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Abstract: Owing to the benefits of programmable and parallel processing of field programmable
gate arrays (FPGAs), they have been widely used for the realization of digital controllers and motor
drive systems. Furthermore, they can be used to integrate several functions as an embedded system.
In this paper, based on Matrix Laboratory (Matlab)/Simulink and the FPGA chip, we design and
implement a stepper motor drive. Generally, motion control systems driven by a stepper motor can
be in open-loop or closed-loop form, and pulse generators are used to generate a series of pulse
commands, according to the desired acceleration/run/deceleration, in order to the drive system to
rotate the motor. In this paper, the speed and position are designed in closed-loop control, and a
vector control strategy is applied to the obtained rotor angle to regulate the phase current of the
stepper motor to achieve the performance of operating it in low, medium, and high speed situations.
The results of simulations and practical experiments based on the FPGA implemented control system
are given to show the performances for wide range speed control.

Keywords: Matlab/Simulink; stepper motor; FPGA; speed control; closed-loop control

1. Introduction

Stepper motors are adopted in a variety of drive applications because of their high precision of
positioning, low costs of the driver, simplicity of operation, and high torque at low speeds. However,
stepper motors suffer from some drawbacks such as missed steps, decreased torque at high speeds,
resonances, and high power consumption. Speed and position closed-loop and current vector control
are good choices to overcome these drawbacks mentioned above.

Regarding closed-loop position control, which usually uses the encoder to compensate for the
position error, the end point can be adjusted by commanding additional step pulses to bring the motor
back to the correct position. Furthermore, closed-loop control can also operate the stepper motor in
microstepping mode, and the accuracy of position can be verified and adjusted dependent on the
resolution of the encoder. The control mode of the stepper motor is thus gradually developed into
closed-loop control, and adopts a highly efficient controller to achieve better performance [1–3] as
compared with open-loop control.

Vector control has been widely used in induction motors [4] and permanent magnet synchronous
motors (PMSMs) [5,6]. Because of the fact that the hybrid stepper motor is similar to permanent
magnet synchronous motors or brushless DC motors in the mechanism of action, the theoretical basis
and analysis foundation of the vector control for the stepper motor are also proposed [1,7]. To this
end, the vector control strategy is used in the drive system design of the hybrid stepper motor. As the
two-phase hybrid stepper motors are different from the conventional three-phase PMSMs or brushless
DC motors (BLDCMs), we do not need to construct the functions of 3φ − 2φ transformations.
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As a result of their flexibility and high performance, field programmable gate array (FPGA)
has been widely used in hardware controller realization. Some examples include the design of the
Proportional-Integral-Derivative (PID) controller [8] and the fuzzy controller [5]. It is also applied
in power electronics circuits [9] and drive system designs of PMSMs [5,6,10], induction motors [4],
switched reluctance motors [11], and BLDCMs [12]. Furthermore, FPGA is suitable for the development
of an embedded system or a system on a chip (SoC), and the developed embedded system can be a
part of a complete motion control system.

In this study, we use FPGA in the stepper motor drive system design, and adopt vector control
for the regulation of the inner current loop. Furthermore, to get the trapezoidal velocity profile for
point to point command, an encoder is used to close the position and velocity control loop. All the
hardware circuits are realized by FPGA. The design starts from building the drive system in a Matrix
Labaratory (Matlab)/Simulink platform [9], and the software system is simulated on Quartus II and
Modelsim [10,13]. The resulting digital hardware system is in the type of Verilog code and is practically
implemented on an Altera Cyclone III FPGA. Finally, the developed hardware control system and the
power module are applied to a hybrid stepper motor to show the validity and performance.

The contents of the paper are as follows. In Section 2, the experimental setup and system modelling
are presented. Then, the simulation results and discussions are given for the built system in Section 3.
The experimental results are shown in Section 4. Finally, the conclusions are given in Section 5.

