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Abstract: Model-based control techniques have been gaining more and more interest these days.
These complex control systems are mostly based on theories, such as feedback linearization,
model predictive control, adaptive and robust control. In this paper the latter approach is investigated,
in particular, sliding mode (SM) control is analyzed. While several works on the description and
application of SM control on single-input single-output systems can easily be found, its application
on multi-input multi-output systems is not examined in depth at the same level. Hence, this work
aims at formalizing some theoretical complements about the necessary conditions for the feasibility
of the SM control for multi-input-multi-output systems. Furthermore, in order to obtain the desired
performance from the control system, a method for parameter tuning is proposed in the particular
case in which the relative degree of the controlled channels is equal to one. Finally, a simple control
problem example is shown with the aim of stressing the benefits derived from the application of the
theoretical complements described here.

Keywords: nonlinear systems control; sliding mode control; robust control; uncertain systems

1. Introduction

Thanks to the increasing spread and development of performing microprocessors, the computation
time of controller processors has been drastically reduced over the past decade, allowing the
implementation of more and more complex control architectures. This fact, combined with the
current more and more pressing issue of increased efficiency in each industrial field (e.g., in power
generation [1–4], the transport sector [5–7], energy utilization [8,9], renewable energy [10–12], and so on),
strongly favors the development and implementation of more sophisticated control theories, such as
model-based ones. Among model-based control techniques experiencing wide popularity, model
predictive control (MPC) [13–15], feedback linearization (FBL) [16,17], and sliding mode (SM) control [18]
stand out. In particular, the SM control theory has been receiving growing interest since the early
1970s [19] and has found application in numerous industrial applications; to name a few, it was employed
in References [20,21] for photovoltaic systems, in References [22,23] for gas turbines, in Reference [24],
and Reference [25] for hybrid electric vehicles, and the list goes on. Many studies have been developed
on SM, each one addressing a particular limitation, such as chattering [26], asymptotical convergence
of the state variables to the desired value [27], insensitivity with respect to matched uncertainties [28],
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higher order derivative requirements for sliding surface design [29], and so on. Many other approaches
can be found; for instance, a method to design integral sliding manifolds in the presence of additive
unmatched uncertainties was discussed in Reference [30], while an adaptive second order sliding
mode was proposed in Reference [31] in order to avoid the necessity of any a priori knowledge
of the uncertainty upper bounds. In Reference [32] a peculiar approach was presented, where the
physical model of the controlled system is not needed for the controller design, and the chattering
behavior (determined by SM control) affecting the inverter switching frequency was analyzed and
successfully addressed in Reference [33]. This paper has a slightly different goal than those previously
mentioned. As a matter of fact, the attention here is focused on SM theory application to the non-linear
dynamic systems presented in Reference [34] and to its further development and clarification for
multi-input-multi-output systems provided in References [35–37]. In particular, a novel tuning method
and the theoretical feasibility condition of a multi-input-multi-output (MIMO) classical first-order
SM controller are discussed. With specific reference to theoretical assessments of SM application,
Reference [34] provides all the necessary information for non-linear single-input-single-output (SISO)
systems, but the extension of the theory to non-linear MIMO systems has not been deeply analyzed.
Moreover, no hint on how to obtain the majorant matrix of the errors introduced by the multiplicative
uncertainties was given in References [34,37].

In addition, for second order (or higher) SISO systems (and for MIMO system channels of which
the order is at least two), tuning the SM controller parameters is a simple and straightforward action.
Nevertheless, if the sliding variable corresponds to the tracking error (i.e., the dynamic order of the
controlled channel is equal to one, as in Reference [23]) the classical SM tuning parameters disappear.
Hence, in order to guarantee the desired performance of the control system, an alternative tuning
method of the controller has to be investigated.

