)]
+ λnLBC (25)

where λn represents the weighting coefficient, and LBC is the BC loss term, which is
expressed as follows:

LBC = Est∼D
∥∥π(st)− uexpert(st)

∥∥2 (26)

We aim to further explore the potential for better control strategies beyond imitation,
possibly surpassing the performance of expert actions. Therefore, a progressively decaying
weighting coefficient is designed during the training process, expressed as follows:

λn =


1, n ≤ N

2
3N
4 −n

T
4

, N
2 ≤ n ≤ 3N

4

0, n ≥ 3N
4

(27)

where N represents the total number of training episodes. In the initial N/2 episodes,
imitation is emphasized to ensure the policy fully learns from expert experience. Subse-
quently, λn gradually decays, reaching zero at 3N/4, allowing the agent to engage in fully
autonomous exploration on the established policy foundation to discover superior control
strategies beyond the expert actions.

The method of integrating imitation learning with deep reinforcement learning
through a hybrid loss function leverages expert action demonstrations to guide training
while mitigating generalization risks inherent in pure behavioral cloning. By dynamically
balancing imitation and autonomous exploration through gradual attenuation, it enhances
the policy’s ability to further compensate for the actions of the primary controller.
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3.4. Update Process of the Proposed Framework

After obtaining the optimal QCPO-weight matrix and expert action uexpert, the pro-
posed framework leverages these results to design and train a compensatory control policy
agent. To clearly illustrate the update process of the active compensatory control pol-
icy within the CPO-LQR-BC-SAC framework, the pseudocode is presented as follows
(Algorithm 1):

Algorithm 1. Pseudocode of the active pantograph compensation control algorithm
based on the CPO-LQR-BC-SAC framework.

The CPO-LQR-BC-SAC Framework
Input:

Environment E of the pantograph–catenary coupling system.
Optimized QCPO-weight matrix and fixed RCPO-weight matrix.
Expert action uexpert tuned by the offline control law.
Actor policy πθ and Critic networks Qψ1,2 with target networks Qψtarget1,2 .
Replay Buffer D.
Behavior-cloning weight decay schedule λn.

Output:
Trained compensatory policy πθ .

Procedure:
1. Initialization:

Randomly initialize Actor parameters θ.
Randomly initialize Critic parameters ψ1,2 and set target networks: ψtarget1,2.
Initialize temperature coefficient α.
Initialize the replay buffer D as empty.
Initialize behavior-cloning weight λn.

2. for episode = 1 to N do
3. Reset environment; obtain initial state st ← st=0 .
4. for step = 1 to M do
5. Compute the action of the primary controller: uprimary = −KCPOst.
6. Obtain expert action for this state: aexpert,t= uexpert ∼ uCPO-LQR-CtrlLaw(st).
7. Sample compensatory action from Actor: at = ucomp ∼ πθ(·|st).
8. Form and execute total action: utotal = uprimary + βucomp.
9. Interact with the environment: observe next state s′t, reward rt, and done.
10. Store transition (st , at, aexpert,t , rt, s′t, done) into D.
11. st ← s′t .
12. if size(D) ≥ batch size, then:
13. Sample size per batch B from D.
14. Update Critic networks using the entropy-augmented Bellman targets

based on (21) and (22).
15. Compute current behavior-cloning weight λn based on (27).
16. Update Actor network based on (25) and (26).
17. Soft-update target Critic network parameters ψtarget1,2 based on (23).
18. Update temperature parameter α based on (24).
19. if done break
20. end for
21. end for
Return policy πθ .
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The updated process of the proposed framework is shown in Figure 9.

 

Figure 9. Schematic of the updated process for the active pantograph compensation control algorithm
based on the CPO-LQR-BC-SAC framework.

4. Experimental Validation and Result Analysis
In this section, based on the pantograph–catenary coupling model established in

Section 2.1 and the performance metrics defined in Section 2.3.1, we conduct a detailed
comparative analysis and validate the effectiveness of the proposed active compensation
control framework. We present the training and testing results of both the primary controller
and the compensatory controller, and illustrate the control performance of the control
schemes under various speed conditions.

4.1. Hyperparameter Settings

Table 1 summarizes the definitions and values of the hyperparameters used in the
CPO-optimized LQR primary controller.

For the BC-SAC algorithm, which is used to train the compensatory control policy, the
hyperparameters are listed in Table 2.

