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Abstract

Leak detection in atmospheric vertical storage tanks is crucial for preventing environmental
pollution, ensuring production safety, and reducing economic losses. This study investi-
gates orifice leaks in vertical cylindrical storage tanks under atmospheric pressure using
FLUENT 16.0. The simulation reveals a significant abrupt pressure change at the leak
location. Based on the simulation findings, the actual acquired pressure signals during
leakage are processed with wavelet threshold denoising, confirming the abrupt pressure
change characteristic. Time-domain and waveform features of the denoised signals are
extracted to establish a support vector machine (SVM)-based leak detection model. The
performance of different kernel functions is compared, with the linear kernel achieving the
highest accuracy of 96.55%.

Keywords: storage tank; leak detection; pressure signal analysis; fluid simulation; SVM

1. Introduction
1.1. Background

The storage tanks used in the petrochemical industry are of diverse types. Based
on their forms, they can be classified into vertical tanks, horizontal tanks, and special-
structured tanks. In terms of applications, they cover tanks for storing raw materials,
intermediate products, finished products, and waste materials. Regarding materials, they
include both metallic and non-metallic tanks to meet the requirements of different media,
pressures, temperatures, and storage scales [1,2]. Among them, atmospheric vertical
cylindrical steel storage tanks are widely utilized, primarily for storing crude oil, refined oil
products, and other liquid chemicals, with capacities ranging from several hundred to over
one hundred thousand cubic meters [3]. These tanks are extensively applied in refineries, oil
depots, and chemical industrial parks. Due to prolonged exposure to harsh environmental
conditions, these tanks are susceptible to leaks caused by corrosion, material degradation,
welding defects, or mechanical damage. According to statistics, tank leakage accidents
occur frequently, with hundreds of cases reported globally each year. These incidents
not only result in substantial economic losses but may also trigger severe consequences,
such as fires, explosions, and environmental pollution [4]. Therefore, the development
of efficient and accurate leakage detection technologies for oil storage tanks is of critical
significance for ensuring safe production, minimizing resource wastage, and protecting
the environment.
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Currently, the evaluation of tank tightness is typically conducted through periodic
inspection procedures, encompassing various approaches such as open-tank inspection
and online detection. These assessment protocols are often carried out in accordance
with national standards or industry specifications (e.g., API 653, GB 50341) during pre-
commissioning, scheduled maintenance, or abnormal operational conditions. Commonly
employed non-destructive testing (NDT) techniques for leakage detection include ultrasonic
testing [5], magnetic flux leakage testing [6], infrared thermography [7], acoustic emission
testing [8], optical fiber sensing [9], and resistive sensing, as well as manual inspections.

Ultrasonic testing identifies cracks or holes by analyzing the propagation character-
istics of ultrasonic waves in tank walls, offering high accuracy but being susceptible to
environmental noise interference and entailing high equipment costs [10]. Infrared ther-
mography detects leaks by leveraging temperature differences between the leakage area
and the surrounding environment, making it suitable for rapid, large-area scanning but
less sensitive to minor leaks [11]. Acoustic emission technology locates leakage points by
capturing elastic wave signals released during material fracture, yet it requires complex
signal processing and is sensitive to background noise [12]. Additionally, resistive sensing
cable systems enable real-time leakage monitoring and localization but rely on cable layout
and the conductive properties of the medium [13]. Fiber-optic sensing technology achieves
high-sensitivity monitoring by detecting optical signal changes induced by leaks, partic-
ularly suitable for flammable and explosive environments, but it is costly and prone to
damage [14]. Manual inspections cannot guarantee real-time detection. Evidently, the afore-
mentioned methods all exhibit certain limitations in atmospheric storage tank applications,
underscoring the urgent need for the development of new detection techniques.