Therefore, motivated by what is previously mentioned, it appears from References [34,37] that
a deeper analysis on how to obtain the majorant matrix of the errors, introduced by the multiplicative
uncertainties, is necessary to provide a useful tool able to make the SM controller design more
straightforward. The research developed in References [34–38] discuss the tuning method of the sliding
function coefficients; however, they do not take into account the possibility of exploiting the coefficient
compensating for the uncertain behavior of the system for further controller tuning, hence, allowing
a higher performance to be obtained. As a consequence, all the first-order SM controllers could benefit
from this new insight. For example, the performance determined by the controller in Reference [22]
could be further enhanced.

In view of this state-of-the-art, this paper has three goals: (i) examining in depth the SM theory
for MIMO systems presented in Reference [34] extending the definition of the necessary conditions to
be verified in the control system matrix in order to successfully design an SM controller; (ii) providing
a theoretical approach for the definition of the majorant matrix of multiplicative uncertainties;
and (iii) giving an outline of how to handle controller tuning when the relative degree of the controlled
channel is equal to one.

The main contributions of this paper can be summarized as follows:

• The classical first-order SM control for MIMO system feasibility conditions are deeply analyzed
and correlated to the entity of the uncertainties affecting the real system.

• A straightforward procedure to obtain the majorant matrix of the errors introduced by the
multiplicative uncertainties is given.

• A novel method to properly tune SM controllers exploiting the coefficients which guarantee the
sliding condition to be verified is proposed.

Finally, the aforementioned points are illustrated by their application to a simple industrial-like
test case.
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2. Theoretical Remarks

2.1. Necessary Conditions for Non-Linear MIMO Sliding Mode Control

Consider a non-linear MIMO system of the form:

x(N) = f (x) + [B(x)]u (1)

where:
x(N) =

[
x(n1)

1 , . . . , x(nm)
m

]T
(2)

u = [u1, . . . , um]
T (3)

f (x) = [ f1(x), . . . , fm(x)]T (4)

[B(x)] =

 b11(x) b12(x) · · · b1m(x)
...

...
. . .

...
bm1(x) bm2(x) · · · bmm(x)

 (5)

and state vector x is defined as:

x =
[

x1,
.
x1, . . . , x(n1−1)

1 , x2,
.
x2, . . . , x(n2−1)

2 , . . . , xm,
.
xm, . . . , x(nm−1)

m

]T
(6)

Assume vector f and matrix [B] are not exactly known, however, their estimates, f̂ and
[
B̂
]
,

are known, such that the error introduced by the so-called additive uncertainties is bounded by one
known function, Fi, namely:

Fi ≥
∣∣∣ fi − f̂i

∣∣∣ (7)

while it is possible to link [B̂] and [B] as follows:

[B] = ([I] + [∆])[B̂] (8)

where [∆] is an unknown matrix whose elements will be indicated with δij. The sliding variable vector
is then defined:

s =
[

s1 s2 · · · sm

]T
(9)

where:

si =

(
d
dt

+ λi

)ni−1
x̃i i = 1, 2, . . . , m (10)

In which x̃i is the ith tracking error. The sliding variables can be rewritten for convenience:

s = x(N−1) − x(N−1)
r (11)

where:
x(N−1)

r =
[

x(n1−1)
r1 , x(n2−1)

r2 , . . . , x(nm−1)
rm

]T
(12)

and:

x(ni−1)
ri = x(ni−1)

di −
[

ni−1

∑
k=1

(
ni − 1

k

)
dni−k−1

dtni−k−1 λk
i

]
x̃i i = 1, 2, . . . , m (13)

where xdi is the ith state desired trajectory. The control problem can be solved by choosing the
command laws as [34]:

uSM = [B̂]−1
(

ûeq − ksat

)
(14)

in which:
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ûeq = x(N)
r − f̂ (15)

ksat = [Γ]k (16)

and:
[Γ] = diag[sat(si/φi)] i = 1, . . . , m (17)

where φi is the boundary layer introduced to avoid input chattering. Please note that, in order for
Equation (14) to exist, [B̂] must be full-rank. The sliding condition on each si is defined as:

1
2

d
dt

s2
i ≤ −ηi|si| (18)