Table 2. Hyperparameters of the BC-SAC.

Description of Parameters Symbols Values

Discount factor γ 0.99
Soft update rate τ 1 × 10−2

Learning rate lr 2 × 10−4

Number of network layers layers 4
Number of neurons neurons 512
Activation function ReLU −

Optimizer Adam −
Maximum number of episodes N 2 × 103

Maximum iterations of each step M 1.5 × 102

Compensatory controller weight factor β 1.2
Simple size per batch B 256

Replay buffer D 20, 000

The detailed parameters of the pantograph and catenary used in the validation are
provided in Section 2.1. All experiments were conducted on a host configured with an
Intel(R) Core(TM) i7-10700F CPU @2.90 GHz (Intel Corporation, Santa Clara, CA, USA),
NVIDIA GeForce RTX 3080 (NVIDIA Corporation, Santa Clara, CA, USA), and 16 GB
of RAM; software interaction was facilitated by PyCharm 2022 with MATLAB/Simulink
R2021b, and the core algorithms were built within the PyTorch 1.13.1+cu116 environment
constructed on the Python 3.9 interpreter.
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4.2. Control Performance of the Baseline Controller

As the baseline control method in the proposed framework, the control performance
of CPO-LQR must be optimal to highlight the value of the compensatory control policy, i.e.,
to further improve upon a fully exploited baseline. This subsection presents a comparative
validation of the proposed CPO-LQR and CPO-LQR-CtrlLaw.

4.2.1. Training and Testing Results

From Figure 5 discussed above, when the train operates above 300 km/h, the
pantograph–catenary contact force exhibits severe oscillations. Therefore, we select four
speed conditions—320 km/h, 340 km/h, 360 km/h, and 380 km/h—to optimize the corre-
sponding Q-weight matrix for each case. To highlight the superiority of the CPO algorithm
over other classical metaheuristic methods, we compare CPO with the genetic algorithm
(GA) and the particle swarm optimization algorithm (PSO) used in References [24–26]
under identical parameter settings. The convergence curves of the three algorithms for
each speed condition are presented in Figure 10.

 
(a) (b) 
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Figure 10. Comparison of the fitness convergence for Q-matrix optimization between the CPO
algorithm and classic methods under various speed conditions. (a) Under the 320 km/h operating
condition. (b) Under the 340 km/h operating condition. (c) Under the 360 km/h operating condition.
(d) Under the 380 km/h operating condition.

Figure 10 shows that the CPO algorithm exhibits the best overall convergence perfor-
mance. Specifically, although PSO converges fastest among the three algorithms, it also
settles at the highest final fitness value, indicating inferior exploration due to premature
convergence. GA converges faster than CPO but still ends with a higher final fitness value;
it enters a steady state in fewer iterations, risking entrapment in local optima. In the
figure, GA’s final fitness matches CPO’s only at 360 km/h, while at all other speeds its final
values remain higher than CPO’s. Owing to its four-stage exploration mechanism, CPO
maintains a broad search scope, which naturally results in relatively slower convergence
but ultimately contributes to achieving the lowest final fitness value, demonstrating the
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optimality of its optimization results. This indicates that, with identical parameter settings,
CPO can discover more optimal Q-weight matrix coefficients, resulting in superior control
performance. The optimized Q values for each speed condition are summarized in Table 3.

Table 3. Q-weight matrices optimized by the CPO algorithm under different speed conditions.

Speed Conditions Q-Weight Matrices

320 km/h QCPO−320 = diag[25.1192 1.7833 22.5689 0.3133 30 4.55]
340 km/h QCPO−340 = diag[27.1600 1.7328 30 3.1496 21.3052 2.2465]
360 km/h QCPO−360 = diag[3.3080 1.3131 26.5692 0 28.1257 14.2214]
380 km/h QCPO−380 = diag[29.3968 1.0526 2.4655 0 30 8.2777]

Table 3 shows that the CPO-tuned Q-weight matrices vary in all six diagonal weight
coefficients across speeds, with no uniform trend. This variability indicates that CPO
adapts each controller’s emphasis to the specific dynamic behavior at each speed. Such
flexibility ensures that the baseline LQR is optimally matched to its operating condition
before applying the matrices.