1.2. Related Work

In recent years, with the rapid advancement of artificial intelligence (AI) technologies,
machine learning has demonstrated tremendous potential in industrial fault detection [15].
Machine learning methods can automatically extract leakage features from vast amounts
of historical data and establish high-precision classification or regression models, thereby
enhancing the real-time performance and accuracy of leakage detection [16]. Scholars
worldwide have conducted extensive research in this field. He [17] analyzed leakage
behavior in flammable liquid storage tanks under operational conditions and established
a rapid-response detection model based on key leakage parameters. Kang [18] analyzed
acoustic emission (AE) signals by examining AE parameters (e.g., frequency, amplitude,
and RMS) as functions of angular and axial distances, proposing a mathematical model for
orifice leakage-induced AE in cylindrical containers, thereby providing an accurate solution
for leak source localization. Sohaib [19] extracted time-domain statistical features from
acoustic emission signals of spherical tanks and utilized support vector machines (SVMs)
to distinguish between intact and cracked states. Gorawski [20] designed a data analysis
method incorporating expert knowledge to account for uncertainties and oscillations
in data, generating stable trends for leak detection in time-series data. Mendoza [21]
introduced a hydrocarbon-permeable coating doped with indicators as a cladding for
glass/polymer optical fibers. Upon contact with fuel leaks, this coating alters the fiber’s
spectral transmission characteristics, forming the basis of the HySense™ system for leak
detection and localization. Rahimi [22] processed hydrophone sensor data using fast
Fourier transform (FFT), wavelet transform, and time-domain features and then input the
results into a 1D convolutional neural network (1D-CNN) for leak detection. The results
demonstrated that FFT-based feature extraction outperformed other methods in detecting
leaks in plastic and composite tanks. Despite advancements in leak detection technology,
research on atmospheric storage tanks remains limited. This is primarily because their
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internal pressure remains at atmospheric pressure, causing changes in fluid dynamics
during leaks to be too subtle for reliable detection.

With the advancement of Industrial Internet of Things (IIoT) technology, pressure
signal-based leak detection methods for storage tanks have gradually shifted from tradi-
tional threshold-based approaches to data-driven intelligent diagnostics [23–25]. As a core
technology in this field, machine learning can automatically extract potential fault patterns
from high-dimensional signal features, demonstrating significant advantages in small-
sample and nonlinear scenarios. Compared with conventional statistical analysis methods,
machine learning models effectively address pattern confusion caused by noise interference
and operational fluctuations in pressure signals through feature space mapping [26]. Sup-
port vector machine (SVM), a classic supervised learning algorithm proposed by Vapnik in
1995, is grounded in the idea of using kernel functions to map low-dimensional nonlinear
separable samples into high-dimensional feature spaces, where an optimal hyperplane
is constructed for classification [27]. In fault detection, SVM offers three key advantages:
(1) the principle of structural risk minimization ensures generalization capability under
small-sample conditions; (2) the kernel trick enables flexible handling of nonlinear feature
relationships; and (3) its convex optimization property avoids the local optimum issues
common in neural networks [28].

In fault diagnosis, SVM can accurately identify mechanical wear, electrical anoma-
lies, and other fault types by analyzing equipment vibration, temperature, or current
signals [29,30]. For pipeline leak detection, SVM integrates pressure, flow rate, and acoustic
signal data to establish high-precision classification models, enabling timely leak localiza-
tion and reduced false alarms [31,32]. To address this gap, this study proposes an orifice
leak detection method for atmospheric vertical cylindrical storage tanks using pressure
signals. A comparative analysis of the implementation costs between the proposed method
and the aforementioned techniques is presented in Table 1.

Table 1. Cost comparison of leak detection methodologies.