Which can be split into: { .
si ≤ −ηi f or si ≥ 0
.
si ≥ ηi f or si < 0

(19)

The expression of the vector
.
s is given by:

.
s = f + [B][B̂]−1

(
ûeq − ksat

)
− x(N)

r (20)

Thus, Equation (20) becomes the following after a few passages:

(1 + δii)ki ≥ ηi +
(

fi − f̂i

)
+

m
∑

j=1
δijûj eq −

m
∑

j = 1
j 6= i

δijk jsat
( sj

φj

)
si > φi

(1 + δii)ki ≥ ηi −
(

fi − f̂i

)
−

m
∑

j=1
δijûj eq +

m
∑

j = 1
j 6= i

δijk jsat
( sj

φj

)
si < −φi

(21)

These conditions can be verified by solving for k:{
([I]− [D])k ≥

(
η + F + [D]

∣∣∣x(N)
r − f̂

∣∣∣)
k > 0

(22)

where the inequality is to be verified, component by component, and:

k = [k1, k2, . . . , km]
T (23)

[D]ij ≥
∣∣∣[∆]ij∣∣∣ (24)

where [D]ij and [∆]ij are the elements of [D] and [∆], respectevely. It follows from Equation (24) that

the D-matrix is a majorant matrix of the uncertainties affecting the B-matrix. Please note that the k,
F, f̂ vectors and the D-matrix are, in general, state-dependent. In order to achieve the solution of
Equation (22) one has to verify that: {

[D]ii < 1
λmax[D] < 1

(25)

where λmax[D] is the maximum eigenvalue of [D]. Indeed, it is clear from Equations (24) and (25)
that matrix [D] cannot assume any form. In particular, it is possible to obtain Equation (22) from
Equation (21) only if the elements on the diagonal of matrix [D] are less than 1, in addition system (22)
admits a solution if matrix ([I]− [D]) is invertible and its inverse matrix has all positive elements.
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As a matter of fact, not satisfying Equation (25) implies the impossibility of sliding mode control.
A detailed analysis about the origin of the second condition of Equation (25) is reported in the
Appendix A.

2.2. Procedure for Multiplicative Uncertainty Upper Bound Matrix Definition

In this section, a method to shape the [D] matrix is described. Referring to Equation (8), one has:

[B] = [B̂] + [∆][B̂] (26)

Thus:
[∆] = ([B]− [B̂])[B̂]−1 (27)

where one can define the quantity:
[E]ij ≥

∣∣∣[B]ij − [B̂]ij
∣∣∣ (28)

As regards additive uncertainties, it is necessary to know the function [E]ij which bind the
errors introduced by the multiplicative uncertainties. Remembering Equation (24), after some simple
passages, the final form of [D] can be written as:

[D]ij =
1∣∣det[B̂]
∣∣ m

∑
k=1

[E]ik ·
∣∣∣adj[B̂]kj

∣∣∣ i, j = 1, 2, . . . , m (29)

Therefore, the conditions of Equation (25) can be verified only a posteriori. It is possible to notice
from Equation (29) that the entity of the error increase, [E]ik, caused by the multiplicative uncertainties,
negatively affects the possibility of successfully designing the controller.

2.3. Controller Tuning Method for Systems with First-Order Channel

Consider a non-linear system of the form:[ .
x1
.
x2

]
=

[
f1(x1, x2)

f2(x1, x2)

]
+

[
b11(x1, x2) b12(x1, x2)

b21(x1, x2) b22(x1, x2)

][
u1

u2

]
(30)

According to Equation (14), the command laws can be written as:

u1 SM = [B̂]−1
11

(
.
x1d − f̂1 − k1sat

(
s1

φ1

))
+ [B̂]−1

12

(
.
x2d − f̂2 − k2sat

(
s2

φ2

))
(31)

u2 SM = [B̂]−1
21

(
.
x1d − f̂1 − k1sat

(
s1

φ1

))
+ [B̂]−1

22

(
.
x2d − f̂2 − k2sat

(
s2

φ2

))
(32)

where [B̂]ij are the elements of [B̂].
It is possible to notice from Equations (31) and (32) that the only parameters available to modify

the control laws are k1 and k2. However, these parameters cannot be chosen deliberately, indeed they
have to satisfy Equation (22) in order to verify Equation (18). For Equation (30) conditions, Equation (22)
can be written as: 