By loading the trained Q-weight matrix into the LQR controller, we conducted online
tests at all four speed conditions and compared three control strategies, passive Control, em-
pirically tuned LQR, and CPO-LQR. In the empirical LQR method, the Q and R matrices are
set according to Reference [11], with Qemp = diag[1000, 0, 0, 0, 0, 0], Remp = diag

[
1× 10−7].

Figure 11 illustrates the control performance of the three control strategies across
four speed conditions. The experimental results show that the CPO-optimized controller
consistently and markedly reduces oscillation amplitudes in all cases. Compared to the
uncontrolled case (Passive Control) and the empirically tuned LQR controller, CPO-LQR
yields significantly lower force peaks as well as higher force valleys, demonstrating the
smallest contact force fluctuation and superior contact force suppression performance.
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Figure 11. Comparison of the contact force fluctuation suppression under different speed conditions.
(a) Under the 320 km/h operating condition. (b) Under the 340 km/h operating condition. (c) Under
the 360 km/h operating condition. (d) Under the 380 km/h operating condition.

4.2.2. Comparative Validation with the Offline Control Law

As mentioned earlier, the value of ∆u significantly affects the performance of the
control law. We validated a range of ∆u in [0, 50] N to identify the optimal increment value.
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As shown in Figure 12, when the increment value ∆u is below 25 N, the control action
converges toward the baseline controller, yielding diminishing improvements. This behav-
ior is expected because, per (18), as ∆u approaches zero, the correction term vanishes and
the controller effectively reduces to ubaseline, offering no noticeable advantage. Conversely,
values of ∆u above 25 N lead to excessive corrections and degraded performance rather
than further improvement. This trend is reflected in the curve of the contact force standard
deviation: both very small and very large ∆u values increase the standard deviation and
thus are reflected as the larger contact force oscillation amplitude. The minimum stan-
dard deviation occurs at ∆u = 25 N, indicating that this increment yields the best overall
control performance.
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Figure 12. Effect of different increment values ∆u on the control performance of the control law.

We then validated the dual model-based secondary-tuning control law CPO-LQR-
CtrlLaw method under the same four speed conditions, as shown in Figure 13.

 
(a) (b) 
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Figure 13. Comparison of the contact force fluctuation suppression between the baseline control
method and the secondary-tuned control law. (a) Under the 320 km/h operating condition. (b) Under
the 340 km/h operating condition. (c) Under the 360 km/h operating condition. (d) Under the
380 km/h operating condition.
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As shown in Figure 13, the experimental results indicate that the CPO-LQR-CtrlLaw
not only reduces the excessive peaks of the contact force waveform but also raises the deep
troughs, bringing both extreme contact force situations closer to the corresponding target
contact value under all four speed conditions. Consequently, the secondarily adjusted
baseline actions further enhance overall suppression of the contact-force fluctuations, con-
firming that the CPO-LQR CtrlLaw method outperforms the baseline CPO-LQR controller.

4.3. Control Performance of the Proposed Framework

Building upon the aforementioned baseline controller and the control law method, we
further validated the online performance of the proposed unified compensation control
framework, examining both its convergence behavior during training and its suppression
effectiveness on contact force under different speed conditions in online testing.

4.3.1. Training and Testing Results

To comprehensively evaluate the contribution of each module in the proposed frame-
work to control performance, we compared three schemes: the standalone SAC, the com-
bined framework with CPO-LQR as the primary controller and the SAC as the compen-
satory controller, and the proposed framework with the added behavior-cloning loss term.
Their reward convergence curves are shown in Figure 14.
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Figure 14. Comparison of reward convergence curves under different speed conditions. (a) Under the
320 km/h operating condition. (b) Under the 340 km/h operating condition. (c) Under the 360 km/h
operating condition. (d) Under the 380 km/h operating condition.

Regardless of speed, the standalone SAC algorithm exhibits the worst convergence:
its reward curve fluctuates wildly and settles at the lowest final value, indicating failure to
explore an optimal policy. When SAC compensation is grafted onto the CPO-LQR baseline
at 320 km/h, fluctuations are damped, but the peak reward stalls and even declines after
roughly 800–1200 episodes, failing to continue improving. In contrast, CPO-LQR-BC-SAC,
which integrates behavior cloning, demonstrates a consistently increasing reward trend
over 2000 episodes and reaches the highest final reward. This advantage persists at higher
speeds: at 340 km/h, it converges to a significantly higher reward between episodes
500 and 1200; at 360 km/h, it outperforms in two distinct bands (episodes 500–840 and
1515–1800); and at 380 km/h, it remains superior over episodes 310–470, 520–565 and
1320–1680. These findings demonstrate that adding behavior cloning effectively guides the
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agent toward targeted exploration in the policy space, enhancing learning stability and
ultimately discovering superior control strategies. It is worth noting that the reward curves
at 360 km/h and 380 km/h are more volatile than at lower speeds—a reasonable outcome
given that contact-force oscillations intensify with train velocity.