2. The Experimental Setup and Modelling of the Developed Drive System

2.1. The Experimental Setup

The experimental hardware setup of the proposed system is shown in Figure 1. Figure 1a includes
the FPGA-based control board and power module board. In the former, the FPGA IC, analog to
digital converters (ADCs), and digital to analog converters (DACs) are shown. In the latter, the
main components are two H-bridge circuits and two Hall current sensors. Figure 1a also displays
the DC power supply and hybrid stepper motor. In Figure 1b, the experimental motor is fixed and
axis-coupled to a disk load where six counterweights can be inserted or removed to change the inertia
of the load. The FPGA chip is used to develop the hardware control system, which includes the current
regulator, the speed controller, the position controller, and the encoder up/down counter. The encoder
counter module accepts the A/B/Z phase pulse signals and outputs the four times precision pulse
signal as the position feedback. The position control module is designed to accept the pulse string
commands and run the proportional control, which has a sampling frequency of 2 kHz. The four
times precision encoder counter module feeds back the accumulated angle to the speed/position
controllers to complete the closed-loop control. The sampling frequency for the speed control loop
is also set at 2 kHz. The current control loops are based on vector control, and operated at 20 kHz
sampling frequency. The main control board also includes two serial ADCs, two serial DACs, and Hall
current sensors. The ADCs are used to get the analog current signals of phases A and B detected by
Hall current sensors. The DAC is used to output the controlled variables inside the control system,
where the variables are intended to be checked and compared. The waveforms of the DACs are shown
on the oscilloscope, and they are captured for illustration and comparison. The ADCs are operated
at 20 kHz to match the current vector control loop, while the DACs are operated at random by the
programming. The stepper motor is a hybrid one with rated current 2A, and the DC bus voltage is
36 V. Furthermore, the stepper motor is equipped with a 20,000 pulses/rev encoder. The contents of
the encoder counter are provided for the position and speed feedback, as well as for the coordinate
transformation between the stationary reference frame and synchronous rotation reference frame.
The block diagram for the proposed system is shown in Figure 2.
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Figure 1. The setup for experiment. (a) The field programmable gate array (FPGA) board and power 
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Figure 1. The setup for experiment. (a) The field programmable gate array (FPGA) board and power
module; (b) the experimental platform.
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Figure 2. The block diagram of the stepper motor drive system. DAC—digital to analog converter;
ADC—analog to digital converter.

2.2. The Modelling of the Stepper Motor

The electrical equations and the generated torque for the two-phase hybrid stepper motor are
shown in (1)–(3) [3].

dia

dt
= −R

L
ia +

Km

L
ωm sin(Pθm) +

va

L
(1)

dib
dt

= −R
L

ib −
Km

L
ωm cos(Pθm) +

vb
L

(2)

Te = Km[−ia sin(Pθm) + ib cos(Pθm)] (3)

The mechanic equation is as follows:

J
dωm

dt
+ Bωm + TL + Fc sin(4Pθm) = Te (4)

with the following relation:
θe = Pθm (5)

For those equations, va and vb are the voltages of phases A and B, respectively; ia and ib are the
phase currents of phases A and B, respectively; R is the resistor; L is the inductance; Km is the torque
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constant; θe is the electrical rotor position; P is the pole pair; Te is the generated torque; J is the rotor
inertia; B is the viscous fraction coefficient; ωm is the shaft speed; θm is the shaft position; and Fc is the
fourth harmonic detent torque constant.

With the modelling of (1)–(5), the block, as shown in Figure 3 and named as “Stepper Motor”,
is built using Matlab/Simulink. Furthermore, to realize the current vector control, the coordinate
transformation for current between the two-phase stationary reference frame (2s) and two-phase
synchronous rotation reference frame (2e) are executed by the blocks of 2s to 2e and 2e to 2s, respectively,
and the relations are given by the following:

a = d cos(θe)− q sin(θe)

b = d sin(θe) + q cos(θe)
(6)

where a and b are the variables in the stationary reference frame, and d and q are the variables in the
synchronous rotation reference frame.