(1− [D]11)k1 − [D]12k2 ≥ h1

−[D]21k1 + (1− [D]22)k2 ≥ h2

k1 > 0
k2 > 0

(33)

where:
h1 = η1 + F1 + [D]11

∣∣∣ .
x1d − f̂1

∣∣∣+ [D]12

∣∣∣ .
x2d − f̂2

∣∣∣ (34)

h2 = η2 + F2 + [D]21

∣∣∣ .
x1d − f̂1

∣∣∣+ [D]22

∣∣∣ .
x2d − f̂2

∣∣∣ (35)
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The solution of Equation (33) can be graphically obtained, as depicted in Figure 1, where one can
observe that, in order to satisfy the sliding conditions, k1 and k2 can be deliberately chosen within the
dashed area. One usually lets the first inequality of Equation (22) degenerate into an equation, hence
the solution is given by the “cone vertex”, i.e., the point (k20, k10). This solution area allows one to
choose the appropriate values for k1 and k2 (within certain boundaries) in order to obtain the desired
performance from the system. In addition, k1 and k2 can be “moved” inside the cone depending on the
state measurement, further improving the controller performance.
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Figure 1. Graphical solution for k1 and k2.

It is clear that both k1 and k2 have to be increased in order to leave the cone vertex. However,
minimal “moving” of one of the two coefficients also allows a wider regulation of the other.
From an operative point of view, one can approach the problem as follows. The two straight lines
which individuate the cone are defined as:{

k1,max(k2) = Ak2 + B
k1,min(k2) = ak2 + b

(36)

where: 

A =
1−[D]22
[D]21

B = − h2
[D]21

a =
[D]12

1−[D]11

b = h1
1−[D]11

(37)

Hence, for a fixed value of k2, Equation (36) individuates the boundary values k1 can assume.
Inside this range, one can choose the desired value for k1 by properly setting the parameter ε∈[0; 1],
according to:

k1(k2, ε) = [(A− a)ε + a]k2 + (b− B)ε + b (38)

That is, the equation of the segment depicted in red in Figure 2. Finally, k1 and k2 can be obtained
according to the following relations:{

k2 = σk20

k1(k2, ε) = [(A− a)ε + a]k2 + (b− B)ε + b
(39)

With σ > 1. The situation is clarified by Figure 2.
Thus, regulation is achieved by properly choosing parameters σ and ε, which can also be

dynamical variable functions. The performance obtained by the k1 and k2 motion inside the cone
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are compared with the ones obtained by simply setting k10 and k20 in the test case shown in the
next section.
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Figure 2. Regulation of k1 and k2 coefficients inside the cone.

3. Test Case

3.1. System Description and Modeling

Let us consider a system composed of two kilns, schematically represented in Figure 3.
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Where ∆T1 and ∆T1 are the relative temperatures of the kilns with respect to ambient temperature
Tamb in K, Rw is the interior kiln thermal resistance in m2K/W while Tf 1 and Tf 2 are the thermal flows
generated by the two heat sources in W. The behavior of the system can be simply described as follows:

Tf1
2 − Tfex = cd1V1

d∆T1
dt + S1

RW
∆T1

Tf1
2 + Tf2 + Tfex = cd2V2

d∆T2
dt + S2

RW
∆T2

(40)

In which c is the air specific heat inside the kilns in J/(kgK), V1, V2, S1 and S2 are the kiln volumes
and surfaces, respectively, in m3 and in m2, while d1 and d2 are the air densities inside the two kilns
in kg/m3. In addition, the term Tf ex takes into account the exchanged thermal flow between the two
kilns according to:

Tfex =
S12

2RW
(∆T1 −∆T2) (41)

considering s12 as the heat exchange surface in m2. Furthermore, a non-linear relation between the air
density and the temperature inside each kiln is defined:

di =
Tamb

∆Ti + Tamb
d0 (42)
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Finally, the equations of the system written in the normal form are:[ .
x1
.
x2

]
=

[
(Tamb+x1)

a1c (−Ax1 + Cx2)
(Tamb+x2)

a2c (Cx1 − Bx2)

]
+

[
(Tamb+x1)

2a1c 0
(Tamb+x2)

2a2c
(Tamb+x2)

a2c

][
u1

u2

]
(43)

where the state vector is defined as:

x = [x1 x2]
T = [∆T1 ∆T2]

T (44)

the inputs are:

u = [u1 u2]
T =

[
Tf1 Tf2

]T
(45)

and the output vector is:
y = [y1 y2]

T = [x1 x2]
T (46)

In addition, some constant terms have been collected in:

a1 = d0TambV1 ; a2 = d0TambV2 (47)

A =
S12 + 2S1

2Rw
; B =

S12 + 2S2

2Rw
; C =

S12

2RW
(48)

Hence, Equation (43) describes a MIMO non-linear system in which channels are of the 1st order.
Finally, a parametric uncertainty on term c is taken into consideration, supposing its exact (unknown)
value to belong to the range:

c ∈ [cmin cmax] (49)

3.2. Sliding Mode Controller Design

According to the theory shown in Section 2, one can proceed to design the SM controller.
The control objectives are the two relative temperatures, ∆T1 and ∆T2, corresponding to the state
variables of the system. Therefore, the sliding variables can be defined as:

s1 = x1 − x1d (50)

s2 = x2 − x2d (51)

In order to handle the uncertainties introduced by the not-exactly-known parameter c,
an estimation of the system functions needs to be defined. In particular defining:

ĉ =
cmax + cmin

2
(52)

one can write:

f̂1 = f1|c=ĉ =
(Tamb + x1)

a1 ĉ
(−Ax1 + Cx2) (53)

f̂2 = f2|c=ĉ =
(Tamb + x2)

a2 ĉ
(Cx1 − Bx2) (54)

b̂11 = b11|c=ĉ =
(Tamb + x1)

2a1 ĉ
(55)

b̂12 = b12|c=ĉ = 0 (56)

b̂21 = b21|c=ĉ =
(Tamb + x2)

2a2 ĉ
(57)
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b̂22 = b22|c=ĉ =
(Tamb + x2)

a2 ĉ
(58)

and consequently:

F1 =

∣∣∣∣ 1
cmin
− 1

ĉ

∣∣∣∣∣∣∣∣Tamb + x1

a1
(−Ax1 + Cx2)

∣∣∣∣ (59)

F2 =

∣∣∣∣ 1
cmin
− 1

ĉ

∣∣∣∣∣∣∣∣Tamb + x2

a2
(−Bx2 + Cx1)

∣∣∣∣ (60)

E11 =

∣∣∣∣ 1
cmin
− 1

ĉ

∣∣∣∣∣∣∣∣Tamb + x1

2a1

∣∣∣∣ (61)

E12 = 0 (62)

E21 =

∣∣∣∣ 1
cmin
− 1

ĉ

∣∣∣∣∣∣∣∣Tamb + x2

2a2

∣∣∣∣ (63)

E22 =

∣∣∣∣ 1
cmin
− 1

ĉ

∣∣∣∣∣∣∣∣Tamb + x2

a2

∣∣∣∣ (64)

According to Equation (29), the D-matrix assumes the form:

[D] =

 E11
|b̂11| 0

E21|b̂22|+E22|b̂21|
|b̂11 b̂22|

E22
|b̂22|

 (65)