The online test results for all speed conditions are presented in Figure 15. The stan-
dalone SAC policy fails to outperform the baseline CPO-LQR at any speed. However,
when SAC is employed as a compensator alongside the CPO-LQR primary controller, the
fluctuation suppression performance is significantly enhanced, as demonstrated by reduced
oscillation amplitudes and less control errors across all four speed conditions. Furthermore,
with the addition of the BC guided, the proposed framework achieves the best performance
among the four methods—exhibiting the lowest oscillation amplitude and the smallest
deviation from the target contact force—thereby fully confirming its superiority.

(a) 

(b) 

(c) 

(d) 

Figure 15. Comparison of suppression performance on contact force based on the DRL method.
(a) Contact force fluctuation and control error under the 320 km/h operating condition. (b) Contact
force fluctuation and control error under the 340 km/h operating condition. (c) Contact force
fluctuation and control error under the 360 km/h operating condition. (d) Contact force fluctuation
and control error under the 380 km/h operating condition.
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4.3.2. Comparative Validation Based on Expert Action Compensation

As previously described, to address the impracticality of deploying the dual-model of-
fline control law directly, we propose superimposing the secondarily tuned baseline control
actions onto the real-time CPO-LQR outputs, thereby achieving performance beyond that
of standalone CPO-LQR. These tuned actions are treated as expert demonstrations for subse-
quent behavior cloning. In order to validate the effectiveness of expert action compensation
and to demonstrate that the proposed framework outperforms pure expert action imitation,
Figure 16 compares the performance of four control schemes under the 320 km/h, 340 km/h,
360 km/h, and 380 km/h conditions. Here, Expert-Compensated CPO-LQR (ECCPO-LQR)
refers to the control framework that relies entirely on uexpert-based compensation.
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Figure 16. Comparison of the proposed framework versus the expert action-based control schemes.
(a) Contact force fluctuation and control error under the 320 km/h operating condition. (b) Contact
force fluctuation and control error under the 340 km/h operating condition. (c) Contact force
fluctuation and control error under the 360 km/h operating condition. (d) Contact force fluctuation
and control error under the 380 km/h operating condition.

The experimental results in Figure 16 demonstrate that the ECCPO-LQR scheme sig-
nificantly outperforms the CPO-LQR baseline and closely matches the performance of
the ideal CPO-LQR-CtrlLaw. Hence, using these generated actions as “expert demonstra-
tions” for behavior cloning is well justified. Furthermore, across all speed conditions, the
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CPO-LQR-BC-SAC framework not only retains the strengths of the expert demonstrations
but, through autonomous exploration in deep reinforcement learning, surpasses both the
CPO-LQR-CtrlLaw and ECCPO-LQR schemes. These results empirically demonstrate the
effectiveness of our proposed active compensation control architecture, with imitation
learning as its foundation and adaptive exploration enabling performance gains beyond
the baseline.

4.4. Performance Evaluation

This subsection first conducts a comparative analysis of the proposed framework
against various control algorithms under different speed conditions. Subsequently, to
further verify its robustness, the trained control strategy is transferred to two additional
pantograph types for testing, and its performance retention is evaluated.

4.4.1. Speed Range Performance Evaluation and Comparative Validation

Using the performance metrics defined in Section 2.3.1, we quantitatively compared
the online test results of all control schemes discussed in this paper. The statistical summary
of the control performance is presented in Table 4.

As observed in the table above, the proposed framework achieves the lowest standard
deviation of contact force across all four speed conditions compared to the other control
schemes, with the highest standard deviation reduction rates of 80.35%, and all the highest
standard deviation reduction rates exceeding 77%. Concurrently, it also attains the min-
imum error mean while demonstrating comparably the highest error reduction rates of
81.15%, also exceeding 77% under all four speed conditions. These metrics substantiate
the superior control performance of CPO-LQR-BC-SAC over other control architectures.
Crucially, progressive performance enhancement is evident: transitioning from SAC to CPO-
LQR-CtrlLaw and ultimately to CPO-LQR-BC-SAC control yields sequentially decreasing
standard deviation values and monotonically increasing standard deviation reduction rates.
This systematic improvement pattern, mirrored in error metrics, validates the gradient
optimization paradigm embedded in our compensation framework design. For enhanced
visualization of the control schemes’ performance across speed conditions, the tabular data
is reconstituted in Figure 17.