Method Typical Equipment Relative Cost

Pressure Monitoring Pressure Transmitters Low (Often uses existing instrumentation)
Ultrasonic Testing Ultrasonic Detector, Ultrasonic Transmitter Medium to High

Magnetic Flux Leakage MFL Scanner, Data Acquisition System High
Infrared Thermography Infrared Thermal Imaging Camera High (for high-performance cameras)

Acoustic Emission AE Sensors, Data Acquisition System High
Fiber Optic Sensing Interrogator Unit, Sensing Fiber Cable Very High

Resistive Sensing Cables Sensing Cable, Monitoring Module Medium
Manual Inspection None (or simple tools) Low (recurring labor costs)

2. Numerical Simulation of Orifice Leakage Using FLUENT
2.1. Fluid Parameter Settings and Basic Assumptions

Numerical simulation of the orifice leakage process in atmospheric vertical cylindrical
storage tanks was conducted using FLUENT 16.0 to investigate the pressure variation
characteristics at the leakage orifice. Numerical simulation through computational fluid
dynamics (CFD) enables precise capture of transient pressure distributions and vortex
structure evolution in leakage flows, effectively overcoming the limitations of conventional
experimental methods, including high costs, significant safety risks, and challenges in
parametric analysis [33].

The present simulation employs water as the experimental medium, primarily based
on the following considerations:
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1. Water is non-toxic, non-flammable, easily accessible, and simple to handle, which
significantly reduces safety risks and operational costs during practical experi-
mental stages, making it particularly suitable for initial method validation and
repetitive testing.

2. Different oil products (such as crude oil, gasoline, and diesel) exhibit variations in
transient leakage responses (e.g., amplitude and frequency) due to their distinct
physical properties, like viscosity and density. Using water as the medium helps
isolate the interference caused by the complex physical characteristics of specific oil
products during the principal exploration phase.

The core principle lies in analyzing and capturing the characteristic pressure transient
changes (or pressure pulsations) driven by pressure differences and inertia during leakage,
which is a universal hydrodynamic phenomenon in Newtonian fluids. Therefore, although
the experiment is conducted in a water storage tank system, the method possesses a theo-
retical basis for extension to other sealed or pressurized liquid storage and transportation
equipment, provided that leakage can induce measurable pressure fluctuations at the
monitoring point.

Under ambient temperature conditions, the material properties of water and air are
provided in Table 2. The simulation was based on the following fundamental assumptions:

1. The leakage orifice diameter remains constant throughout the leakage process, with
no deformation caused by fluid–structure interaction or corrosion effects;

2. Gravitational acceleration remains unchanged during the leakage, excluding seismic
or inertial disturbances;

3. Both water and air are treated as ideal substances without undergoing physical
changes;

4. The environmental temperature and the temperatures of water and air maintain their
initial values during the simulation.

Table 2. Physical properties of water and air.

Fluid Type Water Air

density (kg/m3) 988.2 1.225
dynamic viscosity (kg/m·s) 1.003 × 10−3 1.7894 × 10−5

2.2. Simulation Experiment

The leakage model of the oil tank orifice studied in this paper is axisymmetric. There-
fore, only half of the computational domain needs to be simulated for analysis, as shown in
Figure 1a.

Setting appropriate mesh parameters is essential to achieve a suitable number of grid
elements, proper sizing, and high-precision computational results. Excessive grid elements
can significantly increase computation time, while too few may fail to fully capture the
characteristics of the flow field. After repeated trials, the maximum grid size adopted in
this study was ultimately set to 0.04 m. Additionally, grid refinement was applied to the
tank wall and leakage hole by specifying the number of nodes on the boundaries. The
resulting mesh quality is illustrated in Figure 1b. The total number of grids in the model is
277,261. Figure 1c shows the grid result of the computational domain.

The symmetry boundary condition was applied, which requires no specific boundary
settings on the symmetric plane. On this plane, the normal velocity is zero, and the normal
gradients of all variables also vanish. A pressure outlet boundary condition was adopted
at the exit. All surfaces of the oil tank, along with the other three sides, were set as no-slip
wall conditions. The boundaries defined in the computational domain established in this
study are illustrated in Figure 1d.
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(a) (b) 

  
(c) (d) 

Figure 1. FLUENT simulation process. (a) Computational domain; (b) mesh quality assessment;
(c) computational domain mesh; (d) boundary conditions.