Finally, one can write the control laws as shown in Equations (31) and (32). In particular, in this case,
one has:

u1 SM = [B̂]−1
11

(
.
x1d − f̂1 − k1sat

(
s1

φ1

))
(66)

u2 SM = [B̂]−1
21

(
.
x1d − f̂1 − k1sat

(
s1

φ1

))
+ [B̂]−1

22

(
.
x2d − f̂2 − k2sat

(
s2

φ2

))
(67)

where in the first moment, k is chosen as equal to the second side of the inequality of Equation (22):

k10 = [I − D]−1
11

(
η1 + F1 + d11

∣∣∣ .
x1d − f̂1

∣∣∣) (68)

k20 = [I − D]−1
21

(
η1 + F1 + d21

∣∣∣ .
x1d − f̂1

∣∣∣)+ [I − D]−1
22

(
η2 + F2 + d22

∣∣∣ .
x2d − f̂2

∣∣∣) (69)

3.3. Considerations on the Entity of Uncertainties

In this section, the effect of the error increase on the system, generated by parameter uncertainties,
is investigated. The system test case is quite simple, and it is possible to make some considerations
starting from the first condition of Equation (25). Looking at Equation (65) one has:

d11 =
E11∣∣∣b̂11

∣∣∣ < 1 (70)

which, remembering Equations (55) and (61), becomes:∣∣∣ 1
cmin
− 1

ĉ

∣∣∣∣∣∣ (Tamb+x1)
2a1

∣∣∣∣∣∣ (Tamb+x1)
2a1 ĉ

∣∣∣ < 1 (71)

Finally, considering I = cmax − cmin and after a few simple passages, one can obtain:
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I
ĉ
< 1 (72)

This relation means that a limit on the uncertainty range extension exists, beyond which SM control
is not feasible. The same analysis can be carried out for d22, obtaining the same result. The overall
control scheme is depicted in Figure 4.
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Figure 4. Control system scheme.

The system model and the controllers were both implemented in the MATLAB and Simulink
environments, as it can be appreciated from Figure 5:Machines 2018, 6, x FOR PEER REVIEW  11 of 18 
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3.4. Simulation Set I

This first set of simulations aims at assessing the correct SM controller synthesis and its robustness
with respect to parametric and modelling uncertainties. To this extent, together with the uncertainty on
the knowledge of parameter c, two actuators (neglected in the controller synthesis) have been inserted
in the system, characterized by a time constant τa representing the delay time between the instant in
which the controller orders the suitable values for Tf1 and Tf2 (labeled in Figure 4 as T∗f1

and T∗f2
) and

the one in which the two heat sources actually generate them.
The numerical values of the constant parameters used in the simulations are reported in Table 1.

Table 1. Parameters definition.

Symbol Value Symbol Value

V1 8 m3 V2 15.6 m3

S1 16 m2 S2 25 m2

S12 4 m2 Tamb 15 ◦C
d0 1.225 kg/m3 creal 1005 J/kg·K

RW 0.2 m2·K/W τa 5 s
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As previously mentioned, the value of parameter c is not exactly known, thus it is necessary to
provide its estimation and range of belonging to the SM controller. In view of what has been illustrated
in the previous section, to guarantee the control feasibility, these values are chosen as:

cmin = 772 [J/kg ·K] ; cmax = 1127 [J/kg ·K] (73)

while the value of ĉ derives from Equation (52). In this situation one has:

d11 = d22 = λmax = 0.23 (74)

Thus the conditions of Equation (25) are verified.
The simulation, as shown in Figure 6, considers a step variation in the ∆T1 reference 10 s after the

simulation start, from an initial condition of 500 ◦C to a steady state working point at 650 ◦C, while ∆T2

reference is kept constant at 700 ◦C. Please remember that in this first set of simulations, k1 = k10 and
k2 = k20.Machines 2018, 6, x FOR PEER REVIEW  12 of 18 
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Figure 6. ∆T1 time profile.

The simulation results show the correct operation of the SM controller, which is able to take the
controlled variables as their references. However, from Figure 7, one can notice a non-negligible dip in
the ∆T2 profile during the transient. Figure 8 shows the time profiles of the two thermal flows coming
from the two actuators.