 
(a) (b) 

Figure 17. Control performance comparison of all the control schemes under various speed conditions.
(a) Comparison of standard deviation reduction rates. (b) Comparison of control error reduction rates.
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Table 4. Summary of control performance metrics for different schemes at different speeds.

Speeds Schemes δSTD Pct. Decline Epc_avg Pct. Decline

320 km/h

Passive Control 108.47 - 92.86 N -
LQR 48.38 55.40% 41.12 N 55.71%
SAC 37.20 65.71% 27.76 N 70.10%

CPO-LQR 34.38 68.30% 28.86 N 68.93%
CPO-LQR-CtrlLaw 30.07 72.28% 25.52 N 72.52%

ECCPO-LQR 32.24 70.28% 27.62 N 70.25%
CPO-LQR-SAC 24.33 77.58% 19.94 N 78.52%

CPO-LQR-BC-SAC 22.77 79.01% 18.68 N 79.87%

340 km/h

Passive Control 137.79 - 118.98 N -
LQR 52.62 61.81% 44.62 N 62.51%
SAC 45.33 67.10% 32.18 N 72.95%

CPO-LQR 39.48 71.35% 32.86 N 72.38%
CPO-LQR-CtrlLaw 31.43 77.19% 27.10 N 77.22%

ECCPO-LQR 34.01 75.32% 30.24 N 74.58%
CPO-LQR-SAC 28.79 79.11% 23.98 N 79.85%

CPO-LQR-BC-SAC 27.08 80.35% 22.44 N 81.15%

360 km/h

Passive Control 137.72 - 118.68 N -
LQR 54.54 60.40% 48.70 N 58.96%
SAC 51.46 62.63% 39.26 N 66.92%

CPO-LQR 38.25 72.22% 32.90 N 72.27%
CPO-LQR-CtrlLaw 32.23 76.60% 27.12 N 77.15%

ECCPO-LQR 34.40 75.02% 30.12 N 74.61%
CPO-LQR-SAC 33.80 75.46% 28.06 N 76.35%

CPO-LQR-BC-SAC 30.98 77.50% 26.52 N 77.66%

380 km/h

Passive Control 144.75 - 126.06 N -
LQR 52.44 63.78% 44.68 N 64.56%
SAC 52.05 64.04% 42.04 N 66.66%

CPO-LQR 41.65 71.23% 35.92 N 71.51%
CPO-LQR-CtrlLaw 32.71 77.40% 27.24 N 78.39%

ECCPO-LQR 36.18 75.01% 30.86 N 75.53%
CPO-LQR-SAC 34.10 76.44% 28.70 N 77.23%

CPO-LQR-BC-SAC 31.68 78.11% 26.48 N 78.99%

As shown in Figure 17a, for standard deviation reduction across all speed conditions,
the seven control schemes display an overall increasing trend in reduction rates, and our
CPO-LQR-BC-SAC framework consistently achieves the highest values. Although the ideal
dual-model offline control method CPO-LQR-CtrlLaw also performs strongly at all speeds
(ranking second at 360 km/h and 380 km/h, and third at 320 km/h and 340 km/h), its
reduction rate is always lower than that of the proposed framework. This not only verifies
the effectiveness of offline tuning actions but also highlights the advantages of our proposed
framework. From the control schemes’ perspective, the standard deviation reduction rate
generally increases with speed; however, in the higher speed conditions (360–380 km/h),
the gains for both CPO-LQR-BC-SAC and CPO-LQR-SAC taper off. This is likely due to
more severe contact-force oscillations at higher speeds and the resulting instability in the
agent’s exploration strategy, which limits further improvements—consistent with their
reward convergence behavior. Fortunately, even in this speed band, our framework remains
the top performer. The control error reduction shown in Figure 17b follows a similar pattern.
Notably, SAC alone achieves error reduction rates of 70.10% and 72.95% at 320 km/h and
340 km/h—slightly above CPO-LQR’s 68.93% and 72.38%—but these gaps are minimal. At
all other speeds, the improvement trends mirror those of the standard deviation reduction.