The numerical simulation of orifice leakage phenomena in the vertical cylindrical
storage tank was performed using FLUENT.16.0 computational fluid dynamics software,
as depicted in Figure 1a–d. The geometrical parameters of both the storage tank and its
computational domain are detailed in Table 3. The solution domain was discretized using
structured hexahedral grids, with particular mesh refinement applied to critical regions
including the tank wall surfaces and leakage orifices. Appropriate boundary conditions
were subsequently assigned to complete the numerical model setup. Pressure monitoring
points were positioned at the leakage orifice (Figure 2).

The ambient pressure was set to the standard atmospheric pressure of 101,325 Pa, with
a gravitational acceleration of 9.81 m/s2 and an ambient air density of 1.225 kg/m3. The
reference pressure location was fixed at (0.3, 0.5, 1.4) within the computational domain, a
position always occupied by the air phase. The initial liquid level in the oil tank was set
to 900 mm. A time step size of 0.002 s was adopted, with result files saved every 250 steps.
The total number of iteration steps was 5000, corresponding to a simulated physical time of
10 s for capturing the pressure variation during the leakage process.
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Table 3. Numerical simulation dimensions.

Item Simulated Tank Dimensions Computational Domain Dimensions

parameters

inner diameter: 600 mm
wall thickness: 5 mm
tank height: 1000 mm

leak orifice diameter: 40 mm
leak height from bottom: 300 mm

length: 2100 mm
width: 460 mm

height: 1110 mm

 

Figure 2. Monitoring point locations.

2.3. Simulation Results and Analysis

The computational results of the flow field were analyzed according to requirements.
The pressure contour plot of the flow field is shown in Figure 3.

Figure 3. Pressure contour on the symmetry plane at 1 s, 5 s, and 10 s of leakage.

As can be seen in Figure 3, the pressure in the simulation exhibits a gradient variation
consistent with hydrostatics, demonstrating the validity of the simulation results.

Based on the hydrodynamic analysis of the tank leakage derived from Figure 4, the
pressure variation on the horizontal plane at the same height as the leakage orifice is given
by Equation (1). A comparison between the calculated and simulated hydraulic pressure
changes on this plane, as shown in Figure 5, reveals that both exhibit consistent trends,
indicating strong agreement between the mathematical model and numerical simulation of
the oil tank leakage. The calculated hydraulic pressure remains approximately 60 Pa higher
than the simulated values throughout the process, which is attributed to the presence of
the gas–liquid interface during the simulation.

P = ρgh = ρg
(

h0 −
AC0

A0

√
2gh0t +

g
2

(
AC0

A0
)2t2

)
(1)
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where h0 represents the initial height from the leakage hole to the liquid surface; h denotes
the real-time height from the leakage hole to the liquid surface; P1 indicates the internal
pressure of the oil storage tank through which liquid flows out solely under the influence
of gravity; C0 is discharge coefficient; A is the leakage orifice cross-sectional area; A0 is
cross-sectional area of the oil storage tank; ρ denotes the density of water; and g represents
the gravitational acceleration.

Figure 4. Simplified diagram of tank dimensions.

Figure 5. Hydrostatic pressure on the contour plane of the leakage orifice.

Figure 6 shows the simulated pressure at the leakage orifice within 10 s of leakage.
During the initial transient phase following the opening of the leakage orifice, the fluid
inside the tank must overcome its inherent inertia to accelerate from a stationary state. To
drive the entire fluid system toward the leakage point and establish a stable flow field,
an additional pressure gradient must be provided to supply the accelerating force, which
manifests as an initial rise in local pressure near the leakage orifice. This process lasts
approximately 2.5 s. Once the flow is fully developed and reaches a quasi-steady state,
the pressure energy is primarily converted into fluid kinetic energy and used to overcome
viscous dissipation, causing the pressure at the leakage orifice to subsequently decrease
and stabilize.

The simulation results indicate that the pressure at the leakage orifice exhibits a trend
of initial significant increase followed by a decrease, reaching its peak at 2.5 s. Due to the
incompressibility of the liquid and the pressure wave propagation effect, slight fluctuations
in pressure are also observed in other regions of the storage tank, rather than a smooth
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gradient decline. Therefore, pressure transmitters can be installed on the tank to utilize
pressure signals as characteristic features for leakage detection.