Four controllers are set in the drive system. The d-axis current command is set to 0 for the system
controlled under the base speed, and is set to a negative amount for the field weaken operation, and
the q-axis current command is from the output of the speed controller. To the object of field weaken

control, the space voltage, vre f =
√

v2
d + v2

q, as shown in Figure 4, is placed at Vre f−β with a leading
angle β, instead of the normal position. In Figure 3, all the blocks are realized by FPGA except the
stepper motor. Normally, an inner loop should have a faster sampling time than the outer loop, we
thus set the sampling frequency to 20 kHz for the electrical loop (current control), and to 2 kHz for the
mechanic loop (position/velocity control).
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Figure 3. The block diagram for the drive system.
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2.3. The Realization of the Drive System by FPGA

To realize the overall drive systems with FPGA, we first design the systems in Matlab/Simulink,
and then simulate them using Modelsim to verify the correctness. Finally, the resulting block systems
are converted into Verilog codes. The hardware systems are shown in Figure 5 where the block named
as FPGA code located at the center in yellow is the hardware model of the proposed vector control drive
system. The performances of the system by applying the hardware code to current/velocity/position
controls will be shown in next section.Machines 2018, 6, x FOR PEER REVIEW  6 of 15 
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PI(z) = Kp +
Ts × Ki

1 − z−1 (7)

where Kp, Ki, and Ts are the proportional gain, integral gain, and sampling time, respectively.
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For all the designed system, the data bus is set as 32 bits with fixed-point operation, such as those
marked on the signal flow path with sfix32_En15. In Figure 6a, cmd and fb represent the command
input and output feedback, respectively, and 15 bits are set for the fractional part. In Figure 6b,
the saturation is added as the anti-windup operation for the integral action. The PI controller is
operated at 200 kHz clock. Regarding Figure 7, the block of 2e to 2s, as shown in Figure 3, executes
the coordinate transformation (6). The input ports, Vde and Vqe, are the voltages from the outputs of
vector PI current controllers. The input ports of cos and sin come from the cos(θ) and sin(θ) tables,
which are built by the embedded memory of FPGA, and both of them have 28-bit fractional parts. The
mux is executed in 1 MHz clock, and 20 MHz for “Product2” block. Finally, the outputs of Vds and Vqs

have 15-bit fractional parts to be sent to space vector pulse width modulation (SVPWM) module to
generate the desired trigger signals for power MOSFETs. To consider the most popular used range for
the system, the date format of parameters and variables for current, speed, and position control are
shown in Table 1.

Machines 2018, 6, x FOR PEER REVIEW  6 of 15 

 

 

Figure 5. The resulting hardware digital control system. 

 
(a) 

 
(b) 

Figure 6. The block diagram for the PI controller. (a) The PI structure; (b) the integral control part. 

 

Figure 7. The data format for the reference frame transformation. 

  

Figure 7. The data format for the reference frame transformation.

Table 1. The data format of the variables and parameters.

Name Unit Sign Integer Part Fractional Part Remark

Kp 1 16 15 Proportional gain
Ki 1 16 15 Integral gain
θm # pulse 1 31 0 Position
ωm rad/sec 1 16 15 Velocity
id A 1 16 15 d-axis current
iq A 1 16 15 q-axis current
vd V 1 16 15 d-axis voltage
vq V 1 16 15 q-axis voltage

sin(θ) 1 3 28
cos(θ) 1 3 28

* Remark: The units for proportional and integral control gains can be found in Table 2.

3. The Functional Simulation and Discussions

The functional simulation for the proposed FPGA-based drive system is demonstrated using
Matlab/Simulink. The commands are generated by pulse generator, which outputs the pulse
string command to the position controller with the maximum pulse rates of 31.4 rad/s, 314 rad/s,
and 0.314 rad/s for the medium, high, and low speed commands, respectively. The above pulse rates
result in maximum speed commands of 300 rpm, 3000 rpm, and 3 rpm, respectively. In the meanwhile,
the accelerations are also taken into consideration for different pulse rates. Figure 8 demonstrates the
generated speed and position commands for the system operated at 31.4 rad/s with acceleration of
31.4 rad/s2. The parameters of the controller for the simulated system are set as those shown in Table 2.
Furthermore, for the speed command of 314 rad/s, the field weaken control is activated once the speed
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increases passed 100 rad/s, and a negative d-axis current command is added to let the system enter
that region.