It is interesting to investigate the system behavior with the increasing of the entity of
uncertainties. By choosing a wider uncertainty range of parameter c, such that Equation (72) is violated
(e.g., cmin = 472 J/kgK; cmax = 1427 J/kgK), the system becomes unstable, as shown in Figure 9.

Indeed, the conditions necessary for SM control feasibility are not complied with, as now:

d11 = d22 = λmax = 1.01 (75)
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3.5. Simulation Set II

In this section, the controller tuning proposed in Section 3 is applied in order to improve the
performance of the system. In particular, in the following attention is focused on keeping ∆T2

as constant as possible throughout the entire transient, by dynamically regulating the terms k1 and k2.
For this specific test case, as D12 = 0, the cone assumes the shape in Figure 10.
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As one can intuitively understand, an increase or decrease of ki involves a greater or smaller
“strength” of the ith channel. As a consequence, in order to pursue the aforementioned goal, it is
necessary to make the 2nd channel of the system “stronger” than the 1st. Therefore, during the
transient, k1 must be kept at its minimum value, while k2 has to be dynamically increased within the
dashed area in Figure 10. This means that regulation parameter εmust be zero value throughout the
transient (which implies that k1 = k1,min = k10), while σ is defined on the basis of the tracking error of
∆T2 such that, if e2 increases, k1 must also increase accordingly, e.g., the functional relation depicted in
Figure 11.Machines 2018, 6, x FOR PEER REVIEW  14 of 18 
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The comparison between the performance obtained, with and without the proposed controller
tuning, are presented in Figures 12–16. The variable profiles obtained through the proposed tuning
method are reported by red dash-dot lines, while the ones related to the conventionally tuned control
system are reported by continuous blue lines.
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The results of this second simulation set clearly point out the performance improvement obtained
thanks to the tuning method proposed. Indeed, with an almost identical behavior of the variable
∆T1 (Figure 12), one can notice in Figure 13 how the regulation leads to a much better profile for ∆T2,
which does not deviate more than 5 ◦C from the constant reference.

Figure 14 highlights that the thermal flow injected by the first heat source is substantially the
same with and without the proposed controller tuning approach, while the second is forced by the
controller to produce a greater amount of heat in order to prevent the second kiln temperature from
decreasing too much.

Finally, Figures 15 and 16 show the regulation profiles of k1 and k2 compared to the limit values
they can dynamically assume, highlighting that, while k1 is always set at its minimum value, k2 is
increased during the transient to keep the corresponding temperature as constant as possible.
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4. Conclusions

Some analytical remarks on the SM control theory for MIMO systems have been reported in this
paper. In particular, the conditions necessary for controller feasibility on the entity of uncertainties
have been thoroughly investigated. In addition, a novel controller tuning method has been proposed in
order to successfully obtain the desired performance, even when the typical SM regulation parameters
are not available. More precisely, it is obtained that first order SM controllers for MIMO systems can be
designed as long as the so-called multiplicative uncertainties are sufficiently contained; additionally,
a procedure able to exploit the uncertainty compensating terms (ki) both for satisfying the sliding
condition and guaranteeing high controller performance is outlined. Finally, the validity of the
theoretical considerations is proved through a simple test case. In order to show the effect of increasing
entities of uncertainty and to illustrate the effective performance improvement obtained thanks to the
proposed tuning method, a MIMO SM controller is designed and applied to the temperature regulation
problem of two adjacent industrial kilns. Future developments will consider the implementation and
validation of the proposed approach in a real test case or in a real time simulation environment in
hardware in a loop configuration.
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Appendix A

In mathematics, the class of Z-matrices are those matrices whose off-diagonal entries are less than
or equal to zero; that is, a Z-matrix A satisfies:

A =
[
aij
]

with aij ≤ 0 f or all i 6= j (A1)

Definition A1. Let A be a n × n Z-matrix. That is A =
(
aij
)

where aij ≤ 0 for all i 6= j, 1 ≤ i, j ≤ n.
Then matrix A is also a M-matrix if it can be expressed in the form:

A = sI − D (A2)

where D =
(
dij
)

with dij ≥ 0, for all 1 ≤ i, j ≤ n, s is greater than the maximum of the module of the
eigenvalues of D and I is the identity matrix.