Figure 6. Simulated water pressure variation at the leakage orifice.

3. Signal Analysis and Characteristic Parameter Extraction
3.1. Hydraulic Pressure Signal Processing

The simulated storage tank has an inner diameter of 600 mm, a height of 1000 mm,
and a volume of approximately 0.3 m3, with an internal water level maintained at 900 mm.
The complete experimental platform for orifice leakage simulation is shown in Figure 7.
Signals were acquired by pressure transmitters installed at the bottom of the tank wall,
with their specifications summarized in Table 4. Leakage Orifice 1, located farthest from
the pressure transmitter, was selected for the experiment. The orifice is positioned 300 mm
above the bottom of the storage tank and has an inner diameter of 5 mm. The sampling
frequency was set to 5000 Hz, and based on observed pressure signals during leakage, the
number of sampling points per sample was determined to be 5000.

 
Figure 7. Orifice leakage simulation platform for storage tanks.
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Table 4. Sensor parameters.

Device Input Power Output Signal Measurement
Range Accuracy Manufacturer

pressure
transmitter 24 V DC

4–20 mA
(two-wire
system)

0–10 kPa ±0.25% FS
(Full Scale)

Shandong TEMAILONG
Automation Technology
Co., Ltd., Rizhao, China

Pressure transducer signals are susceptible to random impulse noise interference
(e.g., power fluctuations, equipment switching, etc.), which is characterized by high am-
plitude, short duration, and distinct outlier properties. The original water pressure signal,
as shown in Figure 8, contains significant impulse noise. As a nonlinear method, median
filtering proves highly efficient and robust in eliminating such impulse noise while mini-
mally affecting the overall signal trend. This process provides a “clean” starting point for
subsequent wavelet denoising. As shown in Figure 9, impulse noise is effectively removed
after median filtering.

Figure 8. Original hydraulic pressure signal.

Figure 9. Water pressure signal processed with median filtering.
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3.1.1. Wavelet Threshold Denoising of Median-Filtered Water Pressure Signals

The median-filtered water pressure signals undergo wavelet threshold denoising. This
process utilizes four distinct wavelet bases—Haar, Daubechies (db), Coiflets (coif), and
Symlets (sym)—for signal decomposition. All decompositions maintain identical three-
level decomposition scales, with Table 5 presenting the comparative results across different
wavelet functions. The denoising effectiveness demonstrates an inverse relationship be-
tween the root mean square error (RMSE) and signal-to-noise ratio (SNR), where lower
RMSE values correspond to higher SNR values, indicating superior noise reduction. For
water pressure signals, the db6 wavelet basis achieves optimal denoising performance.

Table 5. Performance comparison of different wavelet functions for hydraulic pressure signal denoising.

Wavelet Type RMSE SNR (dB)

Haar 0.0122 62.4555
db2 0.0094 64.7334
db3 0.0090 65.0990
db4 0.0082 65.8828
db5 0.0085 65.6626
db6 0.0078 66.4215
db7 0.0081 65.9997
db8 0.0079 66.2368
coif1 0.0093 64.8252
coif2 0.0084 65.7199
coif3 0.0087 65.3954
coif4 0.0081 65.9968
coif5 0.0082 65.9423
sym2 0.0094 64.7334
sym3 0.0090 65.0900
sym4 0.0085 65.6019
sym5 0.0082 65.9056
sym6 0.0086 65.5005
sym7 0.0082 65.9196
sym8 0.0081 65.9925

3.1.2. Multi-Level Wavelet Decomposition

The decomposition level significantly affects the denoising outcome. Excessive de-
composition levels lead to substantial signal loss, while insufficient levels yield inadequate
noise suppression [34]. Figure 10 presents the denoising results of water pressure signals
processed with decomposition levels ranging from two to six. As shown in Figure 10b–d,
the signals decomposed at levels 2, 3, and 4 still contain substantial noise. In contrast, the
five-level wavelet decomposition yields superior results (Figure 10e), effectively remov-
ing a significant amount of noise while preserving most of the signal details. However,
the signal becomes excessively smooth and distorted after six-level decomposition, as
illustrated in Figure 10f. Therefore, the five-level wavelet decomposition was selected for
signal processing.