Table 2. The parameters of the proposed control system.

Type Kp Ki

Position control loop 0.1 (rad/s/p) 0
Speed control loop 0.1 (A/rad/s) 0.03 (rad/p·s)
d-axis control loop 16 (V/A) 0.01 (V/A·s)
q-axis control loop 16 (V/A) 0.01 (V/A·s)
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Figure 8. The speed and position responses by pulse generator.

The simulated results for the command of pulse rate of 31.4 rad/s are shown in Figures 9 and 10.
The speed response of Figure 9 shows that the motor speed follows the pulse command and stays on it
thereafter, and the current response of Figure 8 shows that the two stator currents are in quadrature.
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The simulated results for the speed command of 314 rad/s are shown in Figures 11 and 12.
Under this condition, the field weaken control is used. First, the region of field weaken begins when
the speed is beyond 100 rad/s. Thus, during the acceleration, the current vector control enters the
field weaken operation from the normal condition, which slightly affects the responses during the
acceleration period. The system finally reaches the desired speed. Because the system enters the field
weaken region, it requires a greater current than the one under the normal condition.
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The simulated results for the speed command of 0.314 rad/s are shown in Figures 13 and 14.
As a result of the rather low speed operation, the speed response has a little resonance. As the speed
feedback is from the difference of the encoder counter per sampling period, a low speed causes low
precision on speed. This is also revealed in the current responses for the phases A and B. Of course,
the low precision for speed feedback can be solved by calculating the period instead of the frequency
of the encoder pulse. The procedure will be implemented for experiment.Machines 2018, 6, x FOR PEER REVIEW  10 of 15 
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4. The Experimental Results and Discussion

The commands are made by a pulse generator, which outputs the pulse string to the position
controller, and the pulse rate is equal to the desired speed. The position controller accepts the pulse
string and the feedback from the encoder counter to close the position control loop. The speed controller
gets the encoder pulse, calculates the pulse rate, and converts it to the shaft speed as the feedback
signal to close the speed control loop. Finally, the stator currents of the stepper motor are acquired
from Hall current sensors, and fed back to FPGA through ADC to close the current control loop.
As in the functional simulation, three speed commands, namely, 300 rpm, 3000 rpm, and 3 rpm, with
different accelerations are practically used to test the performance of the developed hardware system.
Furthermore, to demonstrate the performance of the pulse generator and position/speed controller,
a 12-bit up/down counter is used to accumulate the pulses generated from the encoder. Its output
is connected to a 12-bit DAC to convert the digital value of the counter to analog voltage, and is
shown on the oscilloscope. The output voltage range of DAC is 0–5 V. According to the waveform of
DAC, it is easy to verify the motor speed and check the smoothness of the rotation of the motor shaft.
Furthermore, the motor is directly axis-coupled to a disk as the load, as shown in Figure 1.
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First, the output of DAC for 300 rpm speed command is shown in Figure 15, where the period is
about 41 ms. Each of one triangle cycles is equal to 1.2868 radians, shown in (8).

∆θ =
4096
20000

× 2π = 1.2868 rad (8)
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The decimal range of the DAC counter is 0–4095, it has total 4096 counters, and the resolution of
encoder is 20,000 p/rev. The motor speed can be obtaiuned by (9):

ω =
∆θ

∆T
=

1.2868
41 × 10−3 = 31.39 rad/s = 299.8 rpm (9)

The waveform demonstrates that the speed is quite smooth under the proposed vector
control system.