Definition A2. Below, ≥ denotes the element-wise-order. That is, for any real matrices A, B of size m × n,
we write A ≥ B if aij ≥ bij for all i, j.

Proposition A1. Let D =
(
dij
)

be such that dij ≥ 0, for all 1 ≤ i, j ≤ n with maximum eigenvalue λmax ≤ 1,
then I − D is a M-matrix.

Proof. Obviously each off-diagonal term is less than or equal to 0, moreover, by choosing s = 1 we get
the definition. �

Proposition A2. If A is a M-matrix then A is inverse-positive. That is, A−1 exists and A−1 ≥ 0.

Proof. It can be found in Reference [39]. �
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30. Veselić, B.; Draženović, B.; Milosavljević, Č. Integral sliding manifold design for linear systems with additive
unmatched disturbances. IEEE Trans. Autom. Control 2016, 61, 2544–2549. [CrossRef]

31. Incremona, G.P.; Cucuzzella, M.; Ferrara, A. Adaptive suboptimal second-order sliding mode control for
microgrids. Int. J. Control 2016, 89, 1849–1867. [CrossRef]

32. Precup, R.-E.; Radac, M.-B.; Roman, R.-C.; Petriu, E.M. Model-free sliding mode control of nonlinear systems:
Algorithms and experiments. Inf. Sci. 2017, 381, 176–192. [CrossRef]

33. Komurcugil, H.; Biricik, S. Time-varying and constant switching frequency-based sliding-mode control
methods for transformerless DVR employing half-bridge VSI. IEEE Trans. Ind. Electron. 2017, 64, 2570–2579.
[CrossRef]

34. Slotine, J.-J.E.; Li, W. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991; Volume 199.
35. Slotine, J.-J.E. The robust control of robot manipulators. Int. J. Robot. Res. 1985, 4, 49–64. [CrossRef]
36. Slotine, J.-J.E. Sliding controller design for non-linear systems. Int. J. Control 1984, 40, 421–434. [CrossRef]
37. Li, D.; Slotine, J.J.E. On Sliding Control for Multi-Input Multi-Output Nonlinear Systems. In Proceedings of

the 1987 American Control Conference, Minneapolis, MN, USA, 10–12 June 1987; pp. 874–879.
38. Slotine, J.J.E.; Hong, S. Two-time Scale Sliding Control of Manipulators with Flexible Joints. In Proceedings

of the 1986 American Control Conference, Seattle, WA, USA, 18–20 June 1986; pp. 805–810.
39. Johnson, C.R.; Smith, R.L. Inverse M-matrices, II. Linear Algebra Its Appl. 2011, 435, 953–983. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TITS.2012.2196796
http://dx.doi.org/10.1109/9.948475
http://dx.doi.org/10.1109/TAC.2015.2495333
http://dx.doi.org/10.1080/00207179.2016.1138241
http://dx.doi.org/10.1016/j.ins.2016.11.026
http://dx.doi.org/10.1109/TIE.2016.2636806
http://dx.doi.org/10.1177/027836498500400205
http://dx.doi.org/10.1080/00207178408933284
http://dx.doi.org/10.1016/j.laa.2011.02.016
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Theoretical Remarks 
	Necessary Conditions for Non-Linear MIMO Sliding Mode Control 
	Procedure for Multiplicative Uncertainty Upper Bound Matrix Definition 
	Controller Tuning Method for Systems with First-Order Channel 

	Test Case 
	System Description and Modeling 
	Sliding Mode Controller Design 
	Considerations on the Entity of Uncertainties 
	Simulation Set I 
	Simulation Set II 

	Conclusions 
	
	References