3.1.3. Denoising Threshold Optimization

Wavelet threshold denoising employs four threshold selection methods, as presented in
Table 6, with the optimal predictor variable threshold demonstrating superior performance.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 10. Denoising performance across wavelet decomposition levels for hydraulic pressure signals.
(a) Water pressure signal processed with median filtering; (b) Denoised water pressure signal after
2-level wavelet decomposition; (c) 3-level wavelet decomposition; (d) 4-level wavelet decomposition;
(e) 5-level wavelet decomposition; (f) 6-level wavelet decomposition.

Table 6. Threshold determination techniques for wavelet-based signal denoising.

Threshold Selection Method Principle Characteristic

Unbiased Likelihood
Estimation Threshold Eliminates a subset of wavelet coefficients

Conservative processing;
Capable of extracting weak signals from

high-frequency bands with low noise.Minimax Threshold

Universal Threshold Applies fixed threshold to
wavelet coefficients

More effective

Optimal Predictor Threshold
Selects the superior threshold between

unbiased likelihood estimation and universal
threshold based on decision criteria
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Standard thresholding functions are compared in Figure 11, with mathematical
formulations:

1. Hard thresholding: see Equation (2).

wλ =

{
w |w|≥ λ

0 |w|< λ
(2)

  
(a) (b) 

Figure 11. Thresholding functions. (a) Hard thresholding functions; (b) soft thresholding functions.

2. Soft thresholding: see Equation (3).

wx =

{
[sgn(w)](|w|−λ) |w|≥ λ

0 |w|< λ
(3)

The hard thresholding function yields a smaller root mean square error (RMSE) but
introduces additional oscillations and discontinuities, resulting in poor smoothness. In
contrast, the soft thresholding function produces wavelet coefficients with better conti-
nuity, eliminating spurious oscillations and demonstrating superior smoothness. Given
the requirement for smooth variation trends in the acquired monitoring signals, the soft
thresholding approach is adopted. As evidenced in Figure 12, the final denoised water
pressure signal effectively removes interference noise while preserving useful components,
achieving optimal performance.

  
(a) Original hydrostatic pressure signal (b) Denoised hydraulic pressure signal 

Figure 12. Comparison of the original and denoised pressure signals.

The complete hydraulic pressure signal containing the leakage transient is acquired,
as shown in Figure 13a. This pressure signal segment undergoes wavelet-based denoising,
with the processed results demonstrated in Figure 13b.
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(a) Hydraulic pressure signal with complete 

leakage transient 
(b) Denoised hydraulic pressure signal with com-

plete leakage transient 

Figure 13. Comparison of the original and denoised pressure signals with complete leakage transients.

3.2. Feature Selection

As shown in Figure 13, the hydraulic pressure signal exhibits marked differences
between leakage and non-leakage conditions, with a distinct transient response of approxi-
mately 1500 sampling points (0.3 s) observed during leakage initiation. Comprehensive
signal analysis reveals two categories of discriminative features:

1. Time-domain characteristics, including mean, variance, standard deviation, energy,
and average amplitude;

2. Waveform parameters comprising skewness, kurtosis, impulse factor, and crest factor.

As quantitatively summarized in Table 7, these features collectively characterize the
signal’s fluctuation magnitude (variance), distribution asymmetry (skewness), peak sharp-
ness (kurtosis), and dynamic range (peak-to-peak value), with each 5000-point (1 s) data
segment providing sufficient resolution for reliable leakage detection while maintaining
computational efficiency for real-time monitoring applications.

Table 7. Key parameters for leakage identification.