Based on the statistical contact force ranges discussed in Section 2.3.1, we compared
the statistical distribution range of contact force under each control scheme at 320 km/h, as
shown in Figure 18a. Similarly, we also compared the statistical contact force ranges under
passive control and the proposed framework across all four speed conditions, as shown
in Figure 18b. Whether examined by control scheme (Figure 18a) or by speed condition
(Figure 18b), the statistical contact force ranges under the proposed framework consistently
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remain close to the target value, whereas in the passive control scenario, this range is
markedly wider. These results further confirm the superior performance of the proposed
compensation control framework in suppressing contact force fluctuations.

 
(a) (b) 

Figure 18. Comparison of post-control statistical contact force ranges: (a) Comparison of statistical
contact force across different algorithms at 320 km/h; (b) Comparison of statistical contact force at
different speeds under the proposed framework.

Furthermore, it is important to note that the adoption of LQR and SAC in the proposed
framework is motivated by previous research findings. Specifically, LQR is included based
on the results reported in [11], where it has been demonstrated to achieve highly effective
control performance. Similarly, SAC is incorporated with reference to [17,18], which
demonstrated that SAC outperforms other DRL-based control algorithms in exploring
control actions for continuously oscillatory tasks such as pantograph–catenary contact force
regulation. Therefore, LQR and SAC were selected as the core components for comparative
evaluation in this study. To provide an approximate performance reference relative to the
existing work, we extracted control performance metrics from two recent studies—CB-
DMRL [18] and IDDPG [19]—which were conducted under comparable speed conditions
(320–380 km/h). A summary of these results is presented in Table 5.

Table 5. Comparison with existing advanced control algorithms at different speeds.

Speeds Methods δSTD Pct. Decline

320 km/h

VFPID [19] 51.86 32.88%
PH∞ [18] 35.64 7.38%
PPO [18] 34.51 10.31%

CB-DMRL [18] 32.82 14.71%
IDDPG [19] 42.98 45.12%

CPO-LQR-BC-SAC (ours) 22.77 79.01%

340 km/h

VFPID [19] - -
PH∞ [18] 33.81 11.16%
PPO [18] 32.94 13.47%

CB-DMRL [18] 31.62 16.93%
IDDPG [19] - -

CPO-LQR-BC-SAC (ours) 27.08 80.35%

360 km/h

VFPID [19] 52.25 35.59%
PH∞ [18] 42.83 12.41%
PPO [18] 41.10 15.93%

CB-DMRL [18] 38.52 21.22%
IDDPG [19] 43.99 45.76%

CPO-LQR-BC-SAC (ours) 30.98 77.50%

380 km/h

VFPID [19] - -
PH∞ [18] 64.13 15.21%
PPO [18] 57.94 23.40%

CB-DMRL [18] 48.65 35.69%
IDDPG [19] - -

CPO-LQR-BC-SAC (ours) 31.68 78.11%
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Although the exact simulation environments, and disturbance assumptions in those
works differ from ours, a speed-matched comparison shows that our proposed CPO-LQR-
BC-SAC framework achieves significantly lower contact force standard deviations and
higher reduction rates across all test speeds. For instance, at 320 km/h, our method reduces
the standard deviation to 22.77 N (79.01%), outperforming both CB-DMRL (32.82 N, 14.71%)
and IDDPG (42.98 N, 45.12%). Similarly, at 380 km/h, our framework maintains a reduction
rate of 78.11%, considerably higher than CB-DMRL’s 35.69%.

Since vehicle speed is the most critical factor affecting control performance, surpassing
the impact of other disturbances in both simulations and real-world applications, we
aligned the test conditions in terms of speed to ensure a fair comparison. Additionally,
our work adopts modeling procedures based on the EN50318 [28] and GB/T 32591 [29]
standards, ensuring consistency in the modeling framework. Although the experimental
platforms are not entirely identical and some implementation details of the two referenced
works are not fully disclosed, this comparison is not intended as a strict benchmark. Rather,
it serves as a contextual reference that highlights the potential performance advantage of our
method under similar speed conditions. Our approach consistently delivers better control
performance at the same speeds, demonstrating both its effectiveness and its potential
generalizability to practical applications.