The current responses are shown in Figure 16, where the period is about 4 ms, and phase currents
A and B are in quadrature. The peak-to-peak value of the current is about 1 A.
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As the pole pair for the proposed hybrid stepper motor is 50, that is, P = 50. According to (10),
the result is the same as the speed obtained from (9).

ω =
60 f
P

=
60

P × Ts
=

60
50 × 0.004

= 300 rpm (10)
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Next, we will demonstrate the performance with the speed command of 3000 rpm using the
vector control, where the current control loop is in the field weaken region as the motor runs beyond
the rated speed. The current responses of Figure 17 are the control results, where the peak-to-peak
current is about 2 A. As the speed of 3000 rpm is beyond the rated speed, the direct component is a
negative value by placing the voltage Vre f ahead of the q-axis.Machines 2018, 6, x FOR PEER REVIEW  12 of 15 
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Figure 17. The phase currents A and B of the command of 3000 rpm (185 mV/A).

The position responses for the speed command of 3000 rpm are shown in Figure 18. The motor
speed from the curve shown in Figure 16 is approximately

ω =
∆θ

∆T
=

1.2868
4.15 × 10−3 = 310.07 rad/s = 2960 rpm (10)
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Figure 18. The position responses for the speed command of 3000 rpm.

The speed can also be verified by Figure 17, which has a period about 400 µs, which corresponds
to 3000 rpm.

Compared with the results of Figures 15 and 18, their sloping sides are very smooth, that is,
the motor is run under a very stable condition.

Finally, the low speed condition is performed with the speed command of 3 rpm, the position and
current responses are shown in Figures 19 and 20, respectively. With the position response of Figure 19,
the speed is calculated as follows:

ω =
∆θ

∆T
=

1.2868
4.2

= 0.306 rad/s = 2.92 rpm (11)
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However, in the low speed range, the speed is calculated by measuring the period of the encoder
pulse instead of the frequency. Furthermore, as the command is from the pulse string generator
to the position controller, once the position error is very close to zero, the speed control loop will
be skipped, and the current command will come directly from the position controller. With those
strategies, we obtained a smooth speed response as in Figure 19, and current response as in Figure 20,
where the phase currents are in quadrature.

In viewing those experimental results, one has demonstrated the performance for high, medium,
and low speed commands, and the performances for different position/speed requirements are fitted
to those desired through the closed-loop position and speed control.

The position experimental results are shown in Figures 21–23. The position command is to rotate
the motor with the trapezoidal velocity profile as shown in Figure 21, where the acceleration and
deceleration are 31.4 rad/s2 and −31.4 rad/s2, respectively, and the maximum velocity is 300 rpm.
The total rotation is 30 revolutions, which is equal to 600,000 counts from the encoder. The DAC
is used to convert the digital position and velocity signals to analog voltage with the appropriate
ratio, as shown in Figures 21 and 22. To verify the end point value of the position counter, a 9-bit
logical analyzer is used. The stepper motor of the experiment has pole pair 50 and 20,000 p/rev
encoder, in which one electrical cycle is equal to 400 encoder pulses. Thus, we create a 400-step counter,
which needs 9 bits in order to receive the pulses sent from the encoder, will be cleared (the value is
00000000) initially. According to Figure 23, the binary value of the 9-bit counter is 000000000 at the
position marked “starting”. With the control of position controller and the pulse string generator,
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the value at the end point is also 000000000, that is, in this experiment, the final position stops exactly
at the command.Machines 2018, 6, x FOR PEER REVIEW  14 of 15 
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5. Conclusions

In this paper, we have demonstrated the design of stepper motor position/speed/current
controllers with different speed commands to verify the performances when the control system
is completely constructed by FPGA and ADC as an embedded system. With the current vector
control, and considering the field weaken region operation, we have successfully made the stepper
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motor operate in low, medium, and high speeds with load condition. As a result of the design of the
closed-loop control for position and speed, the stepper motor drive has been presented to be able to
be used in a wide range of speed applications, such as those shown in Figures 21–23. This system
can be combined into a complete motion control system, which includes the motion controller and
motor drive.
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