Features Mathematical Expression

Variance x2 = 1
n{∑n

i=1 [xi − x(n)]2}
Standard Deviation s =

√
1

n−1{
n
∑

i=1
[xi − x(n)]2}

Skewness y =
1
n ∑n

i=1 [xi− x(n )]
3

{
1
n ∑n

i=1 [xi−x(n)]
2} 3

2

Kurtosis K =
1
n ∑n

i=1 [xi−x(n)]4

{ 1
n ∑n

i=1 [xi−x(n)]2 }2

Peak-to-Peak Value xp = xmax − xmin

Hydrostatic pressure signals from oil storage tanks were analyzed to detect leakage
conditions. Twenty samples were collected for both the leakage and non-leakage conditions.
Five statistical features—variance, standard deviation, skewness, kurtosis, and peak-to-
peak (P-P) amplitude—were calculated for each sample. The comparative results of these
features are presented in Figure 14, while the mean values of the features are summarized
in Table 8. The normalized feature values shown in the figure all range below 1. Each
sample contains five characteristic features. The results demonstrate that these five features
exhibit excellent discriminative capability for leakage detection.
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 14. Comparative analysis of feature values between 20 leak and no-leak conditions.
(a) Variance comparison; (b) standard deviation comparison; (c) skewness comparison; (d) kurtosis
comparison; (e) peak-to-peak value comparison.

Table 8. Comparative analysis of mean feature values across 20 leak/no-leak conditions.

Leakage No-Leakage

Variance 0.4267 0.2284
Standard Deviation 0.6800 0.4780

Skewness 0.4130 0.2430
Kurtosis 0.7110 0.3410

Peak-to-Peak 0.8150 0.4250

4. Experiment and Analysis
4.1. Orifice Leakage Detection Experiment

The leakage detection pipeline for storage tanks comprises the following steps:
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1. Signal Acquisition: Utilizing an orifice leakage simulation platform, hydraulic pres-
sure signals are acquired from fixed-position sensors installed on the tank wall under
both intact and leakage conditions.

2. Signal Processing and Feature Extraction: The raw pressure signals are first denoised
through median filtering and wavelet thresholding and then analyzed to extract both
time-domain features (mean, variance, peak-to-peak value) and waveform character-
istics (skewness, kurtosis, crest factor) for leakage detection.

3. Dataset Construction and Kernel Selection: A balanced dataset of 600 samples
(300 leakage/300 non-leakage) is normalized to [0, 1] and partitioned into train-
ing/test sets. Binary classification labels are assigned (1: leakage, 0: non-leakage).
Comparative evaluation of SVM kernel functions (linear, RBF, polynomial, Sigmoid)
yields the optimal kernel based on accuracy.

4. Hyperparameter Optimization: Cross-validation is employed to determine the opti-
mal kernel parameters and penalty factor for the model.

5. Data Stratification and Model Validation: Model performance is evaluated through
both random partitioning (50% training/test split, n = 300 each) and stratified sam-
pling (ensuring class balance), with final model selection based on comparative
accuracy analysis.

By randomly dividing the acquired 600 samples (300 leakage samples and 300 non-
leakage samples) into training and test sets of equal size (300 samples each and consisting
of both leakage and non-leakage cases, with no requirement for equal distribution between
the leakage sample and the non-leakage sample), the random partitioning was repeated
20 times. The proposed model employs the following metrics to evaluate its accuracy, as
expressed in Equation (3).

Accuracy = (TP + TN)/(TP + TN + FP + FN)× 100% (4)

where TP (True Positive) denotes the number of samples correctly predicted as positive, FN
(False Negative) represents the number of positive samples incorrectly predicted as nega-
tive, FP (False Positive) indicates the number of negative samples erroneously predicted as
positive, and TN (True Negative) corresponds to the number of samples correctly predicted
as negative.

Different kernel functions were applied to detect the presence or absence of storage
tank leaks. Figure 15 displays the confusion matrix for one of the test datasets, with
predicted labels on the horizontal axis and true labels on the vertical axis. Based on the
confusion matrix results, it is evident that the linear kernel-based SVM model demonstrates
superior performance. The test set results from 20 trials are presented in Table 9.