4.4.2. Robustness Validation Across Different Pantograph Types

The control strategy trained using the parameters of the DSA380 pantograph was
directly transferred to two different pantograph types—DSA350S and SSS400+—and tested
in simulation at 320 km/h to evaluate whether the proposed framework can maintain
its control performance under parameter variations. The model parameters of the two
additional pantograph types are listed in Table 6.

Table 6. Main parameters of the DSA350S and SSS400+ pantographs.

Parameters DSA350S SSS400+

m1 (kg) 6.4 6.1
m2 (kg) 7 10.2
m3 (kg) 12 10.3

k1 (N·m−1) 2650 10,400
k2 (N·m−1) 10,000 10,600
k3 (N·m−1) 0 0

c1 (N·s·m−1) 100 10
c2 (N·s·m−1) 100 0
c3 (N·s·m−1) 70 120

As shown in Figure 19, even with changes in the model parameters, the proposed
framework not only demonstrates significant superiority over passive control but also
consistently outperforms the baseline CPO-LQR method, effectively suppressing contact
force fluctuations. From both the contact force and error waveforms, it is evident that the
oscillation amplitude is notably reduced for both pantograph types, and the errors are
smaller than those under the baseline control. It should be noted, however, that although
strong control performance is retained, a certain performance drop compared to the results
on DSA380 is inevitable. To illustrate this difference more clearly, a cross-type comparison
of performance metrics is presented in Table 7.
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Figure 19. Test results of the control strategy on two different pantograph types. (a) Control
performance when the strategy is transferred to the DSA350S pantograph. (b) Control performance
when the strategy is transferred to the SSS400+ pantograph.

Table 7. Comparison of control performance metrics across different pantograph types.

Types Methods δSTD Pct. Decline

DSA380
Passive Control 108.47 -

CPO-LQR 34.38 68.30%
CPO-LQR-BC-SAC (ours) 22.77 79.01%

DSA350S
Passive Control 52.07 -

CPO-LQR 25.70 50.65%
CPO-LQR-BC-SAC (ours) 24.41 53.13%

SSS400+
Passive Control 108.56 -

CPO-LQR 40.25 62.92%
CPO-LQR-BC-SAC (ours) 38.27 64.74%

The results show that the standard deviation reduction rate is the lowest on DSA350S
and slightly higher on SSS400+, both below the 79.01% reduction rate achieved on DSA380.
The largest performance drop occurs on DSA350S, which is partly due to its already lower
standard deviation under passive control, leaving less room for improvement. Nevertheless,
the performance for both additional types remains in the high-performance range and sur-
passes that of the baseline CPO-LQR, indicating that the control strategy exhibits a certain
degree of model robustness. This robustness stems from two main factors: (1) the baseline
CPO-LQR controller inherently possesses robustness, and (2) the BC-SAC compensation
strategy does not compromise system stability but instead enhances the suppression of fluc-
tuations within a controlled range. Consequently, the proposed framework can maintain
excellent control performance even under variations in pantograph model parameters.

5. Conclusions
This article addresses extreme PCCF fluctuations in high-speed railway systems by

proposing a CPO-LQR-BC-SAC active compensation control framework, which progres-
sively integrates optimization, imitation learning, and reinforcement learning to achieve
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high-performance suppression of contact force fluctuations. The main conclusions are
as follows:

(1) The baseline CPO-LQR controller is constructed and optimized using the CPO al-
gorithm, yielding a high-performance control policy that effectively reduces PCCF
fluctuations across varying speeds.

(2) An offline secondary-tuned control law based on a dual-model structure fur-
ther refines the control actions and provides expert demonstrations that enhance
oscillation suppression.

(3) A practical compensation strategy is developed by integrating real-time CPO-LQR
outputs with expert action corrections within a unified single-model framework.

(4) The CPO-LQR-BC-SAC learning framework is trained through a hybrid of be-
havior cloning and SAC, enabling it to imitate expert actions while maintaining
exploratory capabilities.

The proposed framework reduces the standard deviation of PCCF by over 77% across
all tested speeds and demonstrates the generalization capability to transfer the control
strategy to different pantograph types. Future research will aim to enhance model fidelity
by incorporating extreme-condition factors such as line tension variations, crosswinds, and
structural heterogeneity. Furthermore, hardware-in-the-loop experiments will be conducted
to validate the practical stability of the framework and support its real-world deployment.
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