The experimental procedure involves randomly selecting two samples from the dataset
at each iteration—one sample representing a leaking storage tank condition and the other
representing a non-leaking condition—with the entire collection of 600 samples (comprising
300 leakage cases and 300 non-leakage cases) being partitioned into balanced training
and test sets of equal size (300 samples each; the training set consists of 150 leakage
samples and 150 non-leakage samples, and the test set follows the same composition). For
robust evaluation, both balanced and randomized sample sets were repeatedly partitioned
20 times. Linear kernel SVMs were subsequently employed to perform leak detection
(leak/no-leak classification) in storage tanks for each sample set variant. Table 10 presents
the mean accuracy rates and mean AUC values across all 20 iterations, while Figure 16
displays a representative ROC curve from one trial, providing a comparison of the detection
results between the different sample sets.
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(a) (b) 

  
(c) (d) 

Figure 15. Confusion matrices of different kernel functions. (a) Linear; (b) polynomial (d-order);
(c) RBF; (d) sigmoid.

Table 9. Performance comparison of different kernel functions in detection.

Kernel Function Linear Polynomial (d-Order) RBF Sigmoid

Test
Accuracy

1 96.33% 94.33% 95.00% 91.67%
2 95.67% 94.33% 96.00% 91.00%
3 95.67% 94.33% 94.67% 91.67%
4 97.00% 94.33% 96.00% 93.33%
5 96.33% 93.00% 94.67% 91.00%
6 97.00% 92.67% 94.33% 91.67%
7 95.67% 94.33% 94.33% 92.33%
8 97.33% 93.33% 94.00% 91.00%
9 97.00% 94.67% 95.67% 91.67%
10 96.67% 94.00% 94.33% 92.00%
11 96.67% 94.67% 95.00% 91.67%
12 95.67% 93.67% 95.33% 93.33%
13 96.33% 94.33% 95.33% 91.67%
14 96.00% 94.67% 94.33% 90.67%
15 97.67% 93.00% 95.67% 92.33%
16 97.33% 94.00% 94.00% 92.67%
17 97.00% 94.33% 94.33% 91.00%
18 96.33% 94.00% 94.33% 91.00
19 96.67% 93.67% 96.00% 91.67%
20 96.67% 94.00% 95.33% 92.00%

Mean 96.55% 93.98% 94.93% 91.82%
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Table 10. Performance comparison between the balanced and randomized sample sets.

Dataset Type Random Dataset Balanced Dataset

Accuracy AUC Accuracy AUC
Mean 96.40% 0.934 97.00% 0.980

Figure 16. ROC curves of models trained on different sample sets.

4.2. Results Analysis

The experimental results demonstrate that the linear kernel function achieved the
highest leak detection accuracy of 96.55% across 20 test sets, outperforming other kernel
functions, as shown in Table 9. Figure 14 further confirms its consistent superior perfor-
mance in all test iterations, leading to its selection as the optimal kernel for our SVM-based
oil storage tank leak detection system. Moreover, the implementation of sample balancing
techniques significantly enhanced model performance, yielding a remarkable 97.00% av-
erage accuracy and 0.98 AUC value in the test sets (Table 10), which not only represents
a 0.45% accuracy improvement over imbalanced data but also demonstrates more robust
detection capability through the higher AUC score, with statistical significance confirmed
by the t-test results (p < 0.01).

5. Conclusions
Numerical simulations in FLUENT verified the feasibility of using pressure signals

for tank leakage detection. Raw signals were denoised via five-level Daubechies (db)
wavelet decomposition. Key statistical features—variance, standard deviation, skewness,
kurtosis, and peak-to-peak amplitude—were then extracted for leak/non-leak classification.
Comparative analysis of SVM classifiers with linear, d-order polynomial, RBF, and sigmoid
kernels showed the linear kernel performed best. Using a 1:1 train–test split under both
random and balanced sampling, the SVM model with a linear kernel on balanced data
achieved optimal overall performance.